コード例 #1
0
ファイル: df.py プロジェクト: Xu-Kai/lotsofcoresbook2code
    def get_chi(self, xc='RPA', q_c=[0, 0, 0], direction='x'):
        """ Returns v^1/2 chi V^1/2"""
        pd, chi0_wGG, chi0_wxvG, chi0_wvv = self.calculate_chi0(q_c)
        G_G = pd.G2_qG[0]**0.5
        nG = len(G_G)

        if pd.kd.gamma:
            G_G[0] = 1.0
            if isinstance(direction, str):
                d_v = {
                    'x': [1, 0, 0],
                    'y': [0, 1, 0],
                    'z': [0, 0, 1]
                }[direction]
            else:
                d_v = direction
            d_v = np.asarray(d_v) / np.linalg.norm(d_v)
            W = slice(self.w1, self.w2)
            chi0_wGG[:, 0] = np.dot(d_v, chi0_wxvG[W, 0])
            chi0_wGG[:, :, 0] = np.dot(d_v, chi0_wxvG[W, 1])
            chi0_wGG[:, 0, 0] = np.dot(d_v, np.dot(chi0_wvv[W], d_v).T)

        G_G /= (4 * pi)**0.5

        if self.truncation == 'wigner-seitz':
            kernel = WignerSeitzTruncatedCoulomb(pd.gd.cell_cv,
                                                 self.chi0.calc.wfs.kd.N_c)
            K_G = kernel.get_potential(pd)
            K_G *= G_G**2
            if pd.kd.gamma:
                K_G[0] = 0.0
        elif self.truncation == '2D':
            K_G = truncated_coulomb(pd)
            K_G *= G_G**2
        else:
            K_G = np.ones(nG)

        K_GG = np.zeros((nG, nG), dtype=complex)
        for i in range(nG):
            K_GG[i, i] = K_G[i]

        if xc != 'RPA':
            R_av = self.chi0.calc.atoms.positions / Bohr
            nt_sG = self.chi0.calc.density.nt_sG
            K_GG += calculate_Kxc(pd,
                                  nt_sG,
                                  R_av,
                                  self.chi0.calc.wfs.setups,
                                  self.chi0.calc.density.D_asp,
                                  functional=xc) * G_G * G_G[:, np.newaxis]

        chi_wGG = []
        for chi0_GG in chi0_wGG:
            chi0_GG[:] = chi0_GG / G_G / G_G[:, np.newaxis]
            chi_wGG.append(
                np.dot(np.linalg.inv(np.eye(nG) - np.dot(chi0_GG, K_GG)),
                       chi0_GG))
        return chi0_wGG, np.array(chi_wGG)
コード例 #2
0
    def get_chi(self, xc='RPA', q_c=[0, 0, 0], direction='x'):
        """ Returns v^1/2 chi V^1/2"""
        pd, chi0_wGG, chi0_wxvG, chi0_wvv = self.calculate_chi0(q_c)
        G_G = pd.G2_qG[0]**0.5
        nG = len(G_G)
        
        if pd.kd.gamma:
            G_G[0] = 1.0
            if isinstance(direction, str):
                d_v = {'x': [1, 0, 0],
                       'y': [0, 1, 0],
                       'z': [0, 0, 1]}[direction]
            else:
                d_v = direction
            d_v = np.asarray(d_v) / np.linalg.norm(d_v)
            W = slice(self.w1, self.w2)
            chi0_wGG[:, 0] = np.dot(d_v, chi0_wxvG[W, 0])
            chi0_wGG[:, :, 0] = np.dot(d_v, chi0_wxvG[W, 1])
            chi0_wGG[:, 0, 0] = np.dot(d_v, np.dot(chi0_wvv[W], d_v).T)
        
        G_G /= (4 * pi)**0.5

        if self.truncation == 'wigner-seitz':
            kernel = WignerSeitzTruncatedCoulomb(pd.gd.cell_cv,
                                                 self.chi0.calc.wfs.kd.N_c)
            K_G = kernel.get_potential(pd)
            K_G *= G_G**2
            if pd.kd.gamma:
                K_G[0] = 0.0
        elif self.truncation == '2D':
            K_G = truncated_coulomb(pd)
            K_G *= G_G**2
        else:
            K_G = np.ones(nG)

        K_GG = np.zeros((nG, nG), dtype=complex)
        for i in range(nG):
            K_GG[i, i] = K_G[i]

        if xc != 'RPA':
            R_av = self.chi0.calc.atoms.positions / Bohr
            nt_sG = self.chi0.calc.density.nt_sG
            K_GG += calculate_Kxc(pd, nt_sG, R_av, self.chi0.calc.wfs.setups,
                                  self.chi0.calc.density.D_asp,
                                  functional=xc) * G_G * G_G[:, np.newaxis]
            
        chi_wGG = []
        for chi0_GG in chi0_wGG:
            chi0_GG[:] = chi0_GG / G_G / G_G[:, np.newaxis]
            chi_wGG.append(np.dot(np.linalg.inv(np.eye(nG) -
                                                np.dot(chi0_GG, K_GG)),
                                  chi0_GG))
        return chi0_wGG, np.array(chi_wGG)
コード例 #3
0
    def get_dielectric_matrix(self, xc='RPA', q_c=[0, 0, 0],
                              direction='x', symmetric=True,
                              calculate_chi=False):
        """Returns the symmetrized dielectric matrix.
        
        ::
        
            \tilde\epsilon_GG' = v^{-1/2}_G \epsilon_GG' v^{1/2}_G',
            
        where::
            
            epsilon_GG' = 1 - v_G * P_GG' and P_GG'
            
        is the polarization.
        
        ::
            
            In RPA:   P = chi^0
            In TDDFT: P = (1 - chi^0 * f_xc)^{-1} chi^0
        
        The head of the inverse symmetrized dielectric matrix is equal
        to the head of the inverse dielectric matrix (inverse dielectric
        function)
        """
        pd, chi0_wGG, chi0_wxvG, chi0_wvv = self.calculate_chi0(q_c)
        G_G = pd.G2_qG[0]**0.5
        nG = len(G_G)

        if pd.kd.gamma:
            G_G[0] = 1.0
            if isinstance(direction, str):
                d_v = {'x': [1, 0, 0],
                       'y': [0, 1, 0],
                       'z': [0, 0, 1]}[direction]
            else:
                d_v = direction

            d_v = np.asarray(d_v) / np.linalg.norm(d_v)
            W = slice(self.w1, self.w2)
            chi0_wGG[:, 0] = np.dot(d_v, chi0_wxvG[W, 0])
            chi0_wGG[:, :, 0] = np.dot(d_v, chi0_wxvG[W, 1])
            chi0_wGG[:, 0, 0] = np.dot(d_v, np.dot(chi0_wvv[W], d_v).T)
                    
        if self.truncation == 'wigner-seitz':
            kernel = WignerSeitzTruncatedCoulomb(pd.gd.cell_cv,
                                                 self.chi0.calc.wfs.kd.N_c)
            K_G = kernel.get_potential(pd)**0.5
            if pd.kd.gamma:
                K_G[0] = 0.0
        elif self.truncation == '2D':
            K_G = truncated_coulomb(pd)
            if pd.kd.gamma:
                K_G[0] = 0.0
        else:
            K_G = (4 * pi)**0.5 / G_G

        if xc != 'RPA':
            R_av = self.chi0.calc.atoms.positions / Bohr
            nt_sG = self.chi0.calc.density.nt_sG
            Kxc_sGG = calculate_Kxc(pd, nt_sG, R_av,
                                    self.chi0.calc.wfs.setups,
                                    self.chi0.calc.density.D_asp,
                                    functional=xc)

        if calculate_chi:
            chi_wGG = []

        for chi0_GG in chi0_wGG:
            if xc == 'RPA':
                P_GG = chi0_GG
            else:
                P_GG = np.dot(np.linalg.inv(np.eye(nG) -
                                            np.dot(chi0_GG, Kxc_sGG[0])),
                              chi0_GG)
            if symmetric:
                e_GG = np.eye(nG) - P_GG * K_G * K_G[:, np.newaxis]
            else:
                K_GG = (K_G**2 * np.ones([nG, nG])).T
                e_GG = np.eye(nG) - P_GG * K_GG
            if calculate_chi:
                K_GG = np.diag(K_G**2)
                if xc != 'RPA':
                    K_GG += Kxc_sGG[0]
                chi_wGG.append(np.dot(np.linalg.inv(np.eye(nG) -
                                                    np.dot(chi0_GG, K_GG)),
                                      chi0_GG))
            chi0_GG[:] = e_GG

        # chi0_wGG is now the dielectric matrix
        if not calculate_chi:
            return chi0_wGG
        else:
            return pd, chi0_wGG, chi_wGG
コード例 #4
0
ファイル: df.py プロジェクト: Xu-Kai/lotsofcoresbook2code
    def get_dielectric_matrix(self,
                              xc='RPA',
                              q_c=[0, 0, 0],
                              direction='x',
                              symmetric=True,
                              calculate_chi=False):
        """Returns the symmetrized dielectric matrix.
        
        ::
        
            \tilde\epsilon_GG' = v^{-1/2}_G \epsilon_GG' v^{1/2}_G',
            
        where::
            
            epsilon_GG' = 1 - v_G * P_GG' and P_GG'
            
        is the polarization.
        
        ::
            
            In RPA:   P = chi^0
            In TDDFT: P = (1 - chi^0 * f_xc)^{-1} chi^0
        
        The head of the inverse symmetrized dielectric matrix is equal
        to the head of the inverse dielectric matrix (inverse dielectric
        function)
        """
        pd, chi0_wGG, chi0_wxvG, chi0_wvv = self.calculate_chi0(q_c)
        G_G = pd.G2_qG[0]**0.5
        nG = len(G_G)

        if pd.kd.gamma:
            G_G[0] = 1.0
            if isinstance(direction, str):
                d_v = {
                    'x': [1, 0, 0],
                    'y': [0, 1, 0],
                    'z': [0, 0, 1]
                }[direction]
            else:
                d_v = direction

            d_v = np.asarray(d_v) / np.linalg.norm(d_v)
            W = slice(self.w1, self.w2)
            chi0_wGG[:, 0] = np.dot(d_v, chi0_wxvG[W, 0])
            chi0_wGG[:, :, 0] = np.dot(d_v, chi0_wxvG[W, 1])
            chi0_wGG[:, 0, 0] = np.dot(d_v, np.dot(chi0_wvv[W], d_v).T)

        if self.truncation == 'wigner-seitz':
            kernel = WignerSeitzTruncatedCoulomb(pd.gd.cell_cv,
                                                 self.chi0.calc.wfs.kd.N_c)
            K_G = kernel.get_potential(pd)**0.5
            if pd.kd.gamma:
                K_G[0] = 0.0
        elif self.truncation == '2D':
            K_G = truncated_coulomb(pd)
            if pd.kd.gamma:
                K_G[0] = 0.0
        else:
            K_G = (4 * pi)**0.5 / G_G

        if xc != 'RPA':
            R_av = self.chi0.calc.atoms.positions / Bohr
            nt_sG = self.chi0.calc.density.nt_sG
            Kxc_sGG = calculate_Kxc(pd,
                                    nt_sG,
                                    R_av,
                                    self.chi0.calc.wfs.setups,
                                    self.chi0.calc.density.D_asp,
                                    functional=xc)

        if calculate_chi:
            chi_wGG = []

        for chi0_GG in chi0_wGG:
            if xc == 'RPA':
                P_GG = chi0_GG
            else:
                P_GG = np.dot(
                    np.linalg.inv(np.eye(nG) - np.dot(chi0_GG, Kxc_sGG[0])),
                    chi0_GG)
            if symmetric:
                e_GG = np.eye(nG) - P_GG * K_G * K_G[:, np.newaxis]
            else:
                K_GG = (K_G**2 * np.ones([nG, nG])).T
                e_GG = np.eye(nG) - P_GG * K_GG
            if calculate_chi:
                K_GG = np.diag(K_G**2)
                if xc != 'RPA':
                    K_GG += Kxc_sGG[0]
                chi_wGG.append(
                    np.dot(np.linalg.inv(np.eye(nG) - np.dot(chi0_GG, K_GG)),
                           chi0_GG))
            chi0_GG[:] = e_GG

        # chi0_wGG is now the dielectric matrix
        if not calculate_chi:
            return chi0_wGG
        else:
            return pd, chi0_wGG, chi_wGG