def test_batch_predict_field_headers(): client = PredictionServiceClient( credentials=credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = prediction_service.BatchPredictRequest() request.name = "name/value" # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._transport.batch_predict), "__call__") as call: call.return_value = operations_pb2.Operation(name="operations/op") client.batch_predict(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( "x-goog-request-params", "name=name/value", ) in kw["metadata"]
def test_batch_predict(transport: str = "grpc", request_type=prediction_service.BatchPredictRequest): client = PredictionServiceClient( credentials=credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._transport.batch_predict), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/spam") response = client.batch_predict(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == prediction_service.BatchPredictRequest() # Establish that the response is the type that we expect. assert isinstance(response, future.Future)
def test_batch_predict_flattened_error(): client = PredictionServiceClient( credentials=credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.batch_predict( prediction_service.BatchPredictRequest(), name="name_value", input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource( input_uris=["input_uris_value"])), output_config=io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")), params={"key_value": "value_value"}, )
def test_batch_predict_flattened(): client = PredictionServiceClient( credentials=credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object(type(client._transport.batch_predict), "__call__") as call: # Designate an appropriate return value for the call. call.return_value = operations_pb2.Operation(name="operations/op") # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.batch_predict( name="name_value", input_config=io.BatchPredictInputConfig(gcs_source=io.GcsSource( input_uris=["input_uris_value"])), output_config=io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")), params={"key_value": "value_value"}, ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].name == "name_value" assert args[0].input_config == io.BatchPredictInputConfig( gcs_source=io.GcsSource(input_uris=["input_uris_value"])) assert args[0].output_config == io.BatchPredictOutputConfig( gcs_destination=io.GcsDestination( output_uri_prefix="output_uri_prefix_value")) assert args[0].params == {"key_value": "value_value"}