コード例 #1
0
ファイル: dataproc.py プロジェクト: rinoguchi/dataproc_sample
    def submit_pyspark_job(self, main_python_file_uri: str,
                           python_file_uris: List[str]):
        print(f'submit pyspark job started.')
        job_details = {
            'placement': {
                'cluster_name': self.cluster_name
            },
            'pyspark_job': {
                'main_python_file_uri': main_python_file_uri,
                'python_file_uris': python_file_uris
            }
        }

        job_transport: JobControllerGrpcTransport = JobControllerGrpcTransport(
            address='{}-dataproc.googleapis.com:443'.format(self.region),
            credentials=self.dataproc_credentials)
        dataproc_job_client = JobControllerClient(job_transport)

        result = dataproc_job_client.submit_job(project_id=self.project_id,
                                                region=self.region,
                                                job=job_details)
        job_id = result.reference.job_id
        print(f'job {job_id} is submitted.')

        print(f'waiting for job {job_id} to finish...')
        while True:
            time.sleep(1)
            job = dataproc_job_client.get_job(self.project_id, self.region,
                                              job_id)
            if job.status.State.Name(job.status.state) == 'ERROR':
                raise Exception(job.status.details)
            elif job.status.State.Name(job.status.state) == 'DONE':
                print(f'job {job_id} is finished.')
                break
コード例 #2
0
ファイル: dataproc.py プロジェクト: jlodonnell36/feast
class DataprocClusterLauncher(JobLauncher):
    """
    Submits jobs to an existing Dataproc cluster. Depends on google-cloud-dataproc and
    google-cloud-storage, which are optional dependencies that the user has to installed in
    addition to the Feast SDK.
    """

    EXTERNAL_JARS = ["gs://spark-lib/bigquery/spark-bigquery-latest_2.12.jar"]
    JOB_TYPE_LABEL_KEY = "feast_job_type"
    JOB_HASH_LABEL_KEY = "feast_job_hash"

    def __init__(
        self,
        cluster_name: str,
        staging_location: str,
        region: str,
        project_id: str,
        executor_instances: str,
        executor_cores: str,
        executor_memory: str,
    ):
        """
        Initialize a dataproc job controller client, used internally for job submission and result
        retrieval.

        Args:
            cluster_name (str):
                Dataproc cluster name.
            staging_location (str):
                GCS directory for the storage of files generated by the launcher, such as the pyspark scripts.
            region (str):
                Dataproc cluster region.
            project_id (str):
                GCP project id for the dataproc cluster.
            executor_instances (str):
                Number of executor instances for dataproc job.
            executor_cores (str):
                Number of cores for dataproc job.
            executor_memory (str):
                Amount of memory for dataproc job.
        """

        self.cluster_name = cluster_name

        scheme, self.staging_bucket, self.remote_path, _, _, _ = urlparse(
            staging_location)
        if scheme != "gs":
            raise ValueError(
                "Only GCS staging location is supported for DataprocLauncher.")
        self.project_id = project_id
        self.region = region
        self.job_client = JobControllerClient(
            client_options={
                "api_endpoint": f"{region}-dataproc.googleapis.com:443"
            })
        self.executor_instances = executor_instances
        self.executor_cores = executor_cores
        self.executor_memory = executor_memory

    def _stage_file(self, file_path: str, job_id: str) -> str:
        if not os.path.isfile(file_path):
            return file_path

        staging_client = get_staging_client("gs")
        blob_path = os.path.join(
            self.remote_path,
            job_id,
            os.path.basename(file_path),
        ).lstrip("/")
        blob_uri_str = f"gs://{self.staging_bucket}/{blob_path}"
        with open(file_path, "rb") as f:
            staging_client.upload_fileobj(f,
                                          file_path,
                                          remote_uri=urlparse(blob_uri_str))

        return blob_uri_str

    def dataproc_submit(
        self, job_params: SparkJobParameters, extra_properties: Dict[str, str]
    ) -> Tuple[Job, Callable[[], Job], Callable[[], None]]:
        local_job_id = str(uuid.uuid4())
        main_file_uri = self._stage_file(job_params.get_main_file_path(),
                                         local_job_id)
        job_config: Dict[str, Any] = {
            "reference": {
                "job_id": local_job_id
            },
            "placement": {
                "cluster_name": self.cluster_name
            },
            "labels": {
                self.JOB_TYPE_LABEL_KEY:
                job_params.get_job_type().name.lower()
            },
        }

        # Add job hash to labels only for the stream ingestion job
        if isinstance(job_params, StreamIngestionJobParameters):
            job_config["labels"][
                self.JOB_HASH_LABEL_KEY] = job_params.get_job_hash()

        if job_params.get_class_name():
            properties = {
                "spark.yarn.user.classpath.first": "true",
                "spark.executor.instances": self.executor_instances,
                "spark.executor.cores": self.executor_cores,
                "spark.executor.memory": self.executor_memory,
            }

            properties.update(extra_properties)

            job_config.update({
                "spark_job": {
                    "jar_file_uris": [main_file_uri] + self.EXTERNAL_JARS,
                    "main_class": job_params.get_class_name(),
                    "args": job_params.get_arguments(),
                    "properties": properties,
                }
            })
        else:
            job_config.update({
                "pyspark_job": {
                    "main_python_file_uri": main_file_uri,
                    "jar_file_uris": self.EXTERNAL_JARS,
                    "args": job_params.get_arguments(),
                    "properties": extra_properties if extra_properties else {},
                }
            })

        job = self.job_client.submit_job(
            request={
                "project_id": self.project_id,
                "region": self.region,
                "job": job_config,
            })

        refresh_fn = partial(
            self.job_client.get_job,
            project_id=self.project_id,
            region=self.region,
            job_id=job.reference.job_id,
        )
        cancel_fn = partial(self.dataproc_cancel, job.reference.job_id)

        return job, refresh_fn, cancel_fn

    def dataproc_cancel(self, job_id):
        self.job_client.cancel_job(project_id=self.project_id,
                                   region=self.region,
                                   job_id=job_id)

    def historical_feature_retrieval(
            self, job_params: RetrievalJobParameters) -> RetrievalJob:
        job, refresh_fn, cancel_fn = self.dataproc_submit(
            job_params,
            {"dev.feast.outputuri": job_params.get_destination_path()})
        return DataprocRetrievalJob(job, refresh_fn, cancel_fn,
                                    job_params.get_destination_path())

    def offline_to_online_ingestion(
        self, ingestion_job_params: BatchIngestionJobParameters
    ) -> BatchIngestionJob:
        job, refresh_fn, cancel_fn = self.dataproc_submit(
            ingestion_job_params, {})
        return DataprocBatchIngestionJob(job, refresh_fn, cancel_fn)

    def start_stream_to_online_ingestion(
        self, ingestion_job_params: StreamIngestionJobParameters
    ) -> StreamIngestionJob:
        job, refresh_fn, cancel_fn = self.dataproc_submit(
            ingestion_job_params, {})
        job_hash = ingestion_job_params.get_job_hash()
        return DataprocStreamingIngestionJob(job, refresh_fn, cancel_fn,
                                             job_hash)

    def get_job_by_id(self, job_id: str) -> SparkJob:
        job = self.job_client.get_job(project_id=self.project_id,
                                      region=self.region,
                                      job_id=job_id)
        return self._dataproc_job_to_spark_job(job)

    def _dataproc_job_to_spark_job(self, job: Job) -> SparkJob:
        job_type = job.labels[self.JOB_TYPE_LABEL_KEY]
        job_id = job.reference.job_id
        refresh_fn = partial(
            self.job_client.get_job,
            project_id=self.project_id,
            region=self.region,
            job_id=job_id,
        )
        cancel_fn = partial(self.dataproc_cancel, job_id)

        if job_type == SparkJobType.HISTORICAL_RETRIEVAL.name.lower():
            output_path = job.pyspark_job.properties.get("dev.feast.outputuri")
            return DataprocRetrievalJob(job, refresh_fn, cancel_fn,
                                        output_path)

        if job_type == SparkJobType.BATCH_INGESTION.name.lower():
            return DataprocBatchIngestionJob(job, refresh_fn, cancel_fn)

        if job_type == SparkJobType.STREAM_INGESTION.name.lower():
            job_hash = job.labels[self.JOB_HASH_LABEL_KEY]
            return DataprocStreamingIngestionJob(job, refresh_fn, cancel_fn,
                                                 job_hash)

        raise ValueError(f"Unrecognized job type: {job_type}")

    def list_jobs(self, include_terminated: bool) -> List[SparkJob]:
        job_filter = f"labels.{self.JOB_TYPE_LABEL_KEY} = * AND clusterName = {self.cluster_name}"
        if not include_terminated:
            job_filter = job_filter + "AND status.state = ACTIVE"
        return [
            self._dataproc_job_to_spark_job(job)
            for job in self.job_client.list_jobs(project_id=self.project_id,
                                                 region=self.region,
                                                 filter=job_filter)
        ]