コード例 #1
0
ファイル: main.py プロジェクト: catchpoint/community
def send_metric(sales_item, sales_num, report_time):
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{PROJECT_ID}"

    series = monitoring_v3.TimeSeries()
    series.metric.type = f"custom.googleapis.com/{CUSTOM_METRIC_NAME}"
    # Available resource types: https://cloud.google.com/monitoring/api/resources
    series.resource.type = "global"
    series.resource.labels["project_id"] = PROJECT_ID

    # If needed, add more labels for filtering and grouping
    series.metric.labels["item"] = sales_item

    epoch = report_time.timestamp()
    seconds = int(epoch)
    interval = monitoring_v3.TimeInterval(
        {"end_time": {
            "seconds": seconds,
            "nanos": 0
        }})
    point = monitoring_v3.Point({
        "interval": interval,
        "value": {
            "int64_value": sales_num
        }
    })
    series.points = [point]
    client.create_time_series(request={
        "name": project_name,
        "time_series": [series]
    })

    print("Successfully wrote time series.")
コード例 #2
0
    def test_list_monitored_resource_descriptors(self):
        # Setup Expected Response
        next_page_token = ""
        resource_descriptors_element = {}
        resource_descriptors = [resource_descriptors_element]
        expected_response = {
            "next_page_token": next_page_token,
            "resource_descriptors": resource_descriptors,
        }
        expected_response = metric_service_pb2.ListMonitoredResourceDescriptorsResponse(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        patch = mock.patch("google.api_core.grpc_helpers.create_channel")
        with patch as create_channel:
            create_channel.return_value = channel
            client = monitoring_v3.MetricServiceClient()

        # Setup Request
        name = client.project_path("[PROJECT]")

        paged_list_response = client.list_monitored_resource_descriptors(name)
        resources = list(paged_list_response)
        assert len(resources) == 1

        assert expected_response.resource_descriptors[0] == resources[0]

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.ListMonitoredResourceDescriptorsRequest(
            name=name)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #3
0
    def test_get_monitored_resource_descriptor(self):
        # Setup Expected Response
        name_2 = 'name2-1052831874'
        type_ = 'type3575610'
        display_name = 'displayName1615086568'
        description = 'description-1724546052'
        expected_response = {
            'name': name_2,
            'type': type_,
            'display_name': display_name,
            'description': description
        }
        expected_response = monitored_resource_pb2.MonitoredResourceDescriptor(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        client = monitoring_v3.MetricServiceClient(channel=channel)

        # Setup Request
        name = client.monitored_resource_descriptor_path(
            '[PROJECT]', '[MONITORED_RESOURCE_DESCRIPTOR]')

        response = client.get_monitored_resource_descriptor(name)
        assert expected_response == response

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.GetMonitoredResourceDescriptorRequest(
            name=name)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #4
0
def add_metric_point(project_name, metric_name, metric_value):
    """
    Function for adding data point for dashboard.

    inputs
    ------
    metric_name: name of metric, will be appended to beginning of series.metric.type, ex 'custom.googleapis.com/' + test_metric_1105'
    metric_value: numeric value to be added

    returns
    ------
    none, value added.
    """
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path(project_name)
    series = monitoring_v3.types.TimeSeries()
    series.metric.type = 'custom.googleapis.com/' + metric_name
    series.resource.type = 'global'
    # series.resource.labels['project_id'] = project
    # series.resource.labels['zone'] = 'us-central1-a'
    # series.resource.labels['cluster_name'] = 'heavy-hitters'
    point = series.points.add()
    point.value.double_value = metric_value
    now = time.time()
    point.interval.end_time.seconds = int(now)
    point.interval.end_time.nanos = int(
        (now - point.interval.end_time.seconds) * 10**9)
    client.create_time_series(project_name, [series])
コード例 #5
0
 def __init__(self, name, desc, service, buckets=None, client=None, valueType=None):
     self.service = service
     self.name = name
     if self.service == "prometheus":
         if buckets:
             self.h = prom.Histogram(name, desc, buckets=buckets)
         else:
             self.h = prom.Histogram(name, desc)
     else:
         # STACKDRIVER
         self.client = monitoring_v3.MetricServiceClient()
         self.project_name = self.client.project_path(name)
         descriptor = monitoring_v3.types.MetricDescriptor()
         descriptor.type = 'custom.googleapis.com/{}'.format(metric_type)
         # Cumulative 
         descriptor.metric_kind = (
                 monitoring_v3.enums.MetricDescriptor.MetricKind.CUMULATIVE)
         # Double type (Will add switch for types later)
         descriptor.value_type = (
                 monitoring_v3.enums.MetricDescriptor.ValueType.DISTRIBUTION)
         descriptor.description = desc
         
         # Create the metric descriptor and print a success message
         descriptor = self.client.create_metric_descriptor(self.project_name, descriptor)
         print('StackDriver Histogram Created {}.'.format(descriptor.name))
コード例 #6
0
    def __init__(self):
        super().__init__()

        self.sample_rate = os.environ.get('STACKDRIVER_SAMPLE_RATE', 60)
        self.project_id = os.environ['STACKDRIVER_PROJECT_ID']
        self.cluster_name = os.environ['STACKDRIVER_CLUSTER_NAME']
        self.container_name = os.environ['STACKDRIVER_CONTAINER_NAME']
        self.namespace_id = os.environ['STACKDRIVER_NAMESPACE_UID']
        self.pod_id = os.environ['STACKDRIVER_POD_UID']
        self.buckets = os.environ.get('STACKDRIVER_BUCKETS', 40)
        self.growth_factor = os.environ.get('STACKDRIVER_GROWTH_FACTOR', 1.4)
        self.scale = os.environ.get('STACKDRIVER_SCALE', 1)

        self.instance_id = requests.get(
            "http://metadata.google.internal./computeMetadata/v1/instance/id",
            headers={
                'Metadata-Flavor': 'Google'
            }).text
        zone = requests.get(
            "http://metadata.google.internal./computeMetadata/v1/instance/zone",
            headers={
                'Metadata-Flavor': 'Google'
            }).text
        self.zone = zone.split('/')[-1]

        self.client = monitoring_v3.MetricServiceClient()
def list_time_series(project_id):
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path(project_id)
    interval = monitoring_v3.types.TimeInterval()
    now = time.time()
    interval.end_time.seconds = int(now)
    interval.end_time.nanos = int((now - interval.end_time.seconds) * 10**9)
    interval.start_time.seconds = int(now - 15000)
    interval.start_time.nanos = interval.end_time.nanos
    try:
        results = client.list_time_series(
            project_name,
            'metric.type = "logging.googleapis.com/user/favicons_served"',
            interval,
            monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL)
    except:
        return (0)
    total = 0
    try:
        for result in results:
            total += 1
            for point in result.points:
                total += point.value.int64_value
                #print (point.value.int64_value)
        return (total)
    except:
        return (0)
コード例 #8
0
    def test_list_monitored_resource_descriptors(self):
        # Setup Expected Response
        next_page_token = ''
        resource_descriptors_element = {}
        resource_descriptors = [resource_descriptors_element]
        expected_response = {
            'next_page_token': next_page_token,
            'resource_descriptors': resource_descriptors
        }
        expected_response = metric_service_pb2.ListMonitoredResourceDescriptorsResponse(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        client = monitoring_v3.MetricServiceClient(channel=channel)

        # Setup Request
        name = client.project_path('[PROJECT]')

        paged_list_response = client.list_monitored_resource_descriptors(name)
        resources = list(paged_list_response)
        assert len(resources) == 1

        assert expected_response.resource_descriptors[0] == resources[0]

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.ListMonitoredResourceDescriptorsRequest(
            name=name)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #9
0
 def test_list_metric_descriptors(self):
     client = monitoring_v3.MetricServiceClient()
     name_inside = client.project_path(PROJECT_INSIDE)
     delayed_inside = lambda: client.list_metric_descriptors(name_inside)
     name_outside = client.project_path(PROJECT_OUTSIDE)
     delayed_outside = lambda: client.list_metric_descriptors(name_outside)
     TestVPCServiceControlV3._do_test(delayed_inside, delayed_outside)
コード例 #10
0
def list_time_series_reduce(project_id):
    # [START monitoring_read_timeseries_reduce]
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path(project_id)
    interval = monitoring_v3.types.TimeInterval()
    now = time.time()
    interval.end_time.seconds = int(now)
    interval.end_time.nanos = int((now - interval.end_time.seconds) * 10**9)
    interval.start_time.seconds = int(now - 3600)
    interval.start_time.nanos = interval.end_time.nanos
    aggregation = monitoring_v3.types.Aggregation()
    aggregation.alignment_period.seconds = 1200  # 20 minutes
    aggregation.per_series_aligner = (
        monitoring_v3.enums.Aggregation.Aligner.ALIGN_MEAN)
    aggregation.cross_series_reducer = (
        monitoring_v3.enums.Aggregation.Reducer.REDUCE_MEAN)
    aggregation.group_by_fields.append('resource.zone')

    results = client.list_time_series(
        project_name,
        'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        interval,
        monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL,
        aggregation)
    for result in results:
        print(result)
コード例 #11
0
ファイル: snippets.py プロジェクト: udoyen/python-monitoring
def list_time_series_reduce(project_id):
    # [START monitoring_read_timeseries_reduce]
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{project_id}"

    now = time.time()
    seconds = int(now)
    nanos = int((now - seconds) * 10 ** 9)
    interval = monitoring_v3.TimeInterval(
        {
            "end_time": {"seconds": seconds, "nanos": nanos},
            "start_time": {"seconds": (seconds - 3600), "nanos": nanos},
        }
    )
    aggregation = monitoring_v3.Aggregation(
        {
            "alignment_period": {"seconds": 1200},  # 20 minutes
            "per_series_aligner": monitoring_v3.Aggregation.Aligner.ALIGN_MEAN,
            "cross_series_reducer": monitoring_v3.Aggregation.Reducer.REDUCE_MEAN,
            "group_by_fields": ["resource.zone"],
        }
    )

    results = client.list_time_series(
        request={
            "name": project_name,
            "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
            "interval": interval,
            "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
            "aggregation": aggregation,
        }
    )
    for result in results:
        print(result)
コード例 #12
0
def write_time_series(project_id):
    # [START monitoring_write_timeseries]
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{project_id}"

    series = monitoring_v3.TimeSeries()
    series.metric.type = "custom.googleapis.com/my_metric" + str(uuid.uuid4())
    series.resource.type = "gce_instance"
    series.resource.labels["instance_id"] = "1234567890123456789"
    series.resource.labels["zone"] = "us-central1-f"
    now = time.time()
    seconds = int(now)
    nanos = int((now - seconds) * 10**9)
    interval = monitoring_v3.TimeInterval(
        {"end_time": {
            "seconds": seconds,
            "nanos": nanos
        }})
    point = monitoring_v3.Point({
        "interval": interval,
        "value": {
            "double_value": 3.14
        }
    })
    series.points = [point]
    client.create_time_series(name=project_name, time_series=[series])
コード例 #13
0
def list_time_series_aggregate(project_id):
    # [START monitoring_read_timeseries_align]
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path(project_id)
    interval = monitoring_v3.types.TimeInterval()
    now = time.time()
    interval.end_time.seconds = int(now)
    interval.end_time.nanos = int((now - interval.end_time.seconds) * 10**9)
    interval.start_time.seconds = int(now -
                                      query_time_int)  # 這邊用 query_time 來彈性調整
    interval.start_time.nanos = interval.end_time.nanos
    aggregation = monitoring_v3.types.Aggregation()
    aggregation.alignment_period.seconds = query_time_int  # 這邊用 query_time 來彈性調整
    aggregation.per_series_aligner = (
        monitoring_v3.enums.Aggregation.Aligner.ALIGN_MEAN)

    results = client.list_time_series(
        project_name,
        'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        interval,
        monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL,
        aggregation)
    for result in results:
        cpuUtil = result.points[0].value.double_value
        if cpuUtil < cpu_threshold_float:  #需要判斷的 CPU threshold, 用 cpu_threshold 來彈性調整
            print("instance name:", result.metric.labels)  # 列出 instance 名稱
            # instance_id 是放在 resource.labels 下, 以字典的方式儲存, 所以透過 ['KEY_NAME'] 取出
            print("instance id:", result.resource.labels['instance_id']
                  )  # 列出 instance id 來區別同樣名稱的 VM
            print("CPU utilization:", cpuUtil * 100, "% \n")  # 列出 cpu 使用量
コード例 #14
0
def main(project=None, gce_regions=None, verbose=False, **kw):
    "Fetch, convert, and write quotas for project and optional regions."
    _configure_logging(verbose=verbose)
    regions = ['global']
    if gce_regions:
        regions += gce_regions.split(',')
    quotas = []
    try:
        compute = googleapiclient.discovery.build('compute',
                                                  'v1',
                                                  cache_discovery=False)
        # Fetch quotas for global + defined regions.
        for region in regions:
            _LOGGER.debug('fetching project quota for %s %s', project, region)
            for quota in _fetch_quotas(project, region, compute=compute):
                quotas.append((region, quota))
        # Convert quotas to series, write to Stackdriver using naive batching.
        client, i = monitoring_v3.MetricServiceClient(), 0
        while i < len(quotas):
            series = [
                _quota_to_series(project, *q)
                for q in quotas[i:i + _BATCH_SIZE]
            ]
            _add_series(project, series, client)
            i += _BATCH_SIZE
    except Error as e:
        _LOGGER.critical(e.message)
コード例 #15
0
ファイル: report.py プロジェクト: dkomlen/iot
def handler(event, context):
    """Triggered from a message on a Cloud Pub/Sub topic.
    Args:
         event (dict): Event payload.
         context (google.cloud.functions.Context): Metadata for the event.
    """

    msg = base64.b64decode(event['data']).decode('utf-8')
    vals = {
        item[0].strip(): item[1].strip()
        for item in (ms.split(':') for ms in msg.split(','))
    }
    print(vals)

    client = monitoring_v3.MetricServiceClient()
    project = 'photon-playground'
    project_name = client.project_path(project)

    for name, val in vals.items():
        series = monitoring_v3.types.TimeSeries()
        series.metric.type = 'custom.googleapis.com/' + name
        series.resource.type = 'global'
        series.resource.labels['project_id'] = project

        point = series.points.add()
        point.value.double_value = float(val)
        now = time.time()
        point.interval.end_time.seconds = int(now)
        point.interval.end_time.nanos = int(
            (now - point.interval.end_time.seconds) * 10**9)
        client.create_time_series(project_name, [series])
        print('Successfully wrote time series.')
コード例 #16
0
def add_new_metric(project_id, metric_type, desc):
    """Add new Metrics for StackDriver.

    Args:
      project_id: (str) GCP project id.
      metric_type: (int) MetricDescriptor type.
      desc: (str) MetricDescriptor description.

    Raises:
      MissingProjectIdError: GCP Project id is not defined.
    """
    if not project_id:
        raise MissingProjectIdError(
            'Set the environment variable GCLOUD_PROJECT to your GCP Project '
            'ID.')
    descriptor = monitoring_v3.types.MetricDescriptor()
    descriptor.type = 'custom.googleapis.com/{type}'.format(type=metric_type)
    descriptor.metric_kind = (
        monitoring_v3.enums.MetricDescriptor.MetricKind.GAUGE)
    descriptor.value_type = (
        monitoring_v3.enums.MetricDescriptor.ValueType.INT64)
    descriptor.description = desc
    # Create Metric Descriptor.
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path(project_id)
    descriptor = client.create_metric_descriptor(project_name, descriptor)
    print('Created {}.'.format(descriptor.name))
コード例 #17
0
    def test_create_metric_descriptor(self):
        # Setup Expected Response
        name_2 = 'name2-1052831874'
        type_ = 'type3575610'
        unit = 'unit3594628'
        description = 'description-1724546052'
        display_name = 'displayName1615086568'
        expected_response = {
            'name': name_2,
            'type': type_,
            'unit': unit,
            'description': description,
            'display_name': display_name
        }
        expected_response = api_metric_pb2.MetricDescriptor(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        client = monitoring_v3.MetricServiceClient(channel=channel)

        # Setup Request
        name = client.project_path('[PROJECT]')
        metric_descriptor = {}

        response = client.create_metric_descriptor(name, metric_descriptor)
        assert expected_response == response

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.CreateMetricDescriptorRequest(
            name=name, metric_descriptor=metric_descriptor)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #18
0
ファイル: snippets.py プロジェクト: udoyen/python-monitoring
def list_monitored_resources(project_id):
    # [START monitoring_list_resources]
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{project_id}"
    resource_descriptors = client.list_monitored_resource_descriptors(name=project_name)
    for descriptor in resource_descriptors:
        print(descriptor.type)
コード例 #19
0
    def test_list_time_series(self):
        # Setup Expected Response
        next_page_token = ''
        time_series_element = {}
        time_series = [time_series_element]
        expected_response = {
            'next_page_token': next_page_token,
            'time_series': time_series
        }
        expected_response = metric_service_pb2.ListTimeSeriesResponse(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        client = monitoring_v3.MetricServiceClient(channel=channel)

        # Setup Request
        name = client.project_path('[PROJECT]')
        filter_ = 'filter-1274492040'
        interval = {}
        view = enums.ListTimeSeriesRequest.TimeSeriesView.FULL

        paged_list_response = client.list_time_series(name, filter_, interval,
                                                      view)
        resources = list(paged_list_response)
        assert len(resources) == 1

        assert expected_response.time_series[0] == resources[0]

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.ListTimeSeriesRequest(
            name=name, filter=filter_, interval=interval, view=view)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #20
0
ファイル: snippets.py プロジェクト: udoyen/python-monitoring
def get_monitored_resource_descriptor(project_id, resource_type_name):
    # [START monitoring_get_resource]
    client = monitoring_v3.MetricServiceClient()
    resource_path = (
        f"projects/{project_id}/monitoredResourceDescriptors/{resource_type_name}"
    )
    pprint.pprint(client.get_monitored_resource_descriptor(name=resource_path))
コード例 #21
0
 def test_create_time_series(self):
     client = monitoring_v3.MetricServiceClient()
     name_inside = client.project_path(PROJECT_INSIDE)
     delayed_inside = lambda: client.create_time_series(name_inside, {})
     name_outside = client.project_path(PROJECT_OUTSIDE)
     delayed_outside = lambda: client.create_time_series(name_outside, {})
     TestVPCServiceControlV3._do_test(delayed_inside, delayed_outside)
コード例 #22
0
ファイル: snippets.py プロジェクト: udoyen/python-monitoring
def list_time_series(project_id):
    # [START monitoring_read_timeseries_simple]
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{project_id}"
    interval = monitoring_v3.TimeInterval()

    now = time.time()
    seconds = int(now)
    nanos = int((now - seconds) * 10 ** 9)
    interval = monitoring_v3.TimeInterval(
        {
            "end_time": {"seconds": seconds, "nanos": nanos},
            "start_time": {"seconds": (seconds - 1200), "nanos": nanos},
        }
    )

    results = client.list_time_series(
        request={
            "name": project_name,
            "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
            "interval": interval,
            "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
        }
    )
    for result in results:
        print(result)
コード例 #23
0
def send_metric(product):
    global MONITORING_CLIENT
    if not MONITORING_CLIENT:
        MONITORING_CLIENT = monitoring_v3.MetricServiceClient()

    project_name = MONITORING_CLIENT.project_path(PROJECT_ID)

    series = monitoring_v3.types.TimeSeries()
    series.metric.type = f"custom.googleapis.com/{CUSTOM_METRIC_PREFIX}-{product}"
    # Available resource types: https://cloud.google.com/monitoring/api/resources
    series.resource.type = "generic_task"
    series.resource.labels["project_id"] = PROJECT_ID
    # Adjust the lable values as needed
    series.resource.labels["location"] = "global"
    series.resource.labels["namespace"] = "default"
    series.resource.labels["job"] = "app-" + product
    series.resource.labels["task_id"] = str(uuid.uuid4())

    point = series.points.add()
    point.value.int64_value = 1
    now = time.time()
    point.interval.end_time.seconds = int(now)
    point.interval.end_time.nanos = int(
        (now - point.interval.end_time.seconds) * 10**9)
    MONITORING_CLIENT.create_time_series(project_name, [series])
コード例 #24
0
def run_quickstart(project=""):
    # [START monitoring_quickstart]
    from google.cloud import monitoring_v3

    import time

    client = monitoring_v3.MetricServiceClient()
    # project = 'my-project'  # TODO: Update to your project ID.
    project_name = f"projects/{project}"

    series = monitoring_v3.TimeSeries()
    series.metric.type = "custom.googleapis.com/my_metric"
    series.resource.type = "gce_instance"
    series.resource.labels["instance_id"] = "1234567890123456789"
    series.resource.labels["zone"] = "us-central1-f"
    now = time.time()
    seconds = int(now)
    nanos = int((now - seconds) * 10**9)
    interval = monitoring_v3.TimeInterval(
        {"end_time": {
            "seconds": seconds,
            "nanos": nanos
        }})
    point = monitoring_v3.Point({
        "interval": interval,
        "value": {
            "double_value": 3.14
        }
    })
    series.points = [point]
    client.create_time_series(request={
        "name": project_name,
        "time_series": [series]
    })
    print("Successfully wrote time series.")
コード例 #25
0
ファイル: soln5.py プロジェクト: SemilJain/gcp_ass2
def hello_pubsub(event, context):
    """Triggered from a message on a Cloud Pub/Sub topic.
    Args:
         event (dict): Event payload.
         context (google.cloud.functions.Context): Metadata for the event.
    """
    #pubsub_message = base64.b64decode(event['data']).decode('utf-8')
    #print(pubsub_message)
    client = monitoring_v3.MetricServiceClient()
    project_name = client.project_path("pe-training")
    interval = monitoring_v3.types.TimeInterval()
    now = time.time()
    interval.end_time.seconds = int(now)
    interval.end_time.nanos = int(
        (now - interval.end_time.seconds) * 10**9)
    interval.start_time.seconds = int(now - (7*24*60*60))
    interval.start_time.nanos = interval.end_time.nanos
    aggregation = monitoring_v3.types.Aggregation()
    aggregation.alignment_period.seconds = 24*60*60  # 20 minutes
    aggregation.per_series_aligner = (
        monitoring_v3.enums.Aggregation.Aligner.ALIGN_MEAN)

    results = client.list_time_series(project_name,'metric.type = "compute.googleapis.com/instance/cpu/utilization"',interval,monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL,aggregation)
    for result in results:
        print(results)
コード例 #26
0
    def test_get_monitored_resource_descriptor(self):
        # Setup Expected Response
        name_2 = "name2-1052831874"
        type_ = "type3575610"
        display_name = "displayName1615086568"
        description = "description-1724546052"
        expected_response = {
            "name": name_2,
            "type": type_,
            "display_name": display_name,
            "description": description,
        }
        expected_response = monitored_resource_pb2.MonitoredResourceDescriptor(
            **expected_response)

        # Mock the API response
        channel = ChannelStub(responses=[expected_response])
        patch = mock.patch("google.api_core.grpc_helpers.create_channel")
        with patch as create_channel:
            create_channel.return_value = channel
            client = monitoring_v3.MetricServiceClient()

        # Setup Request
        name = client.monitored_resource_descriptor_path(
            "[PROJECT]", "[MONITORED_RESOURCE_DESCRIPTOR]")

        response = client.get_monitored_resource_descriptor(name)
        assert expected_response == response

        assert len(channel.requests) == 1
        expected_request = metric_service_pb2.GetMonitoredResourceDescriptorRequest(
            name=name)
        actual_request = channel.requests[0][1]
        assert expected_request == actual_request
コード例 #27
0
ファイル: __init__.py プロジェクト: zyxue/opencensus-python
def new_stats_exporter(options=None, interval=None):
    """Get a stats exporter and running transport thread.

    Create a new `StackdriverStatsExporter` with the given options and start
    periodically exporting stats to stackdriver in the background.

    Fall back to default auth if `options` is null. This will raise
    `google.auth.exceptions.DefaultCredentialsError` if default credentials
    aren't configured.

    See `opencensus.metrics.transport.get_exporter_thread` for details on the
    transport thread.

    :type options: :class:`Options`
    :param exporter: Options to pass to the exporter

    :type interval: int or float
    :param interval: Seconds between export calls.

    :rtype: :class:`StackdriverStatsExporter`
    :return: The newly-created exporter.
    """
    if options is None:
        _, project_id = google.auth.default()
        options = Options(project_id=project_id)
    if str(options.project_id).strip() == "":
        raise ValueError(ERROR_BLANK_PROJECT_ID)

    ci = client_info.ClientInfo(client_library_version=get_user_agent_slug())
    client = monitoring_v3.MetricServiceClient(client_info=ci)
    exporter = StackdriverStatsExporter(client=client, options=options)

    transport.get_exporter_thread([stats.stats], exporter, interval=interval)
    return exporter
コード例 #28
0
def _main(monitoring_project,
          gce_project=None,
          gce_region=None,
          verbose=False,
          keywords=None):
    """Module entry point used by cli and cloud function wrappers."""
    _configure_logging(verbose=verbose)
    gce_projects = gce_project or [monitoring_project]
    gce_regions = gce_region or ['global']
    keywords = set(keywords or [])
    logging.debug('monitoring project %s', monitoring_project)
    logging.debug('projects %s regions %s', gce_projects, gce_regions)
    logging.debug('keywords %s', keywords)
    quotas = []
    compute = googleapiclient.discovery.build('compute',
                                              'v1',
                                              cache_discovery=False)
    for project in gce_projects:
        logging.debug('project %s', project)
        for region in gce_regions:
            logging.debug('region %s', region)
            for quota in _fetch_quotas(project, region, compute=compute):
                if keywords and not any(k in quota['metric']
                                        for k in keywords):
                    # logging.debug('skipping %s', quota)
                    continue
                logging.debug('quota %s', quota)
                quotas.append((project, region, quota))
    client, i = monitoring_v3.MetricServiceClient(), 0
    while i < len(quotas):
        series = [_quota_to_series(*q) for q in quotas[i:i + _BATCH_SIZE]]
        _add_series(monitoring_project, series, client)
        i += _BATCH_SIZE
コード例 #29
0
def _AddCpuUtilization(samples, instance_id):
  """Add cpu utilization to the metadata of relevant metric samples.

  Note that the utilization only covers the run stage.

  Args:
    samples: list of sample.Sample. The expected ordering is: (1) table loading
      metrics, (2) table read/write metrics.
    instance_id: the bigtable instance id.

  Returns:
    a list of updated sample.Sample.
  """
  # Check the pre-requisite
  if (len(samples) < 2 or
      samples[0].metadata.get('stage') != 'load' or
      samples[-1].metadata.get('stage') != 'run'):
    return None

  # pylint: disable=g-import-not-at-top
  from google.cloud import monitoring_v3
  from google.cloud.monitoring_v3 import query

  # Query the cpu utilization, which are gauged values at each minute in the
  # time window.
  client = monitoring_v3.MetricServiceClient()
  start_timestamp = samples[0].timestamp
  end_timestamp = samples[-1].timestamp
  cpu_query = query.Query(
      client, project=(FLAGS.project or _GetDefaultProject()),
      metric_type='bigtable.googleapis.com/cluster/cpu_load',
      end_time=datetime.datetime.utcfromtimestamp(end_timestamp),
      minutes=int((end_timestamp - start_timestamp) / 60))
  cpu_query = cpu_query.select_resources(instance=instance_id)
  time_series = list(cpu_query)
  if not time_series:
    return None

  # Build the dict to be added to samples.
  utilization_data = []
  for cluster_number, cluster_time_series in enumerate(time_series):
    utilization = numpy.array(
        [point.value.double_value for point in cluster_time_series.points])

    for percentile in CPU_UTILIZATION_PERCENTILES:
      utilization_data.append(
          {'cluster_number': cluster_number,
           'percentile': percentile,
           'utilization_percentage': (
               '%.2f' % (numpy.percentile(utilization, percentile) * 100))})

  additional_metadata = {'cpu_utilization': json.dumps(utilization_data)}

  # Update the samples.
  for sample in samples:
    if sample.metadata.get('stage') == 'run':
      sample.metadata.update(additional_metadata)

  return samples
コード例 #30
0
def list_metric_descriptors(project_id):
    # [START monitoring_list_descriptors]
    client = monitoring_v3.MetricServiceClient()
    project_name = f"projects/{project_id}"
    for descriptor in client.list_metric_descriptors(name=project_name):
        if "custom" in str(descriptor.type):
            print(descriptor.type)
            client.delete_metric_descriptor(name=descriptor.name)