コード例 #1
0
def test_detect_intent_flattened():
    client = SessionsClient(credentials=credentials.AnonymousCredentials(), )

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client.transport.detect_intent),
                           "__call__") as call:
        # Designate an appropriate return value for the call.
        call.return_value = gcd_session.DetectIntentResponse()

        # Call the method with a truthy value for each flattened field,
        # using the keyword arguments to the method.
        client.detect_intent(
            session="session_value",
            query_input=gcd_session.QueryInput(
                audio_config=audio_config.InputAudioConfig(
                    audio_encoding=audio_config.AudioEncoding.
                    AUDIO_ENCODING_LINEAR_16)),
        )

        # Establish that the underlying call was made with the expected
        # request object values.
        assert len(call.mock_calls) == 1
        _, args, _ = call.mock_calls[0]

        assert args[0].session == "session_value"

        assert args[0].query_input == gcd_session.QueryInput(
            audio_config=audio_config.InputAudioConfig(
                audio_encoding=audio_config.AudioEncoding.
                AUDIO_ENCODING_LINEAR_16))
コード例 #2
0
def test_detect_intent_field_headers():
    client = SessionsClient(credentials=credentials.AnonymousCredentials(), )

    # Any value that is part of the HTTP/1.1 URI should be sent as
    # a field header. Set these to a non-empty value.
    request = gcd_session.DetectIntentRequest()
    request.session = "session/value"

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client.transport.detect_intent),
                           "__call__") as call:
        call.return_value = gcd_session.DetectIntentResponse()

        client.detect_intent(request)

        # Establish that the underlying gRPC stub method was called.
        assert len(call.mock_calls) == 1
        _, args, _ = call.mock_calls[0]
        assert args[0] == request

    # Establish that the field header was sent.
    _, _, kw = call.mock_calls[0]
    assert (
        "x-goog-request-params",
        "session=session/value",
    ) in kw["metadata"]
コード例 #3
0
def test_detect_intent_flattened_error():
    client = SessionsClient(credentials=credentials.AnonymousCredentials(), )

    # Attempting to call a method with both a request object and flattened
    # fields is an error.
    with pytest.raises(ValueError):
        client.detect_intent(
            gcd_session.DetectIntentRequest(),
            session="session_value",
            query_input=gcd_session.QueryInput(
                audio_config=audio_config.InputAudioConfig(
                    audio_encoding=audio_config.AudioEncoding.
                    AUDIO_ENCODING_LINEAR_16)),
        )
コード例 #4
0
def test_detect_intent(transport: str = "grpc",
                       request_type=gcd_session.DetectIntentRequest):
    client = SessionsClient(
        credentials=credentials.AnonymousCredentials(),
        transport=transport,
    )

    # Everything is optional in proto3 as far as the runtime is concerned,
    # and we are mocking out the actual API, so just send an empty request.
    request = request_type()

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client.transport.detect_intent),
                           "__call__") as call:
        # Designate an appropriate return value for the call.
        call.return_value = gcd_session.DetectIntentResponse(
            response_id="response_id_value",
            output_audio=b"output_audio_blob",
        )

        response = client.detect_intent(request)

        # Establish that the underlying gRPC stub method was called.
        assert len(call.mock_calls) == 1
        _, args, _ = call.mock_calls[0]

        assert args[0] == gcd_session.DetectIntentRequest()

    # Establish that the response is the type that we expect.

    assert isinstance(response, gcd_session.DetectIntentResponse)

    assert response.response_id == "response_id_value"

    assert response.output_audio == b"output_audio_blob"
コード例 #5
0
def test_detect_intent_empty_call():
    # This test is a coverage failsafe to make sure that totally empty calls,
    # i.e. request == None and no flattened fields passed, work.
    client = SessionsClient(
        credentials=credentials.AnonymousCredentials(),
        transport="grpc",
    )

    # Mock the actual call within the gRPC stub, and fake the request.
    with mock.patch.object(type(client.transport.detect_intent),
                           "__call__") as call:
        client.detect_intent()
        call.assert_called()
        _, args, _ = call.mock_calls[0]

        assert args[0] == gcd_session.DetectIntentRequest()
コード例 #6
0
class DialogflowEsConnector(Connector):
    """
    This is an implementation of :class:`~intents.connectors.interface.Connector`
    that enables Agents to work as Dialogflow projects.

    An Agent can be connected to Dialogflow by providing its :class:`~intents.model.agent.Agent`
    class and service account credentials for the the Google Cloud project
    that hosts the Dialogflow ES agent:

    .. code-block:: python

        from example_agent import ExampleAgent
        from intents.connectors import DialogflowEsConnector
        df = DialogflowEsConnector('/path/to/your/service-account-credentials.json', ExampleAgent)

    The Connector can now be used, mainly to

    * Export the Agent with :meth:`DialogflowEsConnector.export`
    * Predict an utterance with :meth:`DialogflowEsConnector.predict`
    * Trigger an Intent with :meth:`DialogflowEsConnector.trigger`

    Args:
        google_credentials: Path to service account JSON credentials, or a Credentials object
        agent_cls: The Agent to connect
        default_session: An arbitrary string to identify the conversation during
            predictions. If None, Connector will generate a random string
        default_language: Default language to use during predictions. If None, Connector
            will use the Agent's firs defined language.
        rich_platforms: Platforms to include when exporting Rich response messages
        webhook_configuration: Webhook connection parameters
    """
    entity_mappings = df_entities.MAPPINGS
    rich_platforms: Iterable[str]
    webhook_configuration: WebhookConfiguration

    _credentials: google.auth.credentials.Credentials
    _session_client: SessionsClient
    _need_context_set: Set[type(Intent)]
    _intents_by_context: Dict[str, type(Intent)]

    def __init__(
            self,
            google_credentials: Union[str,
                                      google.auth.credentials.Credentials],
            agent_cls: type(Agent),
            default_session: str = None,
            default_language: Union[LanguageCode, str] = None,
            rich_platforms: Iterable[str] = ("telegram", ),
            webhook_configuration: WebhookConfiguration = None):
        super().__init__(agent_cls,
                         default_session=default_session,
                         default_language=default_language)
        self._credentials = resolve_credentials(google_credentials)
        assert all([p in RICH_RESPONSE_PLATFORMS for p in rich_platforms])
        self._session_client = SessionsClient(credentials=self._credentials)
        self.rich_platforms = rich_platforms
        self.webhook_configuration = webhook_configuration
        self._need_context_set = _build_need_context_set(agent_cls)
        self._intents_by_context = _build_intents_by_context(agent_cls)

    @property
    def gcp_project_id(self) -> str:
        """
        Return the Google Cloud Project ID that is associated with the current Connection
        """
        return self._credentials.project_id

    def export(self, destination: str):
        agent_name = 'py-' + self.agent_cls.__name__
        return df_export.export(self, destination, agent_name)

    def upload(self):
        agents_client = AgentsClient(credentials=self._credentials)
        with tempfile.TemporaryDirectory() as tmp_dir:
            export_path = os.path.join(tmp_dir, 'agent.zip')
            self.export(export_path)
            with open(export_path, 'rb') as f:
                agent_content = f.read()
            restore_request = pb.RestoreAgentRequest(
                parent=f"projects/{self.gcp_project_id}",
                agent_content=agent_content)
            agents_client.restore_agent(request=restore_request)

    def predict(
            self,
            message: str,
            session: str = None,
            language: Union[LanguageCode, str] = None) -> DialogflowPrediction:
        if not session:
            session = self.default_session
        if not language:
            language = self.default_language

        language = ensure_language_code(language)
        text_input = TextInput(text=message, language_code=language.value)
        query_input = QueryInput(text=text_input)
        session_path = self._session_client.session_path(
            self.gcp_project_id, session)
        df_result = self._session_client.detect_intent(session=session_path,
                                                       query_input=query_input)
        df_response = DetectIntentBody(df_result)

        return self._df_body_to_prediction(df_response)

    def trigger(
            self,
            intent: Intent,
            session: str = None,
            language: Union[LanguageCode, str] = None) -> DialogflowPrediction:
        if not session:
            session = self.default_session
        if not language:
            language = self.default_language

        language = ensure_language_code(language)
        intent_name = intent.name
        event_name = df_names.event_name(intent.__class__)
        event_parameters = {}
        for param_name, param_metadata in intent.parameter_schema.items():
            param_mapping = df_entities.MAPPINGS[param_metadata.entity_cls]
            if param_name in intent.__dict__:
                param_value = intent.__dict__[param_name]
                event_parameters[param_name] = param_mapping.to_service(
                    param_value)

        logger.info(
            "Triggering event '%s' in session '%s' with parameters: %s",
            event_name, session, event_parameters)
        if not event_parameters:
            event_parameters = {}

        event_input = EventInput(name=event_name,
                                 parameters=dict_to_protobuf(event_parameters),
                                 language_code=language.value)
        query_input = QueryInput(event=event_input)
        session_path = self._session_client.session_path(
            self.gcp_project_id, session)
        df_result = self._session_client.detect_intent(session=session_path,
                                                       query_input=query_input)
        df_response = DetectIntentBody(df_result)

        return self._df_body_to_prediction(df_response)

    def fulfill(self, fulfillment_request: FulfillmentRequest) -> dict:
        webhook_body = WebhookRequestBody(fulfillment_request.body)
        intent = self._df_body_to_intent(webhook_body)
        context = self._df_body_to_fulfillment_context(webhook_body)
        fulfillment_result = FulfillmentResult.ensure(intent.fulfill(context))
        logger.debug("Returning fulfillment result: %s", fulfillment_result)
        if fulfillment_result:
            return webhook.fulfillment_result_to_response(
                fulfillment_result, context)
        return {}

    def _df_body_to_fulfillment_context(
            self, df_body: DetectIntentBody) -> DialogflowPrediction:
        return FulfillmentContext(
            confidence=df_body.queryResult.intentDetectionConfidence,
            fulfillment_messages=intent_responses(df_body),
            fulfillment_text=df_body.queryResult.fulfillmentText,
            language=LanguageCode(df_body.queryResult.languageCode))

    def _df_body_to_prediction(
            self, df_body: DetectIntentBody) -> DialogflowPrediction:
        return DialogflowPrediction(
            intent=self._df_body_to_intent(df_body),
            confidence=df_body.queryResult.intentDetectionConfidence,
            fulfillment_messages=intent_responses(df_body),
            fulfillment_text=df_body.queryResult.fulfillmentText,
            df_response=df_body.detect_intent)

    def _df_body_to_intent(
            self,
            df_body: PredictionBody,
            build_related_cls: Type[Intent] = None,
            visited_intents: Set[Type[Intent]] = None) -> Intent:
        """
        Convert a Dialogflow prediction response into an instance of
        :class:`Intent`.
        
        This method is recursive on intent relations. When an intent has a
        :meth:`~intents.model.relations.follow` field, that field must be filled
        with an instance of the followed intent; in this case
        :meth:`_df_body_to_intent` will call itself passing the parent intent
        class as `build_related_cls`, to force building that intent from the
        same `df_body`; contexts and parameters will be checked for consistency.

        Args:
            df_body: A Dialogflow Response
            build_related_cls: Force to build the related intent instead of
                the predicted one
            visited_intents: This is used internally to prevent recursion loops
        """
        if not visited_intents:
            visited_intents = set()

        contexts, context_parameters = df_body.contexts()

        # Slot filling in progress
        # TODO: also check queryResult.cancelsSlotFilling
        # if "__system_counters__" in contexts:
        if not df_body.queryResult.allRequiredParamsPresent:
            logger.warning(
                "Prediction doesn't have values for all required parameters. "
                "Slot filling may be in progress, but this is not modeled yet: "
                "Intent object will be None")
            return None

        if build_related_cls:
            # TODO: adjust lifespan
            intent_cls = build_related_cls
            df_parameters = {
                p_name: p.value
                for p_name, p in context_parameters.items()
                if p_name in intent_cls.parameter_schema
            }
        else:
            intent_name = df_body.intent_name
            intent_cls: Intent = self.agent_cls._intents_by_name.get(
                intent_name)
            if not intent_cls:
                raise ValueError(
                    f"Prediction returned intent '{intent_name}', " +
                    "but this was not found in Agent definition. Make sure to restore a latest "
                    +
                    "Agent export from `services.dialogflow_es.export.export()`. If the problem "
                    + "persists, please file a bug on the Intents repository.")
            df_parameters = df_body.intent_parameters

        visited_intents.add(intent_cls)
        parameter_dict = deserialize_intent_parameters(df_parameters,
                                                       intent_cls,
                                                       self.entity_mappings)
        related_intents_dict = {}
        for rel in intent_relations(intent_cls).follow:
            if rel.target_cls in visited_intents:
                raise ValueError(
                    f"Loop detected: {rel.target_cls} was already visited. Make sure "
                    "your Agent has no circular dependencies")
            related_intent = self._df_body_to_intent(df_body, rel.target_cls,
                                                     visited_intents)
            related_intent.lifespan = df_body.context_lifespans.get(
                df_names.context_name(rel.target_cls), 0)

            related_intents_dict[rel.field_name] = related_intent

        result = intent_cls(**parameter_dict, **related_intents_dict)
        result.lifespan = df_body.context_lifespans.get(
            df_names.context_name(intent_cls), 0)
        return result

    def _intent_needs_context(self, intent: Intent) -> bool:
        return intent in self._need_context_set