def automl_image_classification_training_job_sample(
    project: str,
    location: str,
    dataset_id: str,
    display_name: str,
):
    aiplatform.init(project=project, location=location)

    dataset = aiplatform.ImageDataset(dataset_id)

    job = aiplatform.AutoMLImageTrainingJob(
        display_name=display_name,
        prediction_type="classification",
        multi_label=False,
        model_type="CLOUD",
        base_model=None,
    )

    model = job.run(
        dataset=dataset,
        model_display_name=display_name,
        training_fraction_split=0.6,
        validation_fraction_split=0.2,
        test_fraction_split=0.2,
        budget_milli_node_hours=8000,
        disable_early_stopping=False,
    )

    print(model.display_name)
    print(model.name)
    print(model.resource_name)
    print(model.description)
    print(model.uri)

    return model
コード例 #2
0
    def test_get_nonexistent_dataset(self):
        """Ensure attempting to retrieve a dataset that doesn't exist raises
        a Google API core 404 exception."""

        aiplatform.init(project=_TEST_PROJECT, location=_TEST_LOCATION)

        # AI Platform service returns 404
        with pytest.raises(exceptions.NotFound):
            aiplatform.ImageDataset(dataset_name="0")
コード例 #3
0
    def test_get_existing_dataset(self):
        """Retrieve a known existing dataset, ensure SDK successfully gets the
        dataset resource."""

        aiplatform.init(project=_TEST_PROJECT, location=_TEST_LOCATION)

        flowers_dataset = aiplatform.ImageDataset(dataset_name=_TEST_IMAGE_DATASET_ID)
        assert flowers_dataset.name == _TEST_IMAGE_DATASET_ID
        assert flowers_dataset.display_name == _TEST_DATASET_DISPLAY_NAME
コード例 #4
0
def create_training_pipeline_custom_package_job_sample(
    project: str,
    location: str,
    staging_bucket: str,
    display_name: str,
    python_package_gcs_uri: str,
    python_module_name: str,
    container_uri: str,
    model_serving_container_image_uri: str,
    dataset_id: Optional[str] = None,
    model_display_name: Optional[str] = None,
    args: Optional[List[Union[str, float, int]]] = None,
    replica_count: int = 1,
    machine_type: str = "n1-standard-4",
    accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
    accelerator_count: int = 0,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    sync: bool = True,
):
    aiplatform.init(project=project,
                    location=location,
                    staging_bucket=staging_bucket)

    job = aiplatform.CustomPythonPackageTrainingJob(
        display_name=display_name,
        python_package_gcs_uri=python_package_gcs_uri,
        python_module_name=python_module_name,
        container_uri=container_uri,
        model_serving_container_image_uri=model_serving_container_image_uri,
    )

    # This example uses an ImageDataset, but you can use another type
    dataset = aiplatform.ImageDataset(dataset_id) if dataset_id else None

    model = job.run(
        dataset=dataset,
        model_display_name=model_display_name,
        args=args,
        replica_count=replica_count,
        machine_type=machine_type,
        accelerator_type=accelerator_type,
        accelerator_count=accelerator_count,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model
コード例 #5
0
def create_training_pipeline_custom_training_managed_dataset_sample(
    project: str,
    location: str,
    display_name: str,
    script_path: str,
    container_uri: str,
    model_serving_container_image_uri: str,
    dataset_id: int,
    model_display_name: Optional[str] = None,
    args: Optional[List[Union[str, float, int]]] = None,
    replica_count: int = 0,
    machine_type: str = "n1-standard-4",
    accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
    accelerator_count: int = 0,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.CustomTrainingJob(
        display_name=display_name,
        script_path=script_path,
        container_uri=container_uri,
        model_serving_container_image_uri=model_serving_container_image_uri,
    )

    my_image_ds = aiplatform.ImageDataset(dataset_id)

    model = job.run(
        dataset=my_image_ds,
        model_display_name=model_display_name,
        args=args,
        replica_count=replica_count,
        machine_type=machine_type,
        accelerator_type=accelerator_type,
        accelerator_count=accelerator_count,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model
コード例 #6
0
def image_dataset_import_data_sample(
    project: str, location: str, src_uris: list, import_schema_uri: str, dataset_id: str
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.ImageDataset(dataset_id)

    ds = ds.import_data(
        gcs_source=src_uris, import_schema_uri=import_schema_uri, sync=True
    )

    print(ds.display_name)
    print(ds.name)
    print(ds.resource_name)
    return ds
def create_training_pipeline_image_classification_sample(
    project: str,
    display_name: str,
    dataset_id: int,
    location: str = "us-central1",
    model_display_name: str = None,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    budget_milli_node_hours: int = 8000,
    disable_early_stopping: bool = False,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.AutoMLImageTrainingJob(display_name=display_name)

    my_image_ds = aiplatform.ImageDataset(dataset_id)

    model = job.run(
        dataset=my_image_ds,
        model_display_name=model_display_name,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        budget_milli_node_hours=budget_milli_node_hours,
        disable_early_stopping=disable_early_stopping,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model