コード例 #1
0
    def __init__(self, gd, scale=1.0, n=1, dtype=float, k2=0.0):
        """Helmholtz for general non orthorhombic grid.

        gd: GridDescriptor
            Descriptor for grid.
        scale: float
            Scaling factor.  Use scale=-0.5 for a kinetic energy operator.
        n: int
            Range of stencil.  Stencil has O(h^(2n)) error.
        dtype: float or complex
            Datatype to work on.
        """

        # Order the 13 neighbor grid points:
        M_ic = np.indices((3, 3, 3)).reshape((3, -3)).T[-13:] - 1
        u_cv = gd.h_cv / (gd.h_cv**2).sum(1)[:, np.newaxis]**0.5
        u2_i = (np.dot(M_ic, u_cv)**2).sum(1)
        i_d = u2_i.argsort()

        m_mv = np.array([(2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 1, 1), (1, 0, 1),
                         (1, 1, 0)])
        # Try 3, 4, 5 and 6 directions:
        for D in range(3, 7):
            h_dv = np.dot(M_ic[i_d[:D]], gd.h_cv)
            A_md = (h_dv**m_mv[:, np.newaxis, :]).prod(2)
            a_d, residual, rank, s = np.linalg.lstsq(A_md, [1, 1, 1, 0, 0, 0],
                                                     rcond=-1)
            if residual.sum() < 1e-14:
                assert rank == D, 'You have a weird unit cell!'
                # D directions was OK
                break

        a_d *= scale
        offsets = [(0, 0, 0)]
        coefs = [laplace[n][0] * a_d.sum()]
        coefs[0] += k2 * scale
        for d in range(D):
            M_c = M_ic[i_d[d]]
            offsets.extend(np.arange(1, n + 1)[:, np.newaxis] * M_c)
            coefs.extend(a_d[d] * np.array(laplace[n][1:]))
            offsets.extend(np.arange(-1, -n - 1, -1)[:, np.newaxis] * M_c)
            coefs.extend(a_d[d] * np.array(laplace[n][1:]))

        FDOperator.__init__(self, coefs, offsets, gd, dtype)

        self.description = (
            '%d*%d+1=%d point O(h^%d) finite-difference Helmholtz' %
            ((self.npoints - 1) // n, n, self.npoints, 2 * n))
コード例 #2
0
ファイル: mixer.py プロジェクト: Xu-Kai/lotsofcoresbook2code
    def initialize_metric(self, gd):
        self.gd = gd

        if self.weight == 1:
            self.metric = None

        else:
            a = 0.125 * (self.weight + 7)
            b = 0.0625 * (self.weight - 1)
            c = 0.03125 * (self.weight - 1)
            d = 0.015625 * (self.weight - 1)
            self.metric = FDOperator([a,
                                      b, b, b, b, b, b,
                                      c, c, c, c, c, c, c, c, c, c, c, c,
                                      d, d, d, d, d, d, d, d],
                                     [(0, 0, 0),  # a
                                      (-1, 0, 0), (1, 0, 0),  # b
                                      (0, -1, 0), (0, 1, 0),
                                      (0, 0, -1), (0, 0, 1),
                                      (1, 1, 0), (1, 0, 1), (0, 1, 1),  # c
                                      (1, -1, 0), (1, 0, -1), (0, 1, -1),
                                      (-1, 1, 0), (-1, 0, 1), (0, -1, 1),
                                      (-1, -1, 0), (-1, 0, -1), (0, -1, -1),
                                      (1, 1, 1), (1, 1, -1), (1, -1, 1),  # d
                                      (-1, 1, 1), (1, -1, -1), (-1, -1, 1),
                                      (-1, 1, -1), (-1, -1, -1)],
                                     gd, float).apply
            self.mR_G = gd.empty()
コード例 #3
0
ファイル: helmholtz.py プロジェクト: robwarm/gpaw-symm
    def __init__(self, gd, scale=1.0, n=1, dtype=float, k2=0.0):
        """Helmholtz for general non orthorhombic grid.

        gd: GridDescriptor
            Descriptor for grid.
        scale: float
            Scaling factor.  Use scale=-0.5 for a kinetic energy operator.
        n: int
            Range of stencil.  Stencil has O(h^(2n)) error.
        dtype: float or complex
            Datatype to work on.
        """

        # Order the 13 neighbor grid points:
        M_ic = np.indices((3, 3, 3)).reshape((3, -3)).T[-13:] - 1
        u_cv = gd.h_cv / (gd.h_cv**2).sum(1)[:, np.newaxis]**0.5
        u2_i = (np.dot(M_ic, u_cv)**2).sum(1)
        i_d = u2_i.argsort()

        m_mv = np.array([(2, 0, 0), (0, 2, 0), (0, 0, 2),
                         (0, 1, 1), (1, 0, 1), (1, 1, 0)])
        # Try 3, 4, 5 and 6 directions:
        for D in range(3, 7):
            h_dv = np.dot(M_ic[i_d[:D]], gd.h_cv)
            A_md = (h_dv**m_mv[:, np.newaxis, :]).prod(2)
            a_d, residual, rank, s = np.linalg.lstsq(A_md, [1, 1, 1, 0, 0, 0])
            if residual.sum() < 1e-14:
                assert rank == D, 'You have a weird unit cell!'
                # D directions was OK
                break

        a_d *= scale
        offsets = [(0, 0, 0)]
        coefs = [laplace[n][0] * a_d.sum()]
        coefs[0] += k2 * scale
        for d in range(D):
            M_c = M_ic[i_d[d]]
            offsets.extend(np.arange(1, n + 1)[:, np.newaxis] * M_c)
            coefs.extend(a_d[d] * np.array(laplace[n][1:]))
            offsets.extend(np.arange(-1, -n - 1, -1)[:, np.newaxis] * M_c)
            coefs.extend(a_d[d] * np.array(laplace[n][1:]))

        FDOperator.__init__(self, coefs, offsets, gd, dtype)
        
        self.description = (
            '%d*%d+1=%d point O(h^%d) finite-difference Helmholtz' %
            ((self.npoints - 1) // n, n, self.npoints, 2 * n))