def simple_model(output_dir): start_time = "2018-09-20T12:00" model = gs.Model( start_time=start_time, duration=gs.days(1), time_step=gs.minutes(30), name="test model for tideflats", ) model.map = MapFromBNA(bna_file) model.movers += gs.constant_wind_mover(10, 300, "m/s") model.spills += gs.surface_point_line_spill( num_elements=100, start_position=(5.4, 53.38, 0), end_position=(5.8, 53.4, 0), release_time=start_time, ) model.outputters += gs.Renderer( output_timestep=gs.hours(1), map_filename=bna_file, output_dir=output_dir, formats=['gif'], # ['gif', 'png'] image_size=(800, 400), # viewport=((4.5, 53.0), # (5.5, 53.5)), ) return model
def test_refloat_elements(): tfm = TideflatMap(get_gnomemap(), get_simple_tideflat()) # Fake spill_container sc = { 'next_positions': np.array(( (12, 11, 0), # in water (13.5, 13.5, 0), # on_land (if the map did that) (12.5, 12.5, 0), # still on tideflat (11.5, 12.5, 0), # no longer on tideflat (12.5, 13.5, 0), # in water )), 'status_codes': np.array(( oil_status.in_water, oil_status.on_land, oil_status.on_tideflat, oil_status.on_tideflat, oil_status.in_water, )) } tfm.refloat_elements(sc, gs.minutes(10), datetime(2018, 1, 1, 12, 30)) assert np.all(sc['status_codes'] == np.array(( oil_status.in_water, oil_status.on_land, oil_status.on_tideflat, oil_status.in_water, oil_status.in_water, )))
def simple_model(output_dir): start_time = "2018-09-20T12:00" model = gs.Model(start_time=start_time, duration=gs.days(1), time_step=gs.minutes(30), name="test model for tideflats", ) model.map = MapFromBNA(bna_file) model.movers += gs.constant_wind_mover(10, 300, "m/s") model.spills += gs.surface_point_line_spill(num_elements=100, start_position=(5.4, 53.38, 0), end_position=(5.8, 53.4, 0), release_time=start_time, ) model.outputters += gs.Renderer(output_timestep=gs.hours(1), map_filename=bna_file, output_dir=output_dir, formats=['gif'], # ['gif', 'png'] image_size=(800, 400), # viewport=((4.5, 53.0), # (5.5, 53.5)), ) return model
def test_refloat_elements(): tfm = TideflatMap(get_gnomemap(), get_simple_tideflat()) # Fake spill_container sc = {'next_positions': np.array(((12, 11, 0), # in water (13.5, 13.5, 0), # on_land (if the map did that) (12.5, 12.5, 0), # still on tideflat (11.5, 12.5, 0), # no longer on tideflat (12.5, 13.5, 0), # in water )), 'status_codes': np.array((oil_status.in_water, oil_status.on_land, oil_status.on_tideflat, oil_status.on_tideflat, oil_status.in_water, ))} tfm.refloat_elements(sc, gs.minutes(10), datetime(2018, 1, 1, 12, 30)) assert np.all(sc['status_codes'] == np.array((oil_status.in_water, oil_status.on_land, oil_status.on_tideflat, oil_status.in_water, oil_status.in_water, )) )
def test_model_full_run_output_short_interval(model, output_dir): ''' Test weathering outputter with a model since simplest to do that (I'm being impatient -- I hope I don't regret that) ''' outfilename = os.path.join(output_dir, "test_oil_budget2.csv") model.outputters += OilBudgetOutput(outfilename, output_timestep=gs.minutes(30)) print OilBudgetOutput.clean_output_files model.rewind() model.full_run() # was the file created? out_filename = os.path.join(output_dir, outfilename) assert os.path.isfile(out_filename) # read the file in and test a couple things csv_file = open(out_filename).readlines() print "file is:", print csv_file print len(csv_file) assert len(csv_file) == 50 assert csv_file[0].split(",")[0] == "Model Time" assert csv_file[1].split(",")[0].strip() == "0:00" assert csv_file[2].split(",")[0].strip() == "0:30" print csv_file[-1] assert csv_file[-1].split(",")[0].strip() == "24:00"
def make_model(images_dir=os.path.join(base_dir, 'images')): # create the maps: print 'creating the maps' mapfile = gs.get_datafile(os.path.join(base_dir, './MassBayMap.bna')) gnome_map = gs.MapFromBNA( mapfile, refloat_halflife=1, # hours raster_size=2048 * 2048 # about 4 MB ) renderer = gs.Renderer(mapfile, images_dir, image_size=(800, 800), projection_class=GeoProjection) print 'initializing the model' # start_time = datetime(2013, 3, 12, 10, 0) start_time = "2013-03-12T10:00" # 15 minutes in seconds # Default to now, rounded to the nearest hour model = gs.Model(time_step=gs.minutes(15), start_time=start_time, duration=gs.days(1), map=gnome_map, uncertain=True) print 'adding outputters' model.outputters += renderer netcdf_file = os.path.join(base_dir, 'script_boston.nc') gs.remove_netcdf(netcdf_file) model.outputters += gs.NetCDFOutput(netcdf_file, which_data='all') model.outputters += gs.KMZOutput( os.path.join(base_dir, 'script_boston.kmz')) print 'adding a RandomMover:' model.movers += gs.RandomMover(diffusion_coef=100000) print 'adding a wind mover:' # series = np.zeros((2, ), dtype=datetime_value_2d) # series[0] = (start_time, (5, 180)) # series[1] = (start_time + timedelta(hours=25), (5, 180)) # w_mover = WindMover(Wind(timeseries=series, units='m/s')) # model.movers += w_mover # model.environment += w_mover.wind w_mover = gs.constant_wind_mover(5, 180, units='m/s') model.movers += w_mover print 'adding a cats shio mover:' curr_file = gs.get_datafile(os.path.join(base_dir, r"./EbbTides.cur")) tide_file = gs.get_datafile(os.path.join(base_dir, r"./EbbTidesShio.txt")) c_mover = gs.CatsMover(curr_file, tide=gs.Tide(tide_file)) # this is the value in the file (default) c_mover.scale_refpoint = (-70.8875, 42.321333) c_mover.scale = True c_mover.scale_value = -1 model.movers += c_mover # TODO: cannot add this till environment base class is created # model.environment += c_mover.tide print 'adding a cats ossm mover:' # ossm_file = get_datafile(os.path.join(base_dir, # r"./MerrimackMassCoastOSSM.txt")) curr_file = gs.get_datafile( os.path.join(base_dir, "MerrimackMassCoast.cur")) tide_file = gs.get_datafile( os.path.join(base_dir, "MerrimackMassCoastOSSM.txt")) c_mover = gs.CatsMover(curr_file, tide=gs.Tide(tide_file)) # but do need to scale (based on river stage) c_mover.scale = True c_mover.scale_refpoint = (-70.65, 42.58333) c_mover.scale_value = 1. model.movers += c_mover model.environment += c_mover.tide print 'adding a cats mover:' curr_file = gs.get_datafile(os.path.join(base_dir, "MassBaySewage.cur")) c_mover = gs.CatsMover(curr_file) # but do need to scale (based on river stage) c_mover.scale = True c_mover.scale_refpoint = (-70.78333, 42.39333) # the scale factor is 0 if user inputs no sewage outfall effects c_mover.scale_value = .04 model.movers += c_mover # pat1Angle 315; # pat1Speed 19.44; pat1SpeedUnits knots; # pat1ScaleToValue 0.138855 # # pat2Angle 225; # pat2Speed 19.44; pat2SpeedUnits knots; # pat2ScaleToValue 0.05121 # # scaleBy WindStress print "adding a component mover:" component_file1 = gs.get_datafile(os.path.join(base_dir, "WAC10msNW.cur")) component_file2 = gs.get_datafile(os.path.join(base_dir, "WAC10msSW.cur")) comp_mover = gs.ComponentMover(component_file1, component_file2, w_mover.wind) # todo: callback did not work correctly below - fix! # comp_mover = ComponentMover(component_file1, # component_file2, # Wind(timeseries=series, units='m/s')) comp_mover.scale_refpoint = (-70.855, 42.275) comp_mover.pat1_angle = 315 comp_mover.pat1_speed = 19.44 comp_mover.pat1_speed_units = 1 comp_mover.pat1ScaleToValue = .138855 comp_mover.pat2_angle = 225 comp_mover.pat2_speed = 19.44 comp_mover.pat2_speed_units = 1 comp_mover.pat2ScaleToValue = .05121 model.movers += comp_mover print 'adding a spill' end_time = gs.asdatetime(start_time) + gs.hours(12) spill = gs.point_line_release_spill(num_elements=100, start_position=(-70.911432, 42.369142, 0.0), release_time=start_time, end_release_time=end_time) model.spills += spill return model
from gnome.utilities.time_utils import asdatetime from wadden_mudflats_matroos import Matroos_Mudflats data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) # Simulation outputs: # use this place to script the folder based on test number or something # it will be a relative path to this script out_dir = 'mudflat_matroos_test_real' # Model parameters: start_time = "2018-10-11 05:00" # time 00:00 if you don't specify model_duration = gs.hours(24) dT_OUT = gs.minutes(30) currentfile = 'MatroosRect.nc' # constant wind (in both time and space) Wind = {"speed": 10, "direction": 270, "units": "m/s"} SpillPosition = (5.122382, 53.327899, 0) # tussen VL en TX # SpillPosition = (5.210218, 53.231510, 0) # route Harlingen Terschelling # SpillPosition = (4.834194, 52.936454, 0) # Model Parameters: base_dir = os.path.dirname(__file__) newpath = os.path.join(base_dir, out_dir) if not os.path.exists(newpath):
def test_full_model_run(): """ This will have a couple movers, and make sure that the on_tideflat status code stops all movers. only winds and currents for now """ start_time = "2018-09-10T12:00" model = Model( start_time=start_time, time_step=sc.minutes(10), ) # start_time=round_time(datetime.now(), 3600), # duration=timedelta(days=1), # weathering_substeps=1, # map=None, # uncertain=False, # cache_enabled=False, # mode=None, # location=[], # environment=[], # outputters=[], # movers=[], # weatherers=[], # spills=[], # uncertain_spills=[], # **kwargs): # ) model.movers += constant_wind_mover(speed=10, direction=225, units='m/s') model.movers += RandomMover() # defaults are fine model.spills += point_line_release_spill( num_elements=10, start_position=(0.0, 0.0, 0.0), release_time=start_time, ) # fixme: should maybe add currents -- though if the currents are smart, # they should be zero on the tideflats # run one step: print model.step() # step zero -- should be released, but not yet moved positions = model.get_spill_property('positions').copy() assert np.all(positions == 0.0) prev_positions = positions print model.step() # step one -- all elements should have moved in horizontal positions = model.get_spill_property('positions').copy() assert np.all(positions[:, 0:1] != prev_positions[:, 0:1]) assert np.all(positions[:, 2] == prev_positions[:, 2]) prev_positions = positions # Now set the flags for half of the elements status_codes = model.get_spill_property('status_codes') new_status_codes = np.array([oil_status.on_tideflat] * 5 + [oil_status.in_water] * 5) status_codes[:] = new_status_codes # make sure it took assert np.all(model.get_spill_property('status_codes') == new_status_codes) # step the model again model.step() positions = model.get_spill_property('positions').copy() delta = positions - prev_positions # first five should not have moved assert np.all(delta[:5, 0:1] == 0.0) assert np.all(delta[5:, 0:1] != 0.0) prev_positions = positions # reset status codes to in_water: model.get_spill_property('status_codes')[:] = oil_status.in_water # step the model again print model.step() positions = model.get_spill_property('positions').copy() delta = positions - prev_positions # they all should have moved again assert np.all(delta[:, 0:1] != 0.0)
def make_model(): """ Set up a GNOME simulation that uses TAMOC Set up a spill scenario in GNOME that uses TAMOC to simulate a subsurface blowout and then pass the TAMOC solution to GNOME for the far-field particle tracking """ # Set up the directory structure for the model base_dir, images_dir, outfiles_dir = set_directory_structure() # Set up the modeling environment print '\n-- Initializing the Model --' start_time = "2019-06-01T12:00" model = gs.Model(start_time=start_time, duration=gs.days(3), time_step=gs.minutes(30), uncertain=False) # Add a map print '\n-- Adding a Map --' model.map = gs.GnomeMap() # Add image output print '\n-- Adding Image Outputters --' renderer = gs.Renderer(output_dir=images_dir, image_size=(1024, 768), output_timestep=gs.hours(1), viewport=((-0.15, -0.35), (0.15, 0.35))) model.outputters += renderer # Add NetCDF output print '\n-- Adding NetCDF Outputter --' if not os.path.exists(outfiles_dir): os.mkdir(outfiles_dir) netcdf_file = os.path.join(outfiles_dir, 'script_tamoc.nc') gs.remove_netcdf(netcdf_file) file_writer = gs.NetCDFOutput(netcdf_file, which_data='all', output_timestep=gs.hours(2)) model.outputters += file_writer # Add a spill object print '\n-- Adding a Point Spill --' end_release_time = model.start_time + gs.hours(12) point_source = ts.TamocSpill(num_elements=100, start_position=(0.0, 0.0, 1000.), release_duration=gs.hours(24), release_time=start_time, substance='AD01554', release_rate=20000., units='bbl/day', gor=500., d0=0.5, phi_0=-np.pi / 2., theta_0=0., windage_range=(0.01, 0.04), windage_persist=900, name='Oil Well Blowout') model.spills += point_source # Create an ocean environment water, wind, waves = base_environment(water_temp=273.15 + 21., wind_speed=5., wind_dir=225.) # Add a uniform current in the easterly direction print '\n-- Adding Currents --' uniform_current = gs.SimpleMover(velocity=(0.1, 0.0, 0.)) model.movers += uniform_current # Add a wind mover wind_mover = gs.WindMover(wind) model.movers += wind_mover # Add particle diffusion...note, units are in cm^2/s print '\n-- Adding Particle Diffusion --' particle_diffusion = gs.RandomMover3D( horizontal_diffusion_coef_above_ml=100000., horizontal_diffusion_coef_below_ml=10000., vertical_diffusion_coef_above_ml=100., vertical_diffusion_coef_below_ml=10., mixed_layer_depth=15.) model.movers += particle_diffusion # Add rise velocity for droplets print '\n-- Adding Particle Rise Velocity --' # fixme: we do have code for rise velocity: # gnome.movers.RiseVelocityMover # let's test that later slip_velocity = gs.SimpleMover(velocity=(0.0, 0.0, -0.1)) model.movers += slip_velocity # Add dissolution print '\n-- Adding Weathering --' evaporation = Evaporation(water=water, wind=wind) model.weatherers += evaporation dissolution = Dissolution(waves=waves, wind=wind) model.weatherers += dissolution return model
# SpillPosition = (5.122382, 53.327899, 0) # tussen VL en TX SpillPosition = (5.210218, 53.231510, 0) # route Harlingen Terschelling ## # Model Parameters: base_dir = os.path.dirname(__file__) newpath = os.path.join(base_dir, out_dir) if not os.path.exists(newpath): os.makedirs(newpath) print 'init model' model = gs.Model(start_time=start_time, duration=model_duration, time_step=gs.minutes(30)) bounds = ( (5.399281, 53.283564), (5.323750, 53.279459), (5.246845, 53.243314), (5.204273, 53.195623), (5.197407, 53.137170), (5.226246, 53.096783), (5.307270, 53.093485), (5.413014, 53.113272), (5.447346, 53.190687), (5.525624, 53.245779), ) tideflat = SimpleTideflat(bounds, "2009-01-01T09:00", "2009-01-01T018:00")