def __init__(self, length, debug=False): """ Hierarchical block to detect Null symbols @param length length of the Null symbol (in samples) @param debug whether to write signals out to files """ gr.hier_block2.__init__(self, "detect_null", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature(1, 1, gr.sizeof_char)) # output signature # get the magnitude squared self.ns_c2magsquared = gr.complex_to_mag_squared() self.ns_moving_sum = dabp.moving_sum_ff(length) self.ns_invert = gr.multiply_const_ff(-1) # peak detector on the inverted, summed up signal -> we get the nulls (i.e. the position of the start of a frame) self.ns_peak_detect = gr.peak_detector_fb(0.6,0.7,10,0.0001) # mostly found by try and error -> remember that the values are negative! # connect it all self.connect(self, self.ns_c2magsquared, self.ns_moving_sum, self.ns_invert, self.ns_peak_detect, self) if debug: self.connect(self.ns_invert, gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dabp_ns_filter_inv_f.dat")) self.connect(self.ns_peak_detect,gr.file_sink(gr.sizeof_char, "debug/ofdm_sync_dabp_peak_detect_b.dat"))
def __init__(self,options,Freq): gr.top_block.__init__(self) if options.input_file == "": self.IS_USRP2 = True else: self.IS_USRP2 = False #self.min_freq = options.start #self.max_freq = options.stop self.min_freq = Freq.value-(3*10**6) # same as that of the transmitter bandwidth ie 6MHZ approx for a given value of decimation line option any more self.max_freq = Freq.value+(3*10**6) if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them print "Start and stop frequencies order swapped!" self.fft_size = options.fft_size self.ofdm_bins = options.sense_bins # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) #log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # modifications for USRP2 if self.IS_USRP2: self.u = uhd.usrp_source(options.args,uhd.io_type.COMPLEX_FLOAT32,num_channels=1) # Modified Line # self.u.set_decim(options.decim) # samp_rate = self.u.adc_rate()/self.u.decim() samp_rate = 100e6/options.decim # modified sampling rate self.u.set_samp_rate(samp_rate) else: self.u = gr.file_source(gr.sizeof_gr_complex,options.input_file, True) samp_rate = 100e6 /options.decim # modified sampling rate self.freq_step =0 #0.75* samp_rate self.min_center_freq = (self.min_freq + self.max_freq)/2 global BW BW = self.max_freq - self.min_freq global size size=self.fft_size global ofdm_bins ofdm_bins = self.ofdm_bins global usr #global thrshold_inorder usr=samp_rate nsteps = 10 #math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * samp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * samp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) # thread-safe message queue self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # control scanning and record frequency domain statistics self.connect(self.u, s2v, fft,c2mag,stats) if options.gain is None: g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2 # if no gain was specified, use the mid-point in dB
def __init__(self, uhd_address, options): gr.top_block.__init__(self) self.uhd_addr = uhd_address self.freq = options.freq self.samp_rate = options.samp_rate self.gain = options.gain self.threshold = options.threshold self.trigger = options.trigger self.uhd_src = uhd.single_usrp_source( device_addr=self.uhd_addr, stream_args=uhd.stream_args('fc32')) self.uhd_src.set_samp_rate(self.samp_rate) self.uhd_src.set_center_freq(self.freq, 0) self.uhd_src.set_gain(self.gain, 0) taps = firdes.low_pass_2(1, 1, 0.4, 0.1, 60) self.chanfilt = gr.fir_filter_ccc(10, taps) self.tagger = gr.burst_tagger(gr.sizeof_gr_complex) # Dummy signaler to collect a burst on known periods data = 1000 * [ 0, ] + 1000 * [ 1, ] self.signal = gr.vector_source_s(data, True) # Energy detector to get signal burst ## use squelch to detect energy self.det = gr.simple_squelch_cc(self.threshold, 0.01) ## convert to mag squared (float) self.c2m = gr.complex_to_mag_squared() ## average to debounce self.avg = gr.single_pole_iir_filter_ff(0.01) ## rescale signal for conversion to short self.scale = gr.multiply_const_ff(2**16) ## signal input uses shorts self.f2s = gr.float_to_short() # Use file sink burst tagger to capture bursts self.fsnk = gr.tagged_file_sink(gr.sizeof_gr_complex, self.samp_rate) ################################################## # Connections ################################################## self.connect((self.uhd_src, 0), (self.tagger, 0)) self.connect((self.tagger, 0), (self.fsnk, 0)) if self.trigger: # Connect a dummy signaler to the burst tagger self.connect((self.signal, 0), (self.tagger, 1)) else: # Connect an energy detector signaler to the burst tagger self.connect(self.uhd_src, self.det) self.connect(self.det, self.c2m, self.avg, self.scale, self.f2s) self.connect(self.f2s, (self.tagger, 1))
def setup_normal(self, setimode): self.setup_radiometer_common(1) self.head = self.u if (self.use_notches == True): self.shead = self.notch_filt else: self.shead = self.u if setimode == False: self.detector = gr.complex_to_mag_squared() self.connect(self.shead, self.scope) if (self.use_notches == False): self.connect(self.head, self.detector, self.mute, self.reference_level, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) else: self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) self.connect(self.cal_offs, self.probe) # # Add a side-chain detector chain, with a different integrator, for sampling # The reference channel data # This is used to derive the offset value for self.reference_level, used above # if (self.switch_mode == True): self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe) return
def __init__(self, length, debug=False): """ Hierarchical block to detect Null symbols @param length length of the Null symbol (in samples) @param debug whether to write signals out to files """ gr.hier_block2.__init__(self,"detect_null", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature(1, 1, gr.sizeof_char)) # output signature # get the magnitude squared self.ns_c2magsquared = gr.complex_to_mag_squared() # this wastes cpu cycles: # ns_detect_taps = [1]*length # self.ns_moving_sum = gr.fir_filter_fff(1,ns_detect_taps) # this isn't better: #self.ns_filter = gr.iir_filter_ffd([1]+[0]*(length-1)+[-1],[0,1]) # this does the same again, but is actually faster (outsourced to an independent block ..): self.ns_moving_sum = dab_swig.moving_sum_ff(length) self.ns_invert = gr.multiply_const_ff(-1) # peak detector on the inverted, summed up signal -> we get the nulls (i.e. the position of the start of a frame) self.ns_peak_detect = gr.peak_detector_fb(0.6,0.7,10,0.0001) # mostly found by try and error -> remember that the values are negative! # connect it all self.connect(self, self.ns_c2magsquared, self.ns_moving_sum, self.ns_invert, self.ns_peak_detect, self) if debug: self.connect(self.ns_invert, gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dab_ns_filter_inv_f.dat")) self.connect(self.ns_peak_detect,gr.file_sink(gr.sizeof_char, "debug/ofdm_sync_dab_peak_detect_b.dat"))
def __init__(self, uhd_address, options): gr.top_block.__init__(self) self.uhd_addr = uhd_address self.freq = options.freq self.samp_rate = options.samp_rate self.gain = options.gain self.threshold = options.threshold self.trigger = options.trigger self.uhd_src = uhd.single_usrp_source( device_addr=self.uhd_addr, io_type=uhd.io_type_t.COMPLEX_FLOAT32, num_channels=1, ) self.uhd_src.set_samp_rate(self.samp_rate) self.uhd_src.set_center_freq(self.freq, 0) self.uhd_src.set_gain(self.gain, 0) taps = firdes.low_pass_2(1, 1, 0.4, 0.1, 60) self.chanfilt = gr.fir_filter_ccc(10, taps) self.tagger = gr.burst_tagger(gr.sizeof_gr_complex) # Dummy signaler to collect a burst on known periods data = 1000*[0,] + 1000*[1,] self.signal = gr.vector_source_s(data, True) # Energy detector to get signal burst ## use squelch to detect energy self.det = gr.simple_squelch_cc(self.threshold, 0.01) ## convert to mag squared (float) self.c2m = gr.complex_to_mag_squared() ## average to debounce self.avg = gr.single_pole_iir_filter_ff(0.01) ## rescale signal for conversion to short self.scale = gr.multiply_const_ff(2**16) ## signal input uses shorts self.f2s = gr.float_to_short() # Use file sink burst tagger to capture bursts self.fsnk = gr.tagged_file_sink(gr.sizeof_gr_complex, self.samp_rate) ################################################## # Connections ################################################## self.connect((self.uhd_src, 0), (self.tagger, 0)) self.connect((self.tagger, 0), (self.fsnk, 0)) if self.trigger: # Connect a dummy signaler to the burst tagger self.connect((self.signal, 0), (self.tagger, 1)) else: # Connect an energy detector signaler to the burst tagger self.connect(self.uhd_src, self.det) self.connect(self.det, self.c2m, self.avg, self.scale, self.f2s) self.connect(self.f2s, (self.tagger, 1))
def ms_to_file(hb, block, filename, N=4096, delay=0, fft=False, scale=1): streamsize = determine_streamsize(block) vlen = streamsize / gr.sizeof_gr_complex blks = [block] if fft and vlen > 1: gr_fft = fft_blocks.fft_vcc(vlen, True, [], True) blks.append(gr_fft) mag_sqrd = gr.complex_to_mag_squared(vlen) blks.append(mag_sqrd) if vlen > 1: v2s = blocks.vector_to_stream(gr.sizeof_float, vlen) blks.append(v2s) if delay != 0: delayline = delayline_ff(delay) blks.append(delayline) gr_scale = gr.multiply_const_ff(scale) blks.append(gr_scale) filter = gr.fir_filter_fff(1, [1.0 / N] * N) blks.append(filter) for i in range(len(blks) - 1): hb.connect(blks[i], blks[i + 1]) log_to_file(hb, filter, filename)
def __init__(self, queue, options, args): #grc_wxgui.top_block_gui.__init__(self, title="Top Block") gr.top_block.__init__(self) ################################################## # Variables ################################################## self.samp_rate = samp_rate = 100e6/512 ################################################## # Blocks ################################################## self.gr_complex_to_mag_squared_0 = gr.complex_to_mag_squared(1) self.gr_keep_one_in_n_0 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, 10) self.keyfob_msg = keyfob.msg(queue, samp_rate/10.0, options.threshold) self.uhd_single_usrp_source_0 = uhd.single_usrp_source( device_addr="", io_type=uhd.io_type_t.COMPLEX_FLOAT32, num_channels=1, ) _clk_cfg = uhd.clock_config_t() _clk_cfg.ref_source = uhd.clock_config_t.REF_SMA _clk_cfg.pps_source = uhd.clock_config_t.PPS_SMA _clk_cfg.pps_polarity = uhd.clock_config_t.PPS_POS #self.uhd_single_usrp_source_0.set_clock_config(_clk_cfg); self.uhd_single_usrp_source_0.set_samp_rate(samp_rate) self.uhd_single_usrp_source_0.set_center_freq(options.freq, 0) self.uhd_single_usrp_source_0.set_gain(40, 0) ################################################## # Connections ################################################## self.connect((self.uhd_single_usrp_source_0, 0), (self.gr_keep_one_in_n_0, 0)) self.connect((self.gr_keep_one_in_n_0, 0), (self.gr_complex_to_mag_squared_0, 0)) self.connect((self.gr_complex_to_mag_squared_0, 0), self.keyfob_msg)
def __init__(self,options,Freq): gr.top_block.__init__(self) if options.input_file == "": self.IS_USRP2 = True else: self.IS_USRP2 = False #self.min_freq = options.start #self.max_freq = options.stop self.min_freq = Freq.value-(3*10**6) # same as that of the transmitter bandwidth ie 6MHZ approx for a given value of decimation line option any more self.max_freq = Freq.value+(3*10**6) if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them print "Start and stop frequencies order swapped!" self.fft_size = options.fft_size self.ofdm_bins = options.sense_bins # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) #log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # modifications for USRP2 if self.IS_USRP2: self.u = uhd.usrp_source(options.args,uhd.io_type.COMPLEX_FLOAT32,num_channels=1) # Modified Line # self.u.set_decim(options.decim) # samp_rate = self.u.adc_rate()/self.u.decim() samp_rate = 100e6/options.decim # modified sampling rate self.u.set_samp_rate(samp_rate) else: self.u = gr.file_source(gr.sizeof_gr_complex,options.input_file, True) samp_rate = 100e6 /options.decim # modified sampling rate self.freq_step =0 #0.75* samp_rate self.min_center_freq = (self.min_freq + self.max_freq)/2 global BW BW = self.max_freq - self.min_freq global size size=self.fft_size global ofdm_bins ofdm_bins = self.ofdm_bins global usr #global thrshold_inorder usr=samp_rate nsteps = 10 self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * samp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * samp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) # thread-safe message queue self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # control scanning and record frequency domain statistics self.connect(self.u, s2v, fft,c2mag,stats) if options.gain is None: g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2 # if no gain was specified, use the mid-point in dB
def __init__(self, fft_length): gr.hier_block2.__init__(self, "timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self,self.input) # P(d) nominator = schmidl_nominator(fft_length) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(self.input, nominator, p_mag_sqrd, (self.timing_metric,0)) self.connect(self.input, denominator, (r_sqrd,0)) self.connect(denominator, (r_sqrd,1)) self.connect(r_sqrd, (self.timing_metric,1)) self.connect(self.timing_metric, self) # calculate epsilon from P(d), epsilon is normalized fractional frequency offset #angle = gr.complex_to_arg() #self.epsilon = gr.multiply_const_ff(1.0/math.pi) #self.connect(nominator, angle, self.epsilon) try: gr.hier_block.update_var_names(self, "schmidl", vars()) gr.hier_block.update_var_names(self, "schmidl", vars(self)) except: pass
def ms_to_file(hb,block,filename,N=4096,delay=0,fft=False,scale=1): streamsize = determine_streamsize(block) vlen = streamsize/gr.sizeof_gr_complex blks = [block] if fft and vlen > 1: gr_fft = fft_blocks.fft_vcc(vlen,True,[],True) blks.append(gr_fft) mag_sqrd = gr.complex_to_mag_squared(vlen) blks.append(mag_sqrd) if vlen > 1: v2s = blocks.vector_to_stream(gr.sizeof_float,vlen) blks.append(v2s) if delay != 0: delayline = delayline_ff(delay) blks.append(delayline) gr_scale = gr.multiply_const_ff(scale) blks.append(gr_scale) filter = gr.fir_filter_fff(1,[1.0/N]*N) blks.append(filter) for i in range(len(blks)-1): hb.connect(blks[i],blks[i+1]) log_to_file(hb,filter,filename)
def __init__(self, fft_length, pn_weights): gr.hier_block2.__init__(self, "modified_timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) assert(len(pn_weights) == fft_length) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self,self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() nominator = gr.fir_filter_ccf(1,[pn_weights[fft_length-i-1]*pn_weights[fft_length/2-i-1] for i in range(fft_length/2)]) self.connect(self.input, delay(gr.sizeof_gr_complex,fft_length/2), conj, (mixer,0)) self.connect(self.input, (mixer,1)) self.connect(mixer, nominator) # moving_avg = P(d) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(nominator, p_mag_sqrd, (self.timing_metric,0)) self.connect(self.input, denominator, (r_sqrd,0)) self.connect(denominator, (r_sqrd,1)) self.connect(r_sqrd, (self.timing_metric,1)) self.connect(self.timing_metric, self)
def __init__(self, samp_rate=1600000, samp_per_sym=16, verbose=0, msgq=0, freq_error=-0.0025000): gr.hier_block2.__init__( self, "Wmbus Phy1", gr.io_signature(1, 1, gr.sizeof_gr_complex * 1), gr.io_signature(0, 0, 0) ) ################################################## # Parameters ################################################## self.samp_rate = samp_rate self.samp_per_sym = samp_per_sym self.verbose = verbose self.msgq = msgq self.freq_error = freq_error ################################################## # Blocks ################################################## self.wmbus_demod_0 = wmbus_demod(samp_rate=1600000, samp_per_sym=16, freq_error=-0.0025000) self.gr_nlog10_ff_0 = gr.nlog10_ff(10, 1, 0) self.gr_complex_to_mag_squared_0 = gr.complex_to_mag_squared(1) self.fir_filter_xxx_0 = filter.fir_filter_fff(samp_per_sym, (16 * [1.0 / 16])) self.any_sink_0_1 = mbus.framer(msgq, verbose) self.any_0 = mbus.correlate_preamble() ################################################## # Connections ################################################## self.connect((self.any_0, 0), (self.any_sink_0_1, 0)) self.connect((self.gr_complex_to_mag_squared_0, 0), (self.gr_nlog10_ff_0, 0)) self.connect((self.gr_nlog10_ff_0, 0), (self.fir_filter_xxx_0, 0)) self.connect((self.fir_filter_xxx_0, 0), (self.any_sink_0_1, 1)) self.connect((self, 0), (self.gr_complex_to_mag_squared_0, 0)) self.connect((self, 0), (self.wmbus_demod_0, 0)) self.connect((self.wmbus_demod_0, 0), (self.any_0, 0))
def __init__(self, dpss, fftshift=False): gr.hier_block2.__init__(self, "eigenspectrum", gr.io_signature(1, 1, gr.sizeof_gr_complex*len(dpss)), gr.io_signature(1, 1, gr.sizeof_float*len(dpss))) self.window = dpss self.fft = gr.fft_vcc(len(dpss), True, self.window, fftshift) self.c2mag = gr.complex_to_mag_squared(len(dpss)) self.connect(self, self.fft, self.c2mag, self)
def __init__(self, vlen): gr.hier_block2.__init__( self, "snr_estimator", gr.io_signature(2, 2, gr.sizeof_gr_complex * vlen), gr.io_signature(1, 1, gr.sizeof_float)) reference = gr.kludge_copy(gr.sizeof_gr_complex * vlen) received = gr.kludge_copy(gr.sizeof_gr_complex * vlen) self.connect((self, 0), reference) self.connect((self, 1), received) received_conjugated = gr.conjugate_cc(vlen) self.connect(received, received_conjugated) R_innerproduct = gr.multiply_vcc(vlen) self.connect(reference, R_innerproduct) self.connect(received_conjugated, (R_innerproduct, 1)) R_sum = vector_sum_vcc(vlen) self.connect(R_innerproduct, R_sum) R = gr.complex_to_mag_squared() self.connect(R_sum, R) received_magsqrd = gr.complex_to_mag_squared(vlen) reference_magsqrd = gr.complex_to_mag_squared(vlen) self.connect(received, received_magsqrd) self.connect(reference, reference_magsqrd) received_sum = vector_sum_vff(vlen) reference_sum = vector_sum_vff(vlen) self.connect(received_magsqrd, received_sum) self.connect(reference_magsqrd, reference_sum) P = gr.multiply_ff() self.connect(received_sum, (P, 0)) self.connect(reference_sum, (P, 1)) denominator = gr.sub_ff() self.connect(P, denominator) self.connect(R, (denominator, 1)) rho_hat = gr.divide_ff() self.connect(R, rho_hat) self.connect(denominator, (rho_hat, 1)) self.connect(rho_hat, self)
def __init__(self): sense_band_start=900*10**6 sense_band_stop=940*10**6 self.fft_size = options.fft_size self.ofdm_bins = options.sense_bins # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) #log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # modifications for USRP2 print "*******************in sensor init********************" if self.IS_USRP2: self.u = usrp2.source_32fc(options.interface, options.MAC_addr) self.u.set_decim(options.decim) samp_rate = self.u.adc_rate() / self.u.decim() else: self.u = gr.file_source(gr.sizeof_gr_complex,options.input_file, True) samp_rate = 100e6 / options.decim self.freq_step =0.75* samp_rate #self.min_center_freq = (self.min_freq + self.max_freq)/2 global BW BW = 0.75* samp_rate #self.max_freq - self.min_freq global size size=self.fft_size global ofdm_bins ofdm_bins = self.ofdm_bins global usr #global thrshold_inorder usr=samp_rate nsteps = 10 #math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * samp_rate / self.fft_size))) # in fft_frames print tune_delay dwell_delay = max(1, int(round(options.dwell_delay * samp_rate / self.fft_size))) # in fft_frames print dwell_delay self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) self.connect(self.u, s2v, fft,c2mag,stats) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.gain_range() options.gain = float(g[0]+g[1])/2
def __init__(self,vlen): gr.hier_block2.__init__(self,"snr_estimator", gr.io_signature(2,2,gr.sizeof_gr_complex*vlen), gr.io_signature(1,1,gr.sizeof_float)) reference = gr.kludge_copy(gr.sizeof_gr_complex*vlen) received = gr.kludge_copy(gr.sizeof_gr_complex*vlen) self.connect((self,0),reference) self.connect((self,1),received) received_conjugated = gr.conjugate_cc(vlen) self.connect(received,received_conjugated) R_innerproduct = gr.multiply_vcc(vlen) self.connect(reference,R_innerproduct) self.connect(received_conjugated,(R_innerproduct,1)) R_sum = vector_sum_vcc(vlen) self.connect(R_innerproduct,R_sum) R = gr.complex_to_mag_squared() self.connect(R_sum,R) received_magsqrd = gr.complex_to_mag_squared(vlen) reference_magsqrd = gr.complex_to_mag_squared(vlen) self.connect(received,received_magsqrd) self.connect(reference,reference_magsqrd) received_sum = vector_sum_vff(vlen) reference_sum = vector_sum_vff(vlen) self.connect(received_magsqrd,received_sum) self.connect(reference_magsqrd,reference_sum) P = gr.multiply_ff() self.connect(received_sum,(P,0)) self.connect(reference_sum,(P,1)) denominator = gr.sub_ff() self.connect(P,denominator) self.connect(R,(denominator,1)) rho_hat = gr.divide_ff() self.connect(R,rho_hat) self.connect(denominator,(rho_hat,1)) self.connect(rho_hat,self)
def __init__(self): gr.hier_block2.__init__(self, "symbol_0_slicer", gr.io_signature(2, 2, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) adder = gr.add_cc() to_mag = gr.complex_to_mag_squared() self.connect((self, 0), (adder, 0)) self.connect((self, 1), (adder, 1)) self.connect(adder, to_mag, self)
def __init__(self): gr.hier_block2.__init__(self, "symbol_1_slicer", gr.io_signature(2, 2, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) diff = gr.sub_cc() to_mag = gr.complex_to_mag_squared() self.connect((self, 0), (diff, 0)) self.connect((self, 1), (diff, 1)) self.connect(diff, to_mag, self)
def __init__(self, N_id_2, decim=16, avg_halfframes=2 * 8, freq_corr=0, dump=None): gr.hier_block2.__init__( self, "PSS correlator", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float), ) vec_half_frame = 30720 * 5 / decim self.taps = [] for i in range(0, 3): self.taps.append( gen_pss_td(i, N_re=2048 / decim, freq_corr=freq_corr).get_data_conj_rev()) self.corr = filter.fir_filter_ccc(1, self.taps[N_id_2]) self.mag = gr.complex_to_mag_squared() self.vec = gr.stream_to_vector(gr.sizeof_float * 1, vec_half_frame) self.deint = gr.deinterleave(gr.sizeof_float * vec_half_frame) self.add = gr.add_vff(vec_half_frame) self.argmax = gr.argmax_fs(vec_half_frame) self.null = gr.null_sink(gr.sizeof_short * 1) self.max = gr.max_ff(vec_half_frame) self.to_float = gr.short_to_float(1, 1. / decim) self.interleave = gr.interleave(gr.sizeof_float) #self.framestart = gr.add_const_ii(-160-144*5-2048*6+30720*5) self.connect(self, self.corr, self.mag, self.vec) self.connect((self.argmax, 1), self.null) #self.connect(self.argmax, self.to_float, self.to_int, self.framestart, self) self.connect(self.argmax, self.to_float, self.interleave, self) self.connect(self.max, (self.interleave, 1)) if avg_halfframes == 1: self.connect(self.vec, self.argmax) self.connect(self.vec, self.max) else: self.connect(self.vec, self.deint) self.connect(self.add, self.argmax) self.connect(self.add, self.max) for i in range(0, avg_halfframes): self.connect((self.deint, i), (self.add, i)) if dump != None: self.connect( self.mag, gr.file_sink(gr.sizeof_float, dump + "_pss_corr_f.cfile")) self.connect( self.add, gr.file_sink(gr.sizeof_float * vec_half_frame, dump + "_pss_corr_add_f.cfile"))
def __init__ ( self, fft_length ): gr.hier_block2.__init__(self, "recursive_timing_metric", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() mix_delay = delay(gr.sizeof_gr_complex,fft_length/2+1) mix_diff = gr.sub_cc() nominator = accumulator_cc() inpdelay = delay(gr.sizeof_gr_complex,fft_length/2) self.connect(self.input, inpdelay, conj, (mixer,0)) self.connect(self.input, (mixer,1)) self.connect(mixer,(mix_diff,0)) self.connect(mixer, mix_delay, (mix_diff,1)) self.connect(mix_diff,nominator) rmagsqrd = gr.complex_to_mag_squared() rm_delay = delay(gr.sizeof_float,fft_length+1) rm_diff = gr.sub_ff() denom = accumulator_ff() self.connect(self.input,rmagsqrd,rm_diff,gr.multiply_const_ff(0.5),denom) self.connect(rmagsqrd,rm_delay,(rm_diff,1)) ps = gr.complex_to_mag_squared() rs = gr.multiply_ff() self.connect(nominator,ps) self.connect(denom,rs) self.connect(denom,(rs,1)) div = gr.divide_ff() self.connect(ps,div) self.connect(rs,(div,1)) self.connect(div,self)
def test_complex_to_mag_squared(self): src_data = (0, 1, -1, 3 + 4j, -3 - 4j, -3 + 4j) expected_result = (0, 1, 1, 25, 25, 25) src = gr.vector_source_c(src_data) op = gr.complex_to_mag_squared() dst = gr.vector_sink_f() self.tb.connect(src, op) self.tb.connect(op, dst) self.tb.run() actual_result = dst.data() self.assertFloatTuplesAlmostEqual(expected_result, actual_result, 5)
def test_complex_to_mag_squared (self): src_data = (0, 1, -1, 3+4j, -3-4j, -3+4j) expected_result = (0, 1, 1, 25, 25, 25) src = gr.vector_source_c (src_data) op = gr.complex_to_mag_squared () dst = gr.vector_sink_f () self.tb.connect (src, op) self.tb.connect (op, dst) self.tb.run () actual_result = dst.data () self.assertFloatTuplesAlmostEqual (expected_result, actual_result,5)
def __init__(self, fft_length): gr.hier_block2.__init__(self, "recursive_timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() mix_delay = delay(gr.sizeof_gr_complex, fft_length / 2 + 1) mix_diff = gr.sub_cc() nominator = accumulator_cc() inpdelay = delay(gr.sizeof_gr_complex, fft_length / 2) self.connect(self.input, inpdelay, conj, (mixer, 0)) self.connect(self.input, (mixer, 1)) self.connect(mixer, (mix_diff, 0)) self.connect(mixer, mix_delay, (mix_diff, 1)) self.connect(mix_diff, nominator) rmagsqrd = gr.complex_to_mag_squared() rm_delay = delay(gr.sizeof_float, fft_length + 1) rm_diff = gr.sub_ff() denom = accumulator_ff() self.connect(self.input, rmagsqrd, rm_diff, gr.multiply_const_ff(0.5), denom) self.connect(rmagsqrd, rm_delay, (rm_diff, 1)) ps = gr.complex_to_mag_squared() rs = gr.multiply_ff() self.connect(nominator, ps) self.connect(denom, rs) self.connect(denom, (rs, 1)) div = gr.divide_ff() self.connect(ps, div) self.connect(rs, (div, 1)) self.connect(div, self)
def __init__(self, data_tones, num_symbols, mode=0): symbol_size = data_tones * gr.sizeof_gr_complex gr.hier_block2.__init__(self, "SNR", gr.io_signature2(2,2, symbol_size, symbol_size), gr.io_signature(1,1, gr.sizeof_float)) sub = gr.sub_cc(data_tones) self.connect((self,0), (sub,0)) self.connect((self,1), (sub,1)) err = gr.complex_to_mag_squared(data_tones); self.connect(sub, err); pow = gr.complex_to_mag_squared(data_tones); self.connect((self,1), pow); if mode == 0: # one snr per symbol (num_symbols is ignored) snr = gr.divide_ff() self.connect(pow, gr.vector_to_stream(gr.sizeof_float, data_tones), gr.integrate_ff(data_tones), (snr,0)) self.connect(err, gr.vector_to_stream(gr.sizeof_float, data_tones), gr.integrate_ff(data_tones), (snr,1)) out = snr elif mode == 1: # one snr per packet snr = gr.divide_ff() self.connect(pow, gr.vector_to_stream(gr.sizeof_float, data_tones), gr.integrate_ff(data_tones*num_symbols), (snr,0)) self.connect(err, gr.vector_to_stream(gr.sizeof_float, data_tones), gr.integrate_ff(data_tones*num_symbols), (snr,1)) out = snr elif mode == 2: # one snr per frequency bin snr = gr.divide_ff(data_tones) self.connect(pow, raw.symbol_avg(data_tones, num_symbols), (snr,0)) self.connect(err, raw.symbol_avg(data_tones, num_symbols), (snr,1)) out = gr.vector_to_stream(gr.sizeof_float, data_tones) self.connect(snr, out) self.connect(out, gr.nlog10_ff(10), self)
def __init__(self, sample_rate, fft_size, ref_scale, frame_rate, avg_alpha, average, win=None): """ Create an log10(abs(fft)) stream chain. Provide access to the setting the filter and sample rate. @param sample_rate Incoming stream sample rate @param fft_size Number of FFT bins @param ref_scale Sets 0 dB value input amplitude @param frame_rate Output frame rate @param avg_alpha FFT averaging (over time) constant [0.0-1.0] @param average Whether to average [True, False] @param win the window taps generation function """ gr.hier_block2.__init__( self, self._name, gr.io_signature(1, 1, self._item_size), # Input signature gr.io_signature(1, 1, gr.sizeof_float * fft_size)) # Output signature self._sd = stream_to_vector_decimator(item_size=self._item_size, sample_rate=sample_rate, vec_rate=frame_rate, vec_len=fft_size) if win is None: win = window.blackmanharris fft_window = win(fft_size) fft = self._fft_block[0](fft_size, True, fft_window) window_power = sum(map(lambda x: x * x, fft_window)) c2magsq = gr.complex_to_mag_squared(fft_size) self._avg = gr.single_pole_iir_filter_ff(1.0, fft_size) self._log = gr.nlog10_ff( 10, fft_size, -20 * math.log10(fft_size) # Adjust for number of bins - 10 * math.log10(window_power / fft_size) # Adjust for windowing loss - 20 * math.log10(ref_scale / 2)) # Adjust for reference scale self.connect(self, self._sd, fft, c2magsq, self._avg, self._log, self) self._average = average self._avg_alpha = avg_alpha self.set_avg_alpha(avg_alpha) self.set_average(average)
def __init__( self, vlen, startup ): gr.hier_block2.__init__( self, "vector_acc_se", gr.io_signature( 1, 1, gr.sizeof_gr_complex * vlen ), gr.io_signature( 1, 1, gr.sizeof_float ) ) squared_error_subc = gr.complex_to_mag_squared( vlen ) squared_error_block = ofdm.vector_sum_vff( vlen ) accumulated_squared_error = ofdm.accumulator_ff() if startup > 0: startup_skip = gr.skiphead( gr.sizeof_gr_complex * vlen, startup ) self.connect( self, startup_skip, squared_error_subc, squared_error_block, accumulated_squared_error, self ) else: self.connect( self, squared_error_subc, squared_error_block, accumulated_squared_error, self )
def __init__(self, fft_length): gr.hier_block2.__init__(self, "schmidl_denominator", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) # R(d) = sum(0 to L-1, |r_d|**2) r_mag_sqrd = gr.complex_to_mag_squared() r_mov_avg = gr.fir_filter_fff(1, [0.5 for i in range(fft_length)]) #r_mov_avg_half = gr.multiply_const_ff(0.5) #r_mov_avg = moving_sum_cc(fft_length) self.connect(self, r_mag_sqrd, r_mov_avg, self) # r_mov_avg = R(d) try: gr.hier_block.update_var_names(self, "schmidl_denom", vars()) gr.hier_block.update_var_names(self, "schmidl_denom", vars(self)) except: pass
def __init__(self, fft_length): gr.hier_block2.__init__(self, "schmidl_denominator", gr.io_signature(1,1,gr.sizeof_gr_complex), gr.io_signature(1,1,gr.sizeof_float)) # R(d) = sum(0 to L-1, |r_d|**2) r_mag_sqrd = gr.complex_to_mag_squared() r_mov_avg = gr.fir_filter_fff(1,[0.5 for i in range(fft_length)]) #r_mov_avg_half = gr.multiply_const_ff(0.5) #r_mov_avg = moving_sum_cc(fft_length) self.connect(self, r_mag_sqrd, r_mov_avg, self) # r_mov_avg = R(d) try: gr.hier_block.update_var_names(self, "schmidl_denom", vars()) gr.hier_block.update_var_names(self, "schmidl_denom", vars(self)) except: pass
def __init__(self, N_id_2, decim=16, avg_halfframes=2*8, freq_corr=0, dump=None): gr.hier_block2.__init__( self, "PSS correlator", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float), ) vec_half_frame = 30720*5/decim self.taps = [] for i in range(0,3): self.taps.append(gen_pss_td(i, N_re=2048/decim, freq_corr=freq_corr).get_data_conj_rev()) self.corr = filter.fir_filter_ccc(1, self.taps[N_id_2]) self.mag = gr.complex_to_mag_squared() self.vec = gr.stream_to_vector(gr.sizeof_float*1, vec_half_frame) self.deint = gr.deinterleave(gr.sizeof_float*vec_half_frame) self.add = gr.add_vff(vec_half_frame) self.argmax = gr.argmax_fs(vec_half_frame) self.null = gr.null_sink(gr.sizeof_short*1) self.max = gr.max_ff(vec_half_frame) self.to_float = gr.short_to_float(1, 1./decim) self.interleave = gr.interleave(gr.sizeof_float) #self.framestart = gr.add_const_ii(-160-144*5-2048*6+30720*5) self.connect(self, self.corr, self.mag, self.vec) self.connect((self.argmax,1), self.null) #self.connect(self.argmax, self.to_float, self.to_int, self.framestart, self) self.connect(self.argmax, self.to_float, self.interleave, self) self.connect(self.max, (self.interleave,1)) if avg_halfframes == 1: self.connect(self.vec, self.argmax) self.connect(self.vec, self.max) else: self.connect(self.vec, self.deint) self.connect(self.add, self.argmax) self.connect(self.add, self.max) for i in range(0, avg_halfframes): self.connect((self.deint, i), (self.add, i)) if dump != None: self.connect(self.mag, gr.file_sink(gr.sizeof_float, dump + "_pss_corr_f.cfile")) self.connect(self.add, gr.file_sink(gr.sizeof_float*vec_half_frame, dump + "_pss_corr_add_f.cfile"))
def __init__(self, fs, fd, svn, alpha, dump_bins=False): fft_size = int( 1e-3*fs) gr.hier_block2.__init__(self, "single_channel_correlator", gr.io_signature(1,1, gr.sizeof_gr_complex*fft_size), gr.io_signature(1,1, gr.sizeof_float*fft_size)) lc = local_code(svn=svn, fs=fs, fd=fd) mult = gr.multiply_vcc(fft_size) ifft = gr.fft_vcc(fft_size, False, []) mag = gr.complex_to_mag_squared(fft_size) self.iir = gr.single_pole_iir_filter_ff( alpha, fft_size) self.connect( self, (mult, 0)) self.connect( lc, (mult, 1)) self.connect( mult, ifft, mag, self.iir, self) if dump_bins == True: self.connect_debug_sink(self.iir,fft_size,'/home/trondd/opengnss_output', fd)
def __init__(self, fs, fd, svn, alpha, dump_bins=False): fft_size = int(1e-3 * fs) gr.hier_block2.__init__( self, "single_channel_correlator", gr.io_signature(1, 1, gr.sizeof_gr_complex * fft_size), gr.io_signature(1, 1, gr.sizeof_float * fft_size)) lc = local_code(svn=svn, fs=fs, fd=fd) mult = gr.multiply_vcc(fft_size) ifft = gr.fft_vcc(fft_size, False, []) mag = gr.complex_to_mag_squared(fft_size) self.iir = gr.single_pole_iir_filter_ff(alpha, fft_size) self.connect(self, (mult, 0)) self.connect(lc, (mult, 1)) self.connect(mult, ifft, mag, self.iir, self) if dump_bins == True: self.connect_debug_sink(self.iir, fft_size, '/home/trondd/opengnss_output', fd)
def __init__(self, samp_rate=1600000, samp_per_sym=16, verbose=0, msgq=0, freq_error=-0.0025000): gr.hier_block2.__init__( self, "Wmbus Phy1", gr.io_signature(1, 1, gr.sizeof_gr_complex*1), gr.io_signature(0, 0, 0), ) ################################################## # Parameters ################################################## self.samp_rate = samp_rate self.samp_per_sym = samp_per_sym self.verbose = verbose self.msgq = msgq self.freq_error = freq_error ################################################## # Blocks ################################################## self.wmbus_demod_0 = wmbus_demod( samp_rate=1600000, samp_per_sym=16, freq_error=-0.0025000, ) self.gr_nlog10_ff_0 = gr.nlog10_ff(10, 1, 0) self.gr_complex_to_mag_squared_0 = gr.complex_to_mag_squared(1) self.fir_filter_xxx_0 = filter.fir_filter_fff(samp_per_sym, (16*[1./16])) self.any_sink_0_1 = mbus.framer(msgq, verbose) self.any_0 = mbus.correlate_preamble() ################################################## # Connections ################################################## self.connect((self.any_0, 0), (self.any_sink_0_1, 0)) self.connect((self.gr_complex_to_mag_squared_0, 0), (self.gr_nlog10_ff_0, 0)) self.connect((self.gr_nlog10_ff_0, 0), (self.fir_filter_xxx_0, 0)) self.connect((self.fir_filter_xxx_0, 0), (self.any_sink_0_1, 1)) self.connect((self, 0), (self.gr_complex_to_mag_squared_0, 0)) self.connect((self, 0), (self.wmbus_demod_0, 0)) self.connect((self.wmbus_demod_0, 0), (self.any_0, 0))
def __init__(self, sample_rate, fft_size, ref_scale, frame_rate, avg_alpha, average, win=None): """ Create an log10(abs(fft)) stream chain. Provide access to the setting the filter and sample rate. Args: sample_rate: Incoming stream sample rate fft_size: Number of FFT bins ref_scale: Sets 0 dB value input amplitude frame_rate: Output frame rate avg_alpha: FFT averaging (over time) constant [0.0-1.0] average: Whether to average [True, False] win: the window taps generation function """ gr.hier_block2.__init__(self, self._name, gr.io_signature(1, 1, self._item_size), # Input signature gr.io_signature(1, 1, gr.sizeof_float*fft_size)) # Output signature self._sd = stream_to_vector_decimator(item_size=self._item_size, sample_rate=sample_rate, vec_rate=frame_rate, vec_len=fft_size) if win is None: win = window.blackmanharris fft_window = win(fft_size) fft = self._fft_block[0](fft_size, True, fft_window) window_power = sum(map(lambda x: x*x, fft_window)) c2magsq = gr.complex_to_mag_squared(fft_size) self._avg = filter.single_pole_iir_filter_ff(1.0, fft_size) self._log = gr.nlog10_ff(10, fft_size, -20*math.log10(fft_size) # Adjust for number of bins -10*math.log10(window_power/fft_size) # Adjust for windowing loss -20*math.log10(ref_scale/2)) # Adjust for reference scale self.connect(self, self._sd, fft, c2magsq, self._avg, self._log, self) self._average = average self._avg_alpha = avg_alpha self.set_avg_alpha(avg_alpha) self.set_average(average)
def __init__(self, fft_length, pn_weights): gr.hier_block2.__init__(self, "modified_timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) assert (len(pn_weights) == fft_length) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) = sum(0 to L-1, conj(delayed(r)) * r) conj = gr.conjugate_cc() mixer = gr.multiply_cc() nominator = gr.fir_filter_ccf(1, [ pn_weights[fft_length - i - 1] * pn_weights[fft_length / 2 - i - 1] for i in range(fft_length / 2) ]) self.connect(self.input, delay(gr.sizeof_gr_complex, fft_length / 2), conj, (mixer, 0)) self.connect(self.input, (mixer, 1)) self.connect(mixer, nominator) # moving_avg = P(d) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(nominator, p_mag_sqrd, (self.timing_metric, 0)) self.connect(self.input, denominator, (r_sqrd, 0)) self.connect(denominator, (r_sqrd, 1)) self.connect(r_sqrd, (self.timing_metric, 1)) self.connect(self.timing_metric, self)
def __init__(self, fft_length): gr.hier_block2.__init__(self, "timing_metric", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_float)) self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.connect(self, self.input) # P(d) nominator = schmidl_nominator(fft_length) # R(d) denominator = schmidl_denominator(fft_length) # |P(d)| ** 2 / (R(d)) ** 2 p_mag_sqrd = gr.complex_to_mag_squared() r_sqrd = gr.multiply_ff() self.timing_metric = gr.divide_ff() self.connect(self.input, nominator, p_mag_sqrd, (self.timing_metric, 0)) self.connect(self.input, denominator, (r_sqrd, 0)) self.connect(denominator, (r_sqrd, 1)) self.connect(r_sqrd, (self.timing_metric, 1)) self.connect(self.timing_metric, self) # calculate epsilon from P(d), epsilon is normalized fractional frequency offset #angle = gr.complex_to_arg() #self.epsilon = gr.multiply_const_ff(1.0/math.pi) #self.connect(nominator, angle, self.epsilon) try: gr.hier_block.update_var_names(self, "schmidl", vars()) gr.hier_block.update_var_names(self, "schmidl", vars(self)) except: pass
def __init__(self, length, debug=False): """ Hierarchical block to detect Null symbols @param length length of the Null symbol (in samples) @param debug whether to write signals out to files """ gr.hier_block2.__init__( self, "detect_null", gr.io_signature(1, 1, gr.sizeof_gr_complex), # input signature gr.io_signature(1, 1, gr.sizeof_char)) # output signature # get the magnitude squared self.ns_c2magsquared = gr.complex_to_mag_squared() self.ns_moving_sum = dabp.moving_sum_ff(length) self.ns_invert = gr.multiply_const_ff(-1) # peak detector on the inverted, summed up signal -> we get the nulls (i.e. the position of the start of a frame) self.ns_peak_detect = gr.peak_detector_fb( 0.6, 0.7, 10, 0.0001 ) # mostly found by try and error -> remember that the values are negative! # connect it all self.connect(self, self.ns_c2magsquared, self.ns_moving_sum, self.ns_invert, self.ns_peak_detect, self) if debug: self.connect( self.ns_invert, gr.file_sink(gr.sizeof_float, "debug/ofdm_sync_dabp_ns_filter_inv_f.dat")) self.connect( self.ns_peak_detect, gr.file_sink(gr.sizeof_char, "debug/ofdm_sync_dabp_peak_detect_b.dat"))
def __init__(self, subc, vlen, ss): gr.hier_block2.__init__( self, "new_snr_estimator", gr.io_signature(2, 2, gr.sizeof_gr_complex * vlen), #gr.io_signature2(2,2,gr.sizeof_float*vlen,gr.sizeof_float*vlen/ss*(ss-1))) gr.io_signature2(2, 2, gr.sizeof_float * vlen, gr.sizeof_float)) print "Created Milan's SINR estimator" trigger = [0] * vlen trigger[0] = 1 v = range(vlen / ss) ones_ind = map(lambda z: z * ss, v) skip2_pr0 = skip(gr.sizeof_gr_complex, vlen) skip2_pr1 = skip(gr.sizeof_gr_complex, vlen) for x in ones_ind: skip2_pr0.skip(x) skip2_pr1.skip(x) #print "skipped ones",ones_ind v2s_pr0 = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) v2s_pr1 = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) s2v2_pr0 = gr.stream_to_vector(gr.sizeof_gr_complex, vlen / ss * (ss - 1)) trigger_src_2_pr0 = gr.vector_source_b(trigger, True) s2v2_pr1 = gr.stream_to_vector(gr.sizeof_gr_complex, vlen / ss * (ss - 1)) trigger_src_2_pr1 = gr.vector_source_b(trigger, True) mag_sq_zeros_pr0 = gr.complex_to_mag_squared(vlen / ss * (ss - 1)) mag_sq_zeros_pr1 = gr.complex_to_mag_squared(vlen / ss * (ss - 1)) filt_zeros_pr0 = gr.single_pole_iir_filter_ff(0.01, vlen / ss * (ss - 1)) filt_zeros_pr1 = gr.single_pole_iir_filter_ff(0.01, vlen / ss * (ss - 1)) v1 = vlen / ss * (ss - 1) vevc1 = [-1] * v1 neg_nomin_z = gr.multiply_const_vff(vevc1) div_z = gr.divide_ff(vlen / ss * (ss - 1)) on_zeros = gr.add_const_vff(vevc1) sum_zeros = add_vff(vlen / ss * (ss - 1)) # For average sum_all = vector_sum_vff(vlen) mult = gr.multiply_const_ff(1. / vlen) scsnr_db_av = gr.nlog10_ff(10, 1, 0) filt_end_av = gr.single_pole_iir_filter_ff(0.1) self.connect((self, 0), v2s_pr0, skip2_pr0, s2v2_pr0, mag_sq_zeros_pr0, filt_zeros_pr0) self.connect(trigger_src_2_pr0, (skip2_pr0, 1)) self.connect((self, 1), v2s_pr1, skip2_pr1, s2v2_pr1, mag_sq_zeros_pr1, filt_zeros_pr1) self.connect(trigger_src_2_pr1, (skip2_pr1, 1)) # On zeros self.connect(filt_zeros_pr1, (sum_zeros, 0)) self.connect(filt_zeros_pr0, neg_nomin_z, (sum_zeros, 1)) self.connect(sum_zeros, div_z) self.connect(filt_zeros_pr0, (div_z, 1)) scsnr_db = gr.nlog10_ff(10, vlen, 0) filt_end = gr.single_pole_iir_filter_ff(0.1, vlen) dd = [] for i in range(vlen / ss): dd.extend([i * ss]) #print dd interpolator = sinr_interpolator(vlen, ss, dd) self.connect(div_z, interpolator, filt_end, scsnr_db, self) self.connect(interpolator, sum_all, mult, scsnr_db_av, filt_end_av, (self, 1))
def __init__(self, vlen): gr.hier_block2.__init__(self, "snr_estimator", gr.io_signature2(2,2,gr.sizeof_gr_complex,gr.sizeof_char), gr.io_signature (1,1,gr.sizeof_float)) data_in = (self,0) trig_in = (self,1) snr_out = (self,0) ## Preamble Extraction sampler = vector_sampler(gr.sizeof_gr_complex,vlen) self.connect(data_in,sampler) self.connect(trig_in,(sampler,1)) ## Algorithm implementation estim = sc_snr_estimator(vlen) self.connect(sampler,estim) self.connect(estim,snr_out) return ## Split block into two parts splitter = gr.vector_to_streams(gr.sizeof_gr_complex*vlen/2,2) self.connect(sampler,splitter) ## Conjugate first half block conj = gr.conjugate_cc(vlen/2) self.connect(splitter,conj) ## Vector multiplication of both half blocks vmult = gr.multiply_vcc(vlen/2) self.connect(conj,vmult) self.connect((splitter,1),(vmult,1)) ## Sum of Products psum = vector_sum_vcc(vlen/2) self.connect(vmult,psum) ## Magnitude of P(d) p_mag = gr.complex_to_mag() self.connect(psum,p_mag) ## Squared Magnitude of block r_magsqrd = gr.complex_to_mag_squared(vlen) self.connect(sampler,r_magsqrd) ## Sum of squared second half block r_sum = vector_sum_vff(vlen) self.connect(r_magsqrd,r_sum) ## Square Root of Metric m_sqrt = gr.divide_ff() self.connect(p_mag,(m_sqrt,0)) self.connect(r_sum,gr.multiply_const_ff(0.5),(m_sqrt,1)) ## Denominator of SNR estimate denom = gr.add_const_ff(1) neg_m_sqrt = gr.multiply_const_ff(-1.0) self.connect(m_sqrt,limit_vff(1,1-2e-5,-1000),neg_m_sqrt,denom) ## SNR estimate snr_est = gr.divide_ff() self.connect(m_sqrt,(snr_est,0)) self.connect(denom,(snr_est,1)) ## Setup Output Connections self.connect(snr_est,self)
def __init__(self, tuner_callback, options): gr.hier_block2.__init__( self, "sense_path", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(0, 0, 0)) # Output signature self.usrp_rate = options.channel_rate self.usrp_tune = tuner_callback self.threshold = options.threshold #self.freq_step = options.chan_bandwidth #self.min_freq = options.start_freq #self.max_freq = options.end_freq self.hold_freq = False self.channels = [ 600000000, 620000000, 625000000, 640000000, 645000000, 650000000 ] self.current_chan = 0 self.num_channels = len( self.channels) #(self.max_freq - self.min_freq)/self.freq_step #if self.min_freq > self.max_freq: # self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them self.fft_size = options.sense_fft_size if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap * tap c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff( 10, self.fft_size, -20 * math.log10(self.fft_size) - 10 * math.log10(power / self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. #changed on 2011 May 31, MR -- maybe change back at some point #self.min_center_freq = self.min_freq + self.freq_step/2 #nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) #self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.channels[ self.current_chan] #self.min_center_freq tune_delay = max(0, int( round(options.tune_delay * self.usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int( round(options.dwell_delay * self.usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune( self) # hang on to this to keep it from being GC'd self.stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up #self.connect(self, s2v, fft, c2mag, log, stats) self.connect(self, s2v, fft, c2mag, self.stats)
def __init__(self, ahw="default", freq=150.0e6, ppm=0.0, vol=1.0, ftune=0.0, xftune=0.0, srate=1.0e6, upclo=0.0, devinfo="rtl=0", agc=0, arate=48.0e3, upce=0, mthresh=-10.0, offs=50.e3, flist="", dfifo="multimode_fifo", mbw=2.0e3, deemph=75.0e-6, dmode="NFM1"): grc_wxgui.top_block_gui.__init__(self, title="Multimode Radio Receiver") _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png" self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY)) ################################################## # Parameters ################################################## self.ahw = ahw self.freq = freq self.ppm = ppm self.vol = vol self.ftune = ftune self.xftune = xftune self.srate = srate self.upclo = upclo self.devinfo = devinfo self.agc = agc self.arate = arate self.upce = upce self.mthresh = mthresh self.offs = offs self.flist = flist self.dfifo = dfifo self.mbw = mbw self.deemph = deemph self.dmode = dmode ################################################## # Variables ################################################## self.sc_list_str = sc_list_str = flist self.zoom = zoom = 1 self.thresh = thresh = mthresh self.scan_rate = scan_rate = 15 self.scan_power = scan_power = 0 self.sc_low = sc_low = 150e6 self.sc_listm = sc_listm = False self.sc_list = sc_list = eval("["+sc_list_str+"]") self.sc_incr = sc_incr = 12.5e3 self.sc_high = sc_high = 300e6 self.sc_ena = sc_ena = False self.samp_rate = samp_rate = int(mh.get_good_rate(devinfo,srate)) self.rf_power = rf_power = 0 self.ifreq = ifreq = freq self.zoomed_lp = zoomed_lp = (samp_rate/2.1)/zoom self.wbfm = wbfm = 200e3 self.rf_d_power = rf_d_power = 0 self.mode = mode = dmode self.logpower = logpower = math.log10(rf_power+1.0e-14)*10.0 self.cur_freq = cur_freq = mh.scan_freq_out(sc_ena,sc_low,sc_high,freq,ifreq,scan_power+1.0e-14,thresh,sc_incr,scan_rate,sc_listm,sc_list) self.bw = bw = mbw self.audio_int_rate = audio_int_rate = 40e3 self.zoom_taps = zoom_taps = firdes.low_pass(1.0,samp_rate,zoomed_lp,zoomed_lp/3,firdes.WIN_HAMMING,6.76) self.xfine = xfine = xftune self.volume = volume = vol self.variable_static_text_1 = variable_static_text_1 = cur_freq self.variable_static_text_0_0 = variable_static_text_0_0 = samp_rate self.variable_static_text_0 = variable_static_text_0 = float(int(math.log10(rf_d_power+1.0e-14)*100.0)/10.0) self.upc_offset = upc_offset = upclo self.upc = upc = upce self.ssbo = ssbo = -bw/2 if mode == "LSB" else 0.0 self.sc_list_len = sc_list_len = len(sc_list) self.rfgain = rfgain = 25 self.record_file = record_file = "recording.wav" self.record = record = False self.offset = offset = offs self.muted = muted = 0.0 if logpower >= thresh else 1 self.main_taps = main_taps = firdes.low_pass(1.0,wbfm,mh.get_mode_deviation(mode,bw)*1.05,mh.get_mode_deviation(mode,bw)/2.0,firdes.WIN_HAMMING,6.76) self.k = k = wbfm/(2*math.pi*mh.get_mode_deviation(mode,bw)) self.iagc = iagc = agc self.freq_update = freq_update = 0 self.fine = fine = ftune self.digi_rate = digi_rate = 50e3 self.aratio = aratio = int(wbfm/audio_int_rate) ################################################## # Blocks ################################################## self.rf_probe = gr.probe_avg_mag_sqrd_c(0, 0.015) self.Main = self.Main = wx.Notebook(self.GetWin(), style=wx.NB_TOP) self.Main.AddPage(grc_wxgui.Panel(self.Main), "Main Controls") self.Main.AddPage(grc_wxgui.Panel(self.Main), "Scan/Upconv Controls") self.Add(self.Main) self._zoom_chooser = forms.drop_down( parent=self.Main.GetPage(0).GetWin(), value=self.zoom, callback=self.set_zoom, label="Spectral Zoom Ratio", choices=[1, 2, 5, 10, 20, 50, 100], labels=[], ) self.Main.GetPage(0).GridAdd(self._zoom_chooser, 1, 4, 1, 1) _xfine_sizer = wx.BoxSizer(wx.VERTICAL) self._xfine_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_xfine_sizer, value=self.xfine, callback=self.set_xfine, label="Extra Fine Tuning", converter=forms.float_converter(), proportion=0, ) self._xfine_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_xfine_sizer, value=self.xfine, callback=self.set_xfine, minimum=-1.0e3, maximum=1.0e3, num_steps=200, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_xfine_sizer, 0, 3, 1, 1) _volume_sizer = wx.BoxSizer(wx.VERTICAL) self._volume_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_volume_sizer, value=self.volume, callback=self.set_volume, label="Volume", converter=forms.float_converter(), proportion=0, ) self._volume_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_volume_sizer, value=self.volume, callback=self.set_volume, minimum=1.0, maximum=10.0, num_steps=100, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_volume_sizer, 0, 0, 1, 1) self._upc_offset_text_box = forms.text_box( parent=self.Main.GetPage(1).GetWin(), value=self.upc_offset, callback=self.set_upc_offset, label="Upconv. LO Freq", converter=forms.float_converter(), ) self.Main.GetPage(1).GridAdd(self._upc_offset_text_box, 3, 2, 1, 2) self._upc_check_box = forms.check_box( parent=self.Main.GetPage(1).GetWin(), value=self.upc, callback=self.set_upc, label="Ext. Upconv.", true=1, false=0, ) self.Main.GetPage(1).GridAdd(self._upc_check_box, 3, 0, 1, 1) _rfgain_sizer = wx.BoxSizer(wx.VERTICAL) self._rfgain_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_rfgain_sizer, value=self.rfgain, callback=self.set_rfgain, label="RF Gain", converter=forms.float_converter(), proportion=0, ) self._rfgain_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_rfgain_sizer, value=self.rfgain, callback=self.set_rfgain, minimum=0, maximum=50, num_steps=200, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_rfgain_sizer, 2, 1, 1, 1) self._record_file_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), value=self.record_file, callback=self.set_record_file, label="Recording Filename", converter=forms.str_converter(), ) self.Main.GetPage(0).GridAdd(self._record_file_text_box, 2, 3, 1, 3) self._record_check_box = forms.check_box( parent=self.Main.GetPage(0).GetWin(), value=self.record, callback=self.set_record, label="Record", true=True, false=False, ) self.Main.GetPage(0).GridAdd(self._record_check_box, 2, 2, 1, 1) _offset_sizer = wx.BoxSizer(wx.VERTICAL) self._offset_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_offset_sizer, value=self.offset, callback=self.set_offset, label="LO Offset", converter=forms.float_converter(), proportion=0, ) self._offset_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_offset_sizer, value=self.offset, callback=self.set_offset, minimum=25e3, maximum=500e3, num_steps=200, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_offset_sizer, 1, 3, 1, 1) self._mode_chooser = forms.drop_down( parent=self.Main.GetPage(0).GetWin(), value=self.mode, callback=self.set_mode, label="Mode", choices=mh.get_modes_values(), labels=mh.get_modes_names(), ) self.Main.GetPage(0).GridAdd(self._mode_chooser, 0, 4, 1, 1) self._iagc_check_box = forms.check_box( parent=self.Main.GetPage(0).GetWin(), value=self.iagc, callback=self.set_iagc, label="AGC", true=1, false=0, ) self.Main.GetPage(0).GridAdd(self._iagc_check_box, 2, 0, 1, 1) def _freq_update_probe(): while True: val = self.rf_probe.level() try: self.set_freq_update(val) except AttributeError, e: pass time.sleep(1.0/(1.0/(2.5))) _freq_update_thread = threading.Thread(target=_freq_update_probe) _freq_update_thread.daemon = True _freq_update_thread.start() _fine_sizer = wx.BoxSizer(wx.VERTICAL) self._fine_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_fine_sizer, value=self.fine, callback=self.set_fine, label="Fine Tuning", converter=forms.float_converter(), proportion=0, ) self._fine_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_fine_sizer, value=self.fine, callback=self.set_fine, minimum=-35e3, maximum=35e3, num_steps=100, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_fine_sizer, 0, 2, 1, 1) self.display_probe = gr.probe_avg_mag_sqrd_c(0, 0.002) _bw_sizer = wx.BoxSizer(wx.VERTICAL) self._bw_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_bw_sizer, value=self.bw, callback=self.set_bw, label="AM/SSB Bandwidth", converter=forms.float_converter(), proportion=0, ) self._bw_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_bw_sizer, value=self.bw, callback=self.set_bw, minimum=1.0e3, maximum=audio_int_rate/2, num_steps=100, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_bw_sizer, 1, 2, 1, 1) self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c( self.Main.GetPage(0).GetWin(), baseband_freq=mh.get_last_returned(freq_update), dynamic_range=40, ref_level=0, ref_scale=2.0, sample_rate=samp_rate/zoom, fft_size=1024, fft_rate=4, average=True, avg_alpha=None, title="Spectrogram", win=window.hamming, ) self.Main.GetPage(0).Add(self.wxgui_waterfallsink2_0.win) def wxgui_waterfallsink2_0_callback(x, y): self.set_freq(x) self.wxgui_waterfallsink2_0.set_callback(wxgui_waterfallsink2_0_callback) self.wxgui_fftsink2_0 = fftsink2.fft_sink_c( self.Main.GetPage(0).GetWin(), baseband_freq=mh.get_last_returned(freq_update), y_per_div=10, y_divs=10, ref_level=0, ref_scale=2.0, sample_rate=samp_rate/zoom, fft_size=1024, fft_rate=4, average=True, avg_alpha=0.1, title="Panorama", peak_hold=False, win=window.hamming, ) self.Main.GetPage(0).Add(self.wxgui_fftsink2_0.win) def wxgui_fftsink2_0_callback(x, y): self.set_freq(x) self.wxgui_fftsink2_0.set_callback(wxgui_fftsink2_0_callback) self._variable_static_text_1_static_text = forms.static_text( parent=self.Main.GetPage(1).GetWin(), value=self.variable_static_text_1, callback=self.set_variable_static_text_1, label="Current Scan Freq", converter=forms.float_converter(), ) self.Main.GetPage(1).GridAdd(self._variable_static_text_1_static_text, 0, 5, 1, 2) self._variable_static_text_0_0_static_text = forms.static_text( parent=self.Main.GetPage(0).GetWin(), value=self.variable_static_text_0_0, callback=self.set_variable_static_text_0_0, label="Actual srate", converter=forms.float_converter(), ) self.Main.GetPage(0).GridAdd(self._variable_static_text_0_0_static_text, 1, 5, 1, 1) self._variable_static_text_0_static_text = forms.static_text( parent=self.Main.GetPage(0).GetWin(), value=self.variable_static_text_0, callback=self.set_variable_static_text_0, label="RF Level", converter=forms.float_converter(), ) self.Main.GetPage(0).GridAdd(self._variable_static_text_0_static_text, 1, 0, 1, 1) _thresh_sizer = wx.BoxSizer(wx.VERTICAL) self._thresh_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), sizer=_thresh_sizer, value=self.thresh, callback=self.set_thresh, label="Mute Threshold", converter=forms.float_converter(), proportion=0, ) self._thresh_slider = forms.slider( parent=self.Main.GetPage(0).GetWin(), sizer=_thresh_sizer, value=self.thresh, callback=self.set_thresh, minimum=-50, maximum=10, num_steps=100, style=wx.SL_HORIZONTAL, cast=float, proportion=1, ) self.Main.GetPage(0).GridAdd(_thresh_sizer, 1, 1, 1, 1) def _scan_power_probe(): while True: val = self.rf_probe.level() try: self.set_scan_power(val) except AttributeError, e: pass time.sleep(1.0/(scan_rate)) _scan_power_thread = threading.Thread(target=_scan_power_probe) _scan_power_thread.daemon = True _scan_power_thread.start() self._sc_low_text_box = forms.text_box( parent=self.Main.GetPage(1).GetWin(), value=self.sc_low, callback=self.set_sc_low, label="Scan Low", converter=forms.float_converter(), ) self.Main.GetPage(1).GridAdd(self._sc_low_text_box, 0, 1, 1, 1) self._sc_listm_check_box = forms.check_box( parent=self.Main.GetPage(1).GetWin(), value=self.sc_listm, callback=self.set_sc_listm, label="Scan List Mode", true=True, false=False, ) self.Main.GetPage(1).GridAdd(self._sc_listm_check_box, 2, 0, 1, 1) self._sc_list_str_text_box = forms.text_box( parent=self.Main.GetPage(1).GetWin(), value=self.sc_list_str, callback=self.set_sc_list_str, label="Scan List", converter=forms.str_converter(), ) self.Main.GetPage(1).GridAdd(self._sc_list_str_text_box, 2, 1, 1, 5) self._sc_incr_chooser = forms.drop_down( parent=self.Main.GetPage(1).GetWin(), value=self.sc_incr, callback=self.set_sc_incr, label="Scan Increment (Hz)", choices=[5.0e3,6.25e3,10.0e3,12.5e3,15e3,25e3], labels=[], ) self.Main.GetPage(1).GridAdd(self._sc_incr_chooser, 0, 0, 1, 1) self._sc_high_text_box = forms.text_box( parent=self.Main.GetPage(1).GetWin(), value=self.sc_high, callback=self.set_sc_high, label="Scan High", converter=forms.float_converter(), ) self.Main.GetPage(1).GridAdd(self._sc_high_text_box, 0, 2, 1, 1) self._sc_ena_check_box = forms.check_box( parent=self.Main.GetPage(1).GetWin(), value=self.sc_ena, callback=self.set_sc_ena, label="Scan Enable", true=True, false=False, ) self.Main.GetPage(1).GridAdd(self._sc_ena_check_box, 0, 3, 1, 1) def _rf_power_probe(): while True: val = self.rf_probe.level() try: self.set_rf_power(val) except AttributeError, e: pass time.sleep(1.0/(10)) _rf_power_thread = threading.Thread(target=_rf_power_probe) _rf_power_thread.daemon = True _rf_power_thread.start() def _rf_d_power_probe(): while True: val = self.display_probe.level() try: self.set_rf_d_power(val) except AttributeError, e: pass time.sleep(1.0/(5)) _rf_d_power_thread = threading.Thread(target=_rf_d_power_probe) _rf_d_power_thread.daemon = True _rf_d_power_thread.start() self.osmosdr_source_c_0 = osmosdr.source_c( args="nchan=" + str(1) + " " + devinfo ) self.osmosdr_source_c_0.set_sample_rate(samp_rate) self.osmosdr_source_c_0.set_center_freq(cur_freq+offset+(upc_offset*float(upc)), 0) self.osmosdr_source_c_0.set_freq_corr(ppm, 0) self.osmosdr_source_c_0.set_gain_mode(iagc, 0) self.osmosdr_source_c_0.set_gain(25 if iagc == 1 else rfgain, 0) self.osmosdr_source_c_0.set_if_gain(20, 0) self._ifreq_text_box = forms.text_box( parent=self.Main.GetPage(0).GetWin(), value=self.ifreq, callback=self.set_ifreq, label="Frequency", converter=forms.float_converter(), ) self.Main.GetPage(0).GridAdd(self._ifreq_text_box, 0, 1, 1, 1) self.gr_wavfile_sink_0 = gr.wavfile_sink("/dev/null" if record == False else record_file, 1, int(audio_int_rate), 8) self.gr_quadrature_demod_cf_0 = gr.quadrature_demod_cf(k) self.gr_multiply_const_vxx_2 = gr.multiply_const_vff((1.0 if mh.get_mode_type(mode) == "FM" else 0.0, )) self.gr_multiply_const_vxx_1 = gr.multiply_const_vff((0.0 if muted else volume/4.5, )) self.gr_multiply_const_vxx_0_0_0 = gr.multiply_const_vff((0.85 if mh.get_mode_type(mode) == "AM" else 0.0, )) self.gr_multiply_const_vxx_0_0 = gr.multiply_const_vff((0.85 if mh.get_mode_type(mode) == "SSB" else 0.0, )) self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc(((1.0/math.sqrt(mh.get_mode_deviation(mode,bw))*250), )) self.gr_keep_one_in_n_1 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, aratio) self.gr_keep_one_in_n_0_0 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, zoom) self.gr_keep_one_in_n_0 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, int(wbfm/digi_rate)) self.gr_freq_xlating_fir_filter_xxx_0_1 = gr.freq_xlating_fir_filter_ccc(1, (1.0, ), (offset+fine+xfine)/(samp_rate/1.0e6), samp_rate) self.gr_fractional_interpolator_xx_0 = gr.fractional_interpolator_ff(0, audio_int_rate/arate) self.gr_file_sink_0 = gr.file_sink(gr.sizeof_gr_complex*1, "/dev/null" if mh.get_mode_type(mode) != "DIG" else dfifo) self.gr_file_sink_0.set_unbuffered(True) self.gr_fft_filter_xxx_3 = gr.fft_filter_ccc(1, (zoom_taps), 1) self.gr_fft_filter_xxx_2_0 = gr.fft_filter_fff(5, (firdes.low_pass(1.0,wbfm,14.5e3,8.5e3,firdes.WIN_HAMMING,6.76)), 1) self.gr_fft_filter_xxx_2 = gr.fft_filter_ccc(1, (main_taps), 1) self.gr_fft_filter_xxx_0 = gr.fft_filter_ccc(int(samp_rate/wbfm), (firdes.low_pass(1.0,samp_rate,98.5e3,66e3,firdes.WIN_HAMMING,6.76)), 1) self.gr_feedforward_agc_cc_0 = gr.feedforward_agc_cc(1024, 0.75) self.gr_complex_to_real_0 = gr.complex_to_real(1) self.gr_complex_to_mag_squared_0 = gr.complex_to_mag_squared(1) self.gr_add_xx_0 = gr.add_vff(1) self.blks2_fm_deemph_0 = blks2.fm_deemph(fs=audio_int_rate, tau=deemph) self.audio_sink_0 = audio.sink(int(arate), ahw, True) ################################################## # Connections ################################################## self.connect((self.gr_multiply_const_vxx_0_0, 0), (self.gr_add_xx_0, 1)) self.connect((self.gr_fractional_interpolator_xx_0, 0), (self.gr_multiply_const_vxx_1, 0)) self.connect((self.gr_multiply_const_vxx_1, 0), (self.audio_sink_0, 0)) self.connect((self.gr_multiply_const_vxx_1, 0), (self.audio_sink_0, 1)) self.connect((self.gr_feedforward_agc_cc_0, 0), (self.gr_complex_to_mag_squared_0, 0)) self.connect((self.osmosdr_source_c_0, 0), (self.gr_freq_xlating_fir_filter_xxx_0_1, 0)) self.connect((self.gr_multiply_const_vxx_0_0_0, 0), (self.gr_add_xx_0, 2)) self.connect((self.gr_feedforward_agc_cc_0, 0), (self.gr_complex_to_real_0, 0)) self.connect((self.gr_complex_to_real_0, 0), (self.gr_multiply_const_vxx_0_0, 0)) self.connect((self.gr_multiply_const_vxx_2, 0), (self.gr_add_xx_0, 0)) self.connect((self.gr_complex_to_mag_squared_0, 0), (self.gr_multiply_const_vxx_0_0_0, 0)) self.connect((self.gr_multiply_const_vxx_0, 0), (self.display_probe, 0)) self.connect((self.gr_multiply_const_vxx_0, 0), (self.rf_probe, 0)) self.connect((self.gr_add_xx_0, 0), (self.gr_fractional_interpolator_xx_0, 0)) self.connect((self.gr_add_xx_0, 0), (self.gr_wavfile_sink_0, 0)) self.connect((self.gr_freq_xlating_fir_filter_xxx_0_1, 0), (self.gr_fft_filter_xxx_0, 0)) self.connect((self.gr_keep_one_in_n_0, 0), (self.gr_file_sink_0, 0)) self.connect((self.gr_freq_xlating_fir_filter_xxx_0_1, 0), (self.gr_fft_filter_xxx_3, 0)) self.connect((self.gr_fft_filter_xxx_3, 0), (self.gr_keep_one_in_n_0_0, 0)) self.connect((self.gr_keep_one_in_n_0_0, 0), (self.wxgui_fftsink2_0, 0)) self.connect((self.gr_keep_one_in_n_0_0, 0), (self.wxgui_waterfallsink2_0, 0)) self.connect((self.blks2_fm_deemph_0, 0), (self.gr_multiply_const_vxx_2, 0)) self.connect((self.gr_quadrature_demod_cf_0, 0), (self.gr_fft_filter_xxx_2_0, 0)) self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_keep_one_in_n_0, 0)) self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_multiply_const_vxx_0, 0)) self.connect((self.gr_fft_filter_xxx_0, 0), (self.gr_fft_filter_xxx_2, 0)) self.connect((self.gr_keep_one_in_n_1, 0), (self.gr_feedforward_agc_cc_0, 0)) self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_keep_one_in_n_1, 0)) self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_quadrature_demod_cf_0, 0)) self.connect((self.gr_fft_filter_xxx_2_0, 0), (self.blks2_fm_deemph_0, 0))
def __init__(self, fft_length, cp_length, snr, kstime, logging): ''' Maximum Likelihood OFDM synchronizer: J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation of Time and Frequency Offset in OFDM Systems," IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997. ''' gr.hier_block2.__init__(self, "ofdm_sync_ml", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature self.input = gr.add_const_cc(0) SNR = 10.0**(snr/10.0) rho = SNR / (SNR + 1.0) symbol_length = fft_length + cp_length # ML Sync # Energy Detection from ML Sync self.connect(self, self.input) # Create a delay line self.delay = gr.delay(gr.sizeof_gr_complex, fft_length) self.connect(self.input, self.delay) # magnitude squared blocks self.magsqrd1 = gr.complex_to_mag_squared() self.magsqrd2 = gr.complex_to_mag_squared() self.adder = gr.add_ff() moving_sum_taps = [rho/2 for i in range(cp_length)] self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps) self.connect(self.input,self.magsqrd1) self.connect(self.delay,self.magsqrd2) self.connect(self.magsqrd1,(self.adder,0)) self.connect(self.magsqrd2,(self.adder,1)) self.connect(self.adder,self.moving_sum_filter) # Correlation from ML Sync self.conjg = gr.conjugate_cc(); self.mixer = gr.multiply_cc(); movingsum2_taps = [1.0 for i in range(cp_length)] self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps) # Correlator data handler self.c2mag = gr.complex_to_mag() self.angle = gr.complex_to_arg() self.connect(self.input,(self.mixer,1)) self.connect(self.delay,self.conjg,(self.mixer,0)) self.connect(self.mixer,self.movingsum2,self.c2mag) self.connect(self.movingsum2,self.angle) # ML Sync output arg, need to find maximum point of this self.diff = gr.sub_ff() self.connect(self.c2mag,(self.diff,0)) self.connect(self.moving_sum_filter,(self.diff,1)) #ML measurements input to sampler block and detect self.f2c = gr.float_to_complex() self.pk_detect = gr.peak_detector_fb(0.2, 0.25, 30, 0.0005) self.sample_and_hold = gr.sample_and_hold_ff() # use the sync loop values to set the sampler and the NCO # self.diff = theta # self.angle = epsilon self.connect(self.diff, self.pk_detect) # The DPLL corrects for timing differences between CP correlations use_dpll = 0 if use_dpll: self.dpll = gr.dpll_bb(float(symbol_length),0.01) self.connect(self.pk_detect, self.dpll) self.connect(self.dpll, (self.sample_and_hold,1)) else: self.connect(self.pk_detect, (self.sample_and_hold,1)) self.connect(self.angle, (self.sample_and_hold,0)) ################################ # correlate against known symbol # This gives us the same timing signal as the PN sync block only on the preamble # we don't use the signal generated from the CP correlation because we don't want # to readjust the timing in the middle of the packet or we ruin the equalizer settings. kstime = [k.conjugate() for k in kstime] kstime.reverse() self.kscorr = gr.fir_filter_ccc(1, kstime) self.corrmag = gr.complex_to_mag_squared() self.div = gr.divide_ff() # The output signature of the correlation has a few spikes because the rest of the # system uses the repeated preamble symbol. It needs to work that generically if # anyone wants to use this against a WiMAX-like signal since it, too, repeats. # The output theta of the correlator above is multiplied with this correlation to # identify the proper peak and remove other products in this cross-correlation self.threshold_factor = 0.1 self.slice = gr.threshold_ff(self.threshold_factor, self.threshold_factor, 0) self.f2b = gr.float_to_char() self.b2f = gr.char_to_float() self.mul = gr.multiply_ff() # Normalize the power of the corr output by the energy. This is not really needed # and could be removed for performance, but it makes for a cleaner signal. # if this is removed, the threshold value needs adjustment. self.connect(self.input, self.kscorr, self.corrmag, (self.div,0)) self.connect(self.moving_sum_filter, (self.div,1)) self.connect(self.div, (self.mul,0)) self.connect(self.pk_detect, self.b2f, (self.mul,1)) self.connect(self.mul, self.slice) # Set output signals # Output 0: fine frequency correction value # Output 1: timing signal self.connect(self.sample_and_hold, (self,0)) self.connect(self.slice, self.f2b, (self,1)) if logging: self.connect(self.moving_sum_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-energy_f.dat")) self.connect(self.diff, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-theta_f.dat")) self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-epsilon_f.dat")) self.connect(self.corrmag, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-corrmag_f.dat")) self.connect(self.kscorr, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-kscorr_c.dat")) self.connect(self.div, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-div_f.dat")) self.connect(self.mul, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-mul_f.dat")) self.connect(self.slice, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-slice_f.dat")) self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-peaks_b.dat")) if use_dpll: self.connect(self.dpll, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-dpll_b.dat")) self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-sample_and_hold_f.dat")) self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-input_c.dat"))
def __init__(self): gr.top_block.__init__(self) # Build an options parser to bring in information from the user on usage usage = "usage: %prog [options] host min_freq max_freq" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("-g", "--gain", type="eng_float", default=32, help="set gain in dB (default is midpoint)") parser.add_option("", "--tune-delay", type="eng_float", default=5e-5, metavar="SECS", help="time to delay (in seconds) after changing frequency [default=%default]") parser.add_option("", "--dwell-delay", type="eng_float", default=50e-5, metavar="SECS", help="time to dwell (in seconds) at a given frequncy [default=%default]") parser.add_option("-F", "--fft-size", type="int", default=256, help="specify number of FFT bins [default=%default]") parser.add_option("-d", "--decim", type="intx", default=16, help="set decimation to DECIM [default=%default]") parser.add_option("", "--real-time", action="store_true", default=False, help="Attempt to enable real-time scheduling") (options, args) = parser.parse_args() if len(args) != 3: parser.print_help() sys.exit(1) # get user-provided info on address of MSDD and frequency to sweep self.address = args[0] self.min_freq = eng_notation.str_to_num(args[1]) self.max_freq = eng_notation.str_to_num(args[2]) self.decim = options.decim self.gain = options.gain if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them self.fft_size = options.fft_size if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # Sampling rate is hardcoded and cannot be read off device adc_rate = 102.4e6 self.int_rate = adc_rate / self.decim print "Sampling rate: ", self.int_rate # build graph self.port = 10001 # required port for UDP packets # which board, op mode, adx, port # self.src = msdd.source_c(0, 1, self.address, self.port) # build source object self.conv = gr.interleaved_short_to_complex(); self.src = msdd.source_simple(self.address,self.port); self.src.set_decim_rate(self.decim) # set decimation rate # self.src.set_desired_packet_size(0, 1460) # set packet size to collect self.set_gain(self.gain) # set receiver's attenuation self.set_freq(self.min_freq) # set receiver's rx frequency # restructure into vector format for FFT input s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) # set up FFT processing block mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow, True) power = 0 for tap in mywindow: power += tap*tap # calculate magnitude squared of output of FFT c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to % of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. self.percent = 0.4 # Calculate the frequency steps to use in the collection over the whole bandwidth self.freq_step = self.percent * self.int_rate self.min_center_freq = self.min_freq + self.freq_step/2 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq # use these values to set receiver settling time between samples and sampling time # the default values provided seem to work well with the MSDD over 100 Mbps ethernet tune_delay = max(0, int(round(options.tune_delay * self.int_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * self.int_rate / self.fft_size))) # in fft_frames # set up message callback routine to get data from bin_statistics_f block self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd # FIXME this block doesn't like to work with negatives because of the "d_max[i]=0" on line # 151 of gr_bin_statistics_f.cc file. Set this to -10000 or something to get it to work. stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME there's a concern over the speed of the log calculation # We can probably calculate the log inside the stats block self.connect(self.src, self.conv, s2v, fft, c2mag, log, stats)
def __init__(self): gr.top_block.__init__(self) usage = "usage: %prog [options] min_freq max_freq" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("-a", "--args", type="string", default="", help="UHD device device address args [default=%default]") parser.add_option("", "--spec", type="string", default=None, help="Subdevice of UHD device where appropriate") parser.add_option("-A", "--antenna", type="string", default=None, help="select Rx Antenna where appropriate") parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6, help="set sample rate [default=%default]") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS", help="time to delay (in seconds) after changing frequency [default=%default]") parser.add_option("", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS", help="time to dwell (in seconds) at a given frequency [default=%default]") parser.add_option("", "--channel-bandwidth", type="eng_float", default=12.5e3, metavar="Hz", help="channel bandwidth of fft bins in Hz [default=%default]") parser.add_option("-F", "--fft-size", type="int", default=256, help="specify number of FFT bins [default=%default]") parser.add_option("", "--real-time", action="store_true", default=False, help="Attempt to enable real-time scheduling") (options, args) = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(1) self.min_freq = eng_notation.str_to_num(args[0]) self.max_freq = eng_notation.str_to_num(args[1]) if self.min_freq > self.max_freq: # swap them self.min_freq, self.max_freq = self.max_freq, self.min_freq self.fft_size = options.fft_size self.channel_bandwidth = options.channel_bandwidth if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # build graph self.u = uhd.usrp_source(device_addr=options.args, stream_args=uhd.stream_args('fc32')) # Set the subdevice spec if(options.spec): self.u.set_subdev_spec(options.spec, 0) # Set the antenna if(options.antenna): self.u.set_antenna(options.antenna, 0) self.usrp_rate = usrp_rate = options.samp_rate self.u.set_samp_rate(usrp_rate) dev_rate = self.u.get_samp_rate() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow, True) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. self.freq_step = 0.75 * usrp_rate self.min_center_freq = self.min_freq + self.freq_step/2 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up #self.connect(self.u, s2v, fft, c2mag, log, stats) self.connect(self.u, s2v, fft, c2mag, stats) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2.0 self.set_gain(options.gain) print "gain =", options.gain
def __init__(self, fft_length, cp_length, half_sync, logging=False): gr.hier_block2.__init__( self, "ofdm_sync_pn", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature3( 3, 3, # Output signature gr.sizeof_gr_complex, # delayed input gr.sizeof_float, # fine frequency offset gr.sizeof_char # timing indicator )) if half_sync: period = fft_length / 2 window = fft_length / 2 else: # full symbol period = fft_length + cp_length window = fft_length # makes the plateau cp_length long # Calculate the frequency offset from the correlation of the preamble x_corr = gr.multiply_cc() self.connect(self, gr.conjugate_cc(), (x_corr, 0)) self.connect(self, gr.delay(gr.sizeof_gr_complex, period), (x_corr, 1)) P_d = gr.moving_average_cc(window, 1.0) self.connect(x_corr, P_d) P_d_angle = gr.complex_to_arg() self.connect(P_d, P_d_angle) # Get the power of the input signal to normalize the output of the correlation R_d = gr.moving_average_ff(window, 1.0) self.connect(self, gr.complex_to_mag_squared(), R_d) R_d_squared = gr.multiply_ff() # this is retarded self.connect(R_d, (R_d_squared, 0)) self.connect(R_d, (R_d_squared, 1)) M_d = gr.divide_ff() self.connect(P_d, gr.complex_to_mag_squared(), (M_d, 0)) self.connect(R_d_squared, (M_d, 1)) # Now we need to detect peak of M_d # NOTE: replaced fir_filter with moving_average for clarity # the peak is up to cp_length long, but noisy, so average it out #matched_filter_taps = [1.0/cp_length for i in range(cp_length)] #matched_filter = gr.fir_filter_fff(1, matched_filter_taps) matched_filter = gr.moving_average_ff(cp_length, 1.0 / cp_length) # NOTE: the look_ahead parameter doesn't do anything # these parameters are kind of magic, increase 1 and 2 (==) to be more tolerant #peak_detect = raw.peak_detector_fb(0.55, 0.55, 30, 0.001) peak_detect = raw.peak_detector_fb(0.25, 0.25, 30, 0.001) # NOTE: gr.peak_detector_fb is broken! #peak_detect = gr.peak_detector_fb(0.55, 0.55, 30, 0.001) #peak_detect = gr.peak_detector_fb(0.45, 0.45, 30, 0.001) #peak_detect = gr.peak_detector_fb(0.30, 0.30, 30, 0.001) # offset by -1 self.connect(M_d, matched_filter, gr.add_const_ff(-1), peak_detect) # peak_detect indicates the time M_d is highest, which is the end of the symbol. # We should try to sample in the middle of the plateau!! # FIXME until we figure out how to do this, just offset by cp_length/2 offset = 6 #cp_length/2 # nco(t) = P_d_angle(t-offset) sampled at peak_detect(t) # modulate input(t - fft_length) by nco(t) # signal to sample input(t) at t-offset # # We can't delay by < 0 so instead: # input is delayed by fft_length # P_d_angle is delayed by offset # signal to sample is delayed by fft_length - offset # phi = gr.sample_and_hold_ff() self.connect(peak_detect, (phi, 1)) self.connect(P_d_angle, gr.delay(gr.sizeof_float, offset), (phi, 0)) #self.connect(P_d_angle, matched_filter2, (phi,0)) # why isn't this better?!? # FIXME: we add fft_length delay so that the preamble is nco corrected too # BUT is this buffering worth it? consider implementing sync as a proper block # delay the input signal to follow the frequency offset signal self.connect(self, gr.delay(gr.sizeof_gr_complex, (fft_length + offset)), (self, 0)) self.connect(phi, (self, 1)) self.connect(peak_detect, (self, 2)) if logging: self.connect(matched_filter, gr.file_sink(gr.sizeof_float, "sync-mf.dat")) self.connect(M_d, gr.file_sink(gr.sizeof_float, "sync-M.dat")) self.connect(P_d_angle, gr.file_sink(gr.sizeof_float, "sync-angle.dat")) self.connect(peak_detect, gr.file_sink(gr.sizeof_char, "sync-peaks.datb")) self.connect(phi, gr.file_sink(gr.sizeof_float, "sync-phi.dat"))
def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), help="select USRP Rx side A or B (default=A)") parser.add_option( "-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-Q", "--observing", type="eng_float", default=0.0, help="set observing frequency to FREQ") parser.add_option("-a", "--avg", type="eng_float", default=1.0, help="set spectral averaging alpha") parser.add_option("-V", "--favg", type="eng_float", default=2.0, help="set folder averaging alpha") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, help="Set pulse display reference level") parser.add_option("-L", "--lowest", type="eng_float", default=1.5, help="Lowest valid frequency bin") parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude") parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude") parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") parser.add_option("-t", "--threshold", type="eng_float", default=2.5, help="pulsar threshold") parser.add_option("-p", "--lowpass", type="eng_float", default=100, help="Pulse spectra cutoff freq") parser.add_option("-P", "--prefix", default="./", help="File prefix") parser.add_option("-u", "--pulsefreq", type="eng_float", default=0.748, help="Observation pulse rate") parser.add_option("-D", "--dm", type="eng_float", default=1.0e-5, help="Dispersion Measure") parser.add_option("-O", "--doppler", type="eng_float", default=1.0, help="Doppler ratio") parser.add_option("-B", "--divbase", type="eng_float", default=20, help="Y/Div menu base") parser.add_option("-I", "--division", type="eng_float", default=100, help="Y/Div") parser.add_option("-A", "--audio_source", default="plughw:0,0", help="Audio input device spec") parser.add_option("-N", "--num_pulses", default=1, type="eng_float", help="Number of display pulses") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.show_debug_info = True self.reflevel = options.reflevel self.divbase = options.divbase self.division = options.division self.audiodev = options.audio_source self.mult = int(options.num_pulses) # Low-pass cutoff for post-detector filter # Set to 100Hz usually, since lots of pulsars fit in this # range self.lowpass = options.lowpass # What is lowest valid frequency bin in post-detector FFT? # There's some pollution very close to DC self.lowest_freq = options.lowest # What (dB) threshold to use in determining spectral candidates self.threshold = options.threshold # Filename prefix for recording file self.prefix = options.prefix # Dispersion Measure (DM) self.dm = options.dm # Doppler shift, as a ratio # 1.0 == no doppler shift # 1.005 == a little negative shift # 0.995 == a little positive shift self.doppler = options.doppler # # Input frequency and observing frequency--not necessarily the # same thing, if we're looking at the IF of some downconverter # that's ahead of the USRP and daughtercard. This distinction # is important in computing the correct de-dispersion filter. # self.frequency = options.freq if options.observing <= 0: self.observing_freq = options.freq else: self.observing_freq = options.observing # build the graph self.u = usrp.source_c(decim_rate=options.decim) self.u.set_mux( usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) # # Recording file, in case we ever need to record baseband data # self.recording = gr.file_sink(gr.sizeof_char, "/dev/null") self.recording_state = False self.pulse_recording = gr.file_sink(gr.sizeof_short, "/dev/null") self.pulse_recording_state = False # # We come up with recording turned off, but the user may # request recording later on self.recording.close() self.pulse_recording.close() # # Need these two for converting 12-bit baseband signals to 8-bit # self.tofloat = gr.complex_to_float() self.tochar = gr.float_to_char() # Need this for recording pulses (post-detector) self.toshort = gr.float_to_short() # # The spectral measurer sets this when it has a valid # average spectral peak-to-peak distance # We can then use this to program the parameters for the epoch folder # # We set a sentimental value here self.pulse_freq = options.pulsefreq # Folder runs at this raw sample rate self.folder_input_rate = 20000 # Each pulse in the epoch folder is sampled at 128 times the nominal # pulse rate self.folding = 128 # # Try to find candidate parameters for rational resampler # save_i = 0 candidates = [] for i in range(20, 300): input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * i) interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate if (interp < 500 and decim < 250000): candidates.append(i) # We didn't find anything, bail! if (len(candidates) < 1): print "Couldn't converge on resampler parameters" sys.exit(1) # # Now try to find candidate with the least sampling error # mindiff = 999.999 for i in candidates: diff = self.pulse_freq * i diff = diff - int(diff) if (diff < mindiff): mindiff = diff save_i = i # Recompute rates input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * save_i) # Compute new interp and decim, based on best candidate interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate # Save optimized folding parameters, used later self.folding = save_i self.interp = int(interp) self.decim = int(decim) # So that we can view N pulses in the pulse viewer window FOLD_MULT = self.mult # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) self.cardtype = self.u.daughterboard_id(0) # Compute raw input rate input_rate = self.u.adc_freq() / self.u.decim_rate() # BW==input_rate for complex data self.bw = input_rate # # Set baseband filter bandwidth if DBS_RX: # if self.cardtype == usrp_dbid.DBS_RX: lbw = input_rate / 2 if lbw < 1.0e6: lbw = 1.0e6 self.subdev.set_bw(lbw) # # We use this as a crude volume control for the audio output # #self.volume = gr.multiply_const_ff(10**(-1)) # # Create location data for ephem package # self.locality = ephem.Observer() self.locality.long = str(options.longitude) self.locality.lat = str(options.latitude) # # What is the post-detector LPF cutoff for the FFT? # PULSAR_MAX_FREQ = int(options.lowpass) # First low-pass filters down to input_rate/FIRST_FACTOR # and decimates appropriately FIRST_FACTOR = int(input_rate / (self.folder_input_rate / 2)) first_filter = gr.firdes.low_pass(1.0, input_rate, input_rate / FIRST_FACTOR, input_rate / (FIRST_FACTOR * 20), gr.firdes.WIN_HAMMING) # Second filter runs at the output rate of the first filter, # And low-pass filters down to PULSAR_MAX_FREQ*10 # second_input_rate = int(input_rate / (FIRST_FACTOR / 2)) second_filter = gr.firdes.band_pass(1.0, second_input_rate, 0.10, PULSAR_MAX_FREQ * 10, PULSAR_MAX_FREQ * 1.5, gr.firdes.WIN_HAMMING) # Third filter runs at PULSAR_MAX_FREQ*20 # and filters down to PULSAR_MAX_FREQ # third_input_rate = PULSAR_MAX_FREQ * 20 third_filter = gr.firdes_band_pass(1.0, third_input_rate, 0.10, PULSAR_MAX_FREQ, PULSAR_MAX_FREQ / 10.0, gr.firdes.WIN_HAMMING) # # Create the appropriate FFT scope # self.scope = ra_fftsink.ra_fft_sink_f(panel, fft_size=int(options.fft_size), sample_rate=PULSAR_MAX_FREQ * 2, title="Post-detector spectrum", ofunc=self.pulsarfunc, xydfunc=self.xydfunc, fft_rate=200) # # Tell scope we're looking from DC to PULSAR_MAX_FREQ # self.scope.set_baseband_freq(0.0) # # Setup stripchart for showing pulse profiles # hz = "%5.3fHz " % self.pulse_freq per = "(%5.3f sec)" % (1.0 / self.pulse_freq) sr = "%d sps" % (int(self.pulse_freq * self.folding)) times = " %d Pulse Intervals" % self.mult self.chart = ra_stripchartsink.stripchart_sink_f( panel, sample_rate=1, stripsize=self.folding * FOLD_MULT, parallel=True, title="Pulse Profiles: " + hz + per + times, xlabel="Seconds @ " + sr, ylabel="Level", autoscale=True, divbase=self.divbase, scaling=1.0 / (self.folding * self.pulse_freq)) self.chart.set_ref_level(self.reflevel) self.chart.set_y_per_div(self.division) # De-dispersion filter setup # # Do this here, just before creating the filter # that will use the taps. # ntaps = self.compute_disp_ntaps(self.dm, self.bw, self.observing_freq) # Taps for the de-dispersion filter self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64) # Compute the de-dispersion filter now self.compute_dispfilter(self.dm, self.doppler, self.bw, self.observing_freq) # # Call constructors for receive chains # # # Now create the FFT filter using the computed taps self.dispfilt = gr.fft_filter_ccc(1, self.disp_taps) # # Audio sink # #print "input_rate ", second_input_rate, "audiodev ", self.audiodev #self.audio = audio.sink(second_input_rate, self.audiodev) # # The three post-detector filters # Done this way to allow an audio path (up to 10Khz) # ...and also because going from xMhz down to ~100Hz # In a single filter doesn't seem to work. # self.first = gr.fir_filter_fff(FIRST_FACTOR / 2, first_filter) p = second_input_rate / (PULSAR_MAX_FREQ * 20) self.second = gr.fir_filter_fff(int(p), second_filter) self.third = gr.fir_filter_fff(10, third_filter) # Detector self.detector = gr.complex_to_mag_squared() self.enable_comb_filter = False # Epoch folder comb filter if self.enable_comb_filter == True: bogtaps = Numeric.zeros(512, Numeric.Float64) self.folder_comb = gr.fft_filter_ccc(1, bogtaps) # Rational resampler self.folder_rr = blks2.rational_resampler_fff(self.interp, self.decim) # Epoch folder bandpass bogtaps = Numeric.zeros(1, Numeric.Float64) self.folder_bandpass = gr.fir_filter_fff(1, bogtaps) # Epoch folder F2C/C2F self.folder_f2c = gr.float_to_complex() self.folder_c2f = gr.complex_to_float() # Epoch folder S2P self.folder_s2p = gr.serial_to_parallel(gr.sizeof_float, self.folding * FOLD_MULT) # Epoch folder IIR Filter (produces average pulse profiles) self.folder_iir = gr.single_pole_iir_filter_ff( 1.0 / options.favg, self.folding * FOLD_MULT) # # Set all the epoch-folder goop up # self.set_folding_params() # # Start connecting configured modules in the receive chain # # Connect raw USRP to de-dispersion filter, detector self.connect(self.u, self.dispfilt, self.detector) # Connect detector output to FIR LPF # in two stages, followed by the FFT scope self.connect(self.detector, self.first, self.second, self.third, self.scope) # Connect audio output #self.connect(self.first, self.volume) #self.connect(self.volume, (self.audio, 0)) #self.connect(self.volume, (self.audio, 1)) # Connect epoch folder if self.enable_comb_filter == True: self.connect(self.first, self.folder_bandpass, self.folder_rr, self.folder_f2c, self.folder_comb, self.folder_c2f, self.folder_s2p, self.folder_iir, self.chart) else: self.connect(self.first, self.folder_bandpass, self.folder_rr, self.folder_s2p, self.folder_iir, self.chart) # Connect baseband recording file (initially /dev/null) self.connect(self.u, self.tofloat, self.tochar, self.recording) # Connect pulse recording file (initially /dev/null) self.connect(self.first, self.toshort, self.pulse_recording) # # Build the GUI elements # self._build_gui(vbox) # Make GUI agree with command-line self.myform['average'].set_value(int(options.avg)) self.myform['foldavg'].set_value(int(options.favg)) # Make spectral averager agree with command line if options.avg != 1.0: self.scope.set_avg_alpha(float(1.0 / options.avg)) self.scope.set_average(True) # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0] + g[1]) / 2 if options.freq is None: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0] + r[1]) / 2 self.set_gain(options.gain) #self.set_volume(-10.0) if not (self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) self.myform['DM'].set_value(self.dm) self.myform['Doppler'].set_value(self.doppler) # # Start the timer that shows current LMST on the GUI # self.lmst_timer.Start(1000)
def __init__(self, usrp_rate, tuner_callback, options): gr.hier_block2.__init__(self, "sense_path", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(0, 0, 0)) # Output signature self.usrp_rate = usrp_rate self.usrp_tune = tuner_callback self.num_tests = options.num_tests self.threshold = options.threshold self.min_freq = options.start_freq self.max_freq = options.end_freq if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them self.fft_size = options.fft_size if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap*tap c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. #changed on 2011 May 31, MR -- maybe change back at some point self.freq_step = self.usrp_rate self.min_center_freq = self.min_freq + self.freq_step/2 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * self.usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * self.usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up #self.connect(self, s2v, fft, c2mag, log, stats) self.connect(self, s2v, fft, c2mag, stats)
def __init__(self, subc, vlen, ss): gr.hier_block2.__init__( self, "new_snr_estimator", gr.io_signature(1, 1, gr.sizeof_gr_complex * vlen), gr.io_signature(1, 1, gr.sizeof_float)) print "Created Milan's SNR estimator" trigger = [0] * vlen trigger[0] = 1 u = range(vlen / ss * (ss - 1)) zeros_ind = map(lambda z: z + 1 + z / (ss - 1), u) skip1 = skip(gr.sizeof_gr_complex, vlen) for x in zeros_ind: skip1.skip(x) #print "skipped zeros",zeros_ind v = range(vlen / ss) ones_ind = map(lambda z: z * ss, v) skip2 = skip(gr.sizeof_gr_complex, vlen) for x in ones_ind: skip2.skip(x) #print "skipped ones",ones_ind v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) s2v1 = gr.stream_to_vector(gr.sizeof_gr_complex, vlen / ss) trigger_src_1 = gr.vector_source_b(trigger, True) s2v2 = gr.stream_to_vector(gr.sizeof_gr_complex, vlen / ss * (ss - 1)) trigger_src_2 = gr.vector_source_b(trigger, True) mag_sq_ones = gr.complex_to_mag_squared(vlen / ss) mag_sq_zeros = gr.complex_to_mag_squared(vlen / ss * (ss - 1)) filt_ones = gr.single_pole_iir_filter_ff(0.1, vlen / ss) filt_zeros = gr.single_pole_iir_filter_ff(0.1, vlen / ss * (ss - 1)) sum_ones = vector_sum_vff(vlen / ss) sum_zeros = vector_sum_vff(vlen / ss * (ss - 1)) D = gr.divide_ff() P = gr.multiply_ff() mult1 = gr.multiply_const_ff(ss - 1.0) add1 = gr.add_const_ff(-1.0) mult2 = gr.multiply_const_ff(1. / ss) scsnrdb = gr.nlog10_ff(10, 1, 0) filt_end = gr.single_pole_iir_filter_ff(0.1) self.connect(self, v2s, skip1, s2v1, mag_sq_ones, filt_ones, sum_ones) self.connect(trigger_src_1, (skip1, 1)) self.connect(v2s, skip2, s2v2, mag_sq_zeros, filt_zeros, sum_zeros) self.connect(trigger_src_2, (skip2, 1)) self.connect(sum_ones, D) self.connect(sum_zeros, (D, 1)) self.connect(D, mult1, add1, mult2) self.connect(mult2, scsnrdb, filt_end, self)
def __init__(self, fft_length, cp_length, logging=False): """ OFDM synchronization using PN Correlation: T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing Synchonization for OFDM," IEEE Trans. Communications, vol. 45, no. 12, 1997. """ gr.hier_block2.__init__(self, "ofdm_sync_pn", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature self.input = gr.add_const_cc(0) # PN Sync # Create a delay line self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2) # Correlation from ML Sync self.conjg = gr.conjugate_cc(); self.corr = gr.multiply_cc(); # Create a moving sum filter for the corr output if 1: moving_sum_taps = [1.0 for i in range(fft_length//2)] self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps) else: moving_sum_taps = [complex(1.0,0.0) for i in range(fft_length//2)] self.moving_sum_filter = gr.fft_filter_ccc(1,moving_sum_taps) # Create a moving sum filter for the input self.inputmag2 = gr.complex_to_mag_squared() movingsum2_taps = [1.0 for i in range(fft_length//2)] if 1: self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps) else: self.inputmovingsum = gr.fft_filter_fff(1,movingsum2_taps) self.square = gr.multiply_ff() self.normalize = gr.divide_ff() # Get magnitude (peaks) and angle (phase/freq error) self.c2mag = gr.complex_to_mag_squared() self.angle = gr.complex_to_arg() self.sample_and_hold = gr.sample_and_hold_ff() #ML measurements input to sampler block and detect #self.sub1 = gr.add_const_ff(-1) self.sub1 = gr.add_const_ff(0) self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001) #self.pk_detect = gr.peak_detector2_fb(9) self.connect(self, self.input) # Calculate the frequency offset from the correlation of the preamble self.connect(self.input, self.delay) self.connect(self.input, (self.corr,0)) self.connect(self.delay, self.conjg) self.connect(self.conjg, (self.corr,1)) self.connect(self.corr, self.moving_sum_filter) self.connect(self.moving_sum_filter, self.c2mag) self.connect(self.moving_sum_filter, self.angle) self.connect(self.angle, (self.sample_and_hold,0)) # Get the power of the input signal to normalize the output of the correlation self.connect(self.input, self.inputmag2, self.inputmovingsum) self.connect(self.inputmovingsum, (self.square,0)) self.connect(self.inputmovingsum, (self.square,1)) self.connect(self.square, (self.normalize,1)) self.connect(self.c2mag, (self.normalize,0)) # Create a moving sum filter for the corr output matched_filter_taps = [1.0/cp_length for i in range(cp_length)] self.matched_filter = gr.fir_filter_fff(1,matched_filter_taps) self.connect(self.normalize, self.matched_filter) self.connect(self.matched_filter, self.sub1, self.pk_detect) #self.connect(self.matched_filter, self.pk_detect) self.connect(self.pk_detect, (self.sample_and_hold,1)) # Set output signals # Output 0: fine frequency correction value # Output 1: timing signal self.connect(self.sample_and_hold, (self,0)) self.connect(self.pk_detect, (self,1)) if logging: self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat")) self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat")) self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat")) self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat")) self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat")) self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
def __init__(self, fft_length, cp_length, logging=False): """ OFDM synchronization using PN Correlation: T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing Synchonization for OFDM," IEEE Trans. Communications, vol. 45, no. 12, 1997. """ gr.hier_block2.__init__(self, "ofdm_sync_pn", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature self.input = gr.add_const_cc(0) # PN Sync # Create a delay line self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2) # Correlation from ML Sync self.conjg = gr.conjugate_cc(); self.corr = gr.multiply_cc(); # Create a moving sum filter for the corr output if 1: moving_sum_taps = [1.0 for i in range(fft_length//2)] self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps) else: moving_sum_taps = [complex(1.0,0.0) for i in range(fft_length//2)] self.moving_sum_filter = gr.fft_filter_ccc(1,moving_sum_taps) # Create a moving sum filter for the input self.inputmag2 = gr.complex_to_mag_squared() # Modified by Yong (12.06.27) #movingsum2_taps = [1.0 for i in range(fft_length//2)] movingsum2_taps = [0.5 for i in range(fft_length)] if 1: self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps) else: self.inputmovingsum = gr.fft_filter_fff(1,movingsum2_taps) self.square = gr.multiply_ff() self.normalize = gr.divide_ff() # Get magnitude (peaks) and angle (phase/freq error) self.c2mag = gr.complex_to_mag_squared() self.angle = gr.complex_to_arg() self.sample_and_hold = gr.sample_and_hold_ff() #ML measurements input to sampler block and detect self.sub1 = gr.add_const_ff(-1) self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001) #self.pk_detect = gr.peak_detector2_fb(9) self.connect(self, self.input) # Calculate the frequency offset from the correlation of the preamble self.connect(self.input, self.delay) self.connect(self.input, (self.corr,0)) self.connect(self.delay, self.conjg) self.connect(self.conjg, (self.corr,1)) self.connect(self.corr, self.moving_sum_filter) self.connect(self.moving_sum_filter, self.c2mag) self.connect(self.moving_sum_filter, self.angle) self.connect(self.angle, (self.sample_and_hold,0)) # Get the power of the input signal to normalize the output of the correlation self.connect(self.input, self.inputmag2, self.inputmovingsum) self.connect(self.inputmovingsum, (self.square,0)) self.connect(self.inputmovingsum, (self.square,1)) self.connect(self.square, (self.normalize,1)) self.connect(self.c2mag, (self.normalize,0)) # Create a moving sum filter for the corr output matched_filter_taps = [1.0/cp_length for i in range(cp_length)] self.matched_filter = gr.fir_filter_fff(1,matched_filter_taps) self.connect(self.normalize, self.matched_filter) self.connect(self.matched_filter, self.sub1, self.pk_detect) #self.connect(self.matched_filter, self.pk_detect) self.connect(self.pk_detect, (self.sample_and_hold,1)) # Set output signals # Output 0: fine frequency correction value # Output 1: timing signal self.connect(self.sample_and_hold, (self,0)) self.connect(self.pk_detect, (self,1)) if logging: self.connect(self.matched_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-mf_f.dat")) self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-nominator_f.dat")) self.connect(self.square, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-denominator_f.dat")) self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-theta_f.dat")) self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-epsilon_f.dat")) self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pn-peaks_b.dat")) self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pn-sample_and_hold_f.dat")) self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pn-input_c.dat"))
def __init__(self): gr.top_block.__init__(self) usage = "usage: %prog [options] host min_freq max_freq" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("", "--tune-delay", type="eng_float", default=5e-5, metavar="SECS", help="time to delay (in seconds) after changing frequency [default=%default]") parser.add_option("", "--dwell-delay", type="eng_float", default=50e-5, metavar="SECS", help="time to dwell (in seconds) at a given frequncy [default=%default]") parser.add_option("-F", "--fft-size", type="int", default=256, help="specify number of FFT bins [default=%default]") parser.add_option("-d", "--decim", type="intx", default=16, help="set decimation to DECIM [default=%default]") parser.add_option("", "--real-time", action="store_true", default=False, help="Attempt to enable real-time scheduling") (options, args) = parser.parse_args() if len(args) != 3: parser.print_help() sys.exit(1) self.address = args[0] self.min_freq = eng_notation.str_to_num(args[1]) self.max_freq = eng_notation.str_to_num(args[2]) self.decim = options.decim self.gain = options.gain if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them self.fft_size = options.fft_size if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" adc_rate = 102.4e6 self.int_rate = adc_rate / self.decim print "Sampling rate: ", self.int_rate # build graph self.port = 10001 self.src = msdd.source_simple(self.address, self.port) self.src.set_decim_rate(self.decim) self.set_gain(self.gain) self.set_freq(self.min_freq) s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow, True) power = 0 for tap in mywindow: power += tap*tap norm = gr.multiply_const_cc(1.0/self.fft_size) c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to % of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. self.percent = 0.4 self.freq_step = self.percent * self.int_rate self.min_center_freq = self.min_freq + self.freq_step/2 nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * self.int_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * self.int_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up self.connect(self.src, s2v, fft, c2mag, log, stats)
def __init__(self): gr.top_block.__init__(self) global parser parser = OptionParser(option_class=eng_option) parser.add_option("-a", "--args", type="string", default="", help="UHD device address [default=%default]") #parser.add_option("-e", "--interface", type="string", default="eth0", help="Select ethernet interface. Default is eth0") #parser.add_option("-m", "--MAC_addr", type="string", default="", help="Select USRP2 by its MAC address.Default is auto-select") parser.add_option("-p", "--start", type="eng_float", default=1e7, help="Start ferquency [default = %default]") parser.add_option("-q", "--stop", type="eng_float", default=1e8, help="Stop ferquency [default = %default]") parser.add_option( "", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS", help= "time to delay (in seconds) after changing frequency[default=%default]" ) parser.add_option( "", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS", help= "time to dwell (in seconds) at a given frequncy[default=%default]") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-s", "--fft-size", type="int", default=256, help="specify number of FFT bins [default=%default]") parser.add_option("-d", "--decim", type="intx", default=16, help="set decimation to DECIM [default=%default]") parser.add_option("-i", "--input_file", default="", help="radio input file", metavar="FILE") parser.add_option( "-S", "--sense-bins", type="int", default=64, help="set number of bins in the OFDM block [default=%default]") (options, args) = parser.parse_args() if options.input_file == "": self.IS_USRP2 = True else: self.IS_USRP2 = False self.min_freq = options.start self.max_freq = options.stop print "min_freq=", self.min_freq print "max_freq=", self.max_freq if self.min_freq > self.max_freq: self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them print "Start and stop frequencies order swapped!" self.fft_size = options.fft_size self.ofdm_bins = options.sense_bins # build graph s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap * tap c2mag = gr.complex_to_mag_squared(self.fft_size) #log = gr.nlog10_ff(10, self.fft_size, -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # modifications for USRP2 print "*******************in sensor init********************" if self.IS_USRP2: self.u = uhd.usrp_source(device_addr=options.args, io_type=uhd.io_type.COMPLEX_FLOAT32, num_channels=1) samp_rate = 100**6 / options.decim self.u.set_samp_rate(samp_rate) else: self.u = gr.file_source(gr.sizeof_gr_complex, options.input_file, True) samp_rate = 100e6 / options.decim self.freq_step = 0 #0.75* samp_rate self.min_center_freq = (self.min_freq + self.max_freq) / 2 global BW BW = self.max_freq - self.min_freq print "bandwidth=", BW global size size = self.fft_size global ofdm_bins ofdm_bins = self.ofdm_bins global usr #global thrshold_inorder usr = samp_rate nsteps = 10 #math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int( round(options.tune_delay * samp_rate / self.fft_size))) # in fft_frames print tune_delay dwell_delay = max(1, int( round(options.dwell_delay * samp_rate / self.fft_size))) # in fft_frames print dwell_delay self.msgq = gr.msg_queue(16) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) self.connect(self.u, s2v, fft, c2mag, stats) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.get_gain_range() options.gain = float(g.start() + g.stop()) / 2
def complex_to_mag_squared(N): op = gr.complex_to_mag_squared() tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1) return tb
def __init__(self, demod_class, rx_callback, options, source_block): gr.hier_block2.__init__(self, "receive_path", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(0, 0, 0)) options = copy.copy( options) # make a copy so we can destructively modify self._verbose = options.verbose self._bitrate = options.bitrate # desired bit rate self._rx_callback = rx_callback # this callback is fired when a packet arrives self._demod_class = demod_class # the demodulator_class we're using self._chbw_factor = options.chbw_factor # channel filter bandwidth factor # Get demod_kwargs demod_kwargs = self._demod_class.extract_kwargs_from_options(options) #Give hooks of usrp to blocks downstream self.source_block = source_block ######################################### # Build Blocks ######################################### # Build the demodulator self.demodulator = self._demod_class(**demod_kwargs) # Make sure the channel BW factor is between 1 and sps/2 # or the filter won't work. if (self._chbw_factor < 1.0 or self._chbw_factor > self.samples_per_symbol() / 2): sys.stderr.write( "Channel bandwidth factor ({0}) must be within the range [1.0, {1}].\n" .format(self._chbw_factor, self.samples_per_symbol() / 2)) sys.exit(1) # Design filter to get actual channel we want sw_decim = 1 chan_coeffs = gr.firdes.low_pass( 1.0, # gain sw_decim * self.samples_per_symbol(), # sampling rate self._chbw_factor, # midpoint of trans. band 0.5, # width of trans. band gr.firdes.WIN_HANN) # filter type self.channel_filter = gr.fft_filter_ccc(sw_decim, chan_coeffs) # receiver self.packet_receiver = \ digital.demod_pkts(self.demodulator, access_code=None, callback=self._rx_callback, threshold=-1) # Carrier Sensing Blocks alpha = 0.001 thresh = 30 # in dB, will have to adjust self.probe = gr.probe_avg_mag_sqrd_c(thresh, alpha) # Display some information about the setup if self._verbose: self._print_verbage() # More Carrier Sensing with FFT #self.gr_vector_sink = gr.vector_sink_c(1024) #self.gr_stream_to_vector = gr.stream_to_vector(gr.sizeof_gr_complex*1, 1024) #self.gr_head = gr.head(gr.sizeof_gr_complex*1024, 1024) #self.fft = fft.fft_vcc(1024, True, (window.blackmanharris(1024)), True, 1) # Parameters usrp_rate = options.bitrate self.fft_size = 1024 self.min_freq = 2.4e9 - 0.75e6 self.max_freq = 2.4e9 + 0.75e6 self.tune_delay = 0.001 self.dwell_delay = 0.01 s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) power = 0 for tap in mywindow: power += tap * tap c2mag = gr.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow log = gr.nlog10_ff( 10, self.fft_size, -20 * math.log10(self.fft_size) - 10 * math.log10(power / self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. #self.freq_step = 0.75 * usrp_rate #self.min_center_freq = self.min_freq + self.freq_step/2 #nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) #self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.freq_step = 1.5e6 self.min_center_freq = self.min_freq nsteps = 1 self.max_center_freq = self.max_freq self.next_freq = self.min_center_freq tune_delay = max(0, int(round(self.tune_delay * usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int( round(self.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(16) self._tune_callback = tune( self) # hang on to this to keep it from being GC'd stats = gr.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) ###################################################### # Connect Blocks Together ###################################################### #channel-filter-->Probe_Avg_Mag_Sqrd # -->Packet_Receiver (Demod Done Here!!) # # connect FFT sampler to system #self.connect(self, self.gr_stream_to_vector, self.fft, self.gr_vector_sink) # connect block input to channel filter self.connect(self, self.channel_filter) # connect the channel input filter to the carrier power detector self.connect(self.channel_filter, self.probe) # connect channel filter to the packet receiver self.connect(self.channel_filter, self.packet_receiver) # FIXME leave out the log10 until we speed it up #self.connect(self.u, s2v, fft, c2mag, log, stats) self.connect(self.channel_filter, s2v, fft, c2mag, stats)