def dYdphi(l,m,theta,phi): if m == 0: return np.zeros_like(theta) elif m > 0: return -m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 else: return -m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5
def Y(l,m,theta,phi): if m == 0: return C(l,m)*legendre(l,abs(m),np.cos(theta)) elif m > 0: return C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 else: return C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(abs(m)*phi)*2**0.5
def dYdphi(l, m, theta, phi): if m == 0: return np.zeros_like(theta) elif m > 0: return -m * C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.sin( m * phi) * 2**0.5 else: return -m * C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5
def Y(l, m, theta, phi): if m == 0: return C(l, m) * legendre(l, abs(m), np.cos(theta)) elif m > 0: return C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5 else: return C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.sin( abs(m) * phi) * 2**0.5
def dYdphi(l,m,theta,phi): if m == 0: #return _dYdphi(l,m,theta,phi) return np.zeros_like(theta) elif m > 0: #return (-1)**m*np.real(_dYdphi(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_dYdphi(l,m,theta,phi)+_dYdphi(l,m,theta,phi).conj())/2**0.5 #return (-1)**m*(_dYdphi(l,m,theta,phi)+(-1)**m*_dYdphi(l,-m,theta,phi))/2**0.5 #return -(-1)**m*m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 return -m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 else: #return (-1)**m*np.imag(_dYdphi(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_dYdphi(l,abs(m),theta,phi)-_dYdphi(l,abs(m),theta,phi).conj())/(2**0.5*1j) #return (-1)**m*(_dYdphi(l,abs(m),theta,phi)-(-1)**abs(m)*_dYdphi(l,-abs(m),theta,phi))/(2**0.5*1j) #return (-1)**m*m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(abs(m)*phi)*2**0.5 return -m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5
def Y(l,m,theta,phi): if m == 0: #return _Y(l,m,theta,phi) return C(l,m)*legendre(l,abs(m),np.cos(theta)) elif m > 0: #return (-1)**m*np.real(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+_Y(l,m,theta,phi).conj())/2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+(-1)**m*_Y(l,-m,theta,phi))/2**0.5 #return (-1)**m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 return C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 else: #return (-1)**m*np.imag(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,abs(m),theta,phi)-_Y(l,abs(m),theta,phi).conj())/(2**0.5*1j) #return (-1)**m*(_Y(l,abs(m),theta,phi)-(-1)**abs(m)*_Y(l,-abs(m),theta,phi))/(2**0.5*1j) #return -_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 return -C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5
def dYdphi(l, m, theta, phi): if m == 0: #return _dYdphi(l,m,theta,phi) return np.zeros_like(theta) elif m > 0: #return (-1)**m*np.real(_dYdphi(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_dYdphi(l,m,theta,phi)+_dYdphi(l,m,theta,phi).conj())/2**0.5 #return (-1)**m*(_dYdphi(l,m,theta,phi)+(-1)**m*_dYdphi(l,-m,theta,phi))/2**0.5 #return -(-1)**m*m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 return -m * C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.sin( m * phi) * 2**0.5 else: #return (-1)**m*np.imag(_dYdphi(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_dYdphi(l,abs(m),theta,phi)-_dYdphi(l,abs(m),theta,phi).conj())/(2**0.5*1j) #return (-1)**m*(_dYdphi(l,abs(m),theta,phi)-(-1)**abs(m)*_dYdphi(l,-abs(m),theta,phi))/(2**0.5*1j) #return (-1)**m*m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(abs(m)*phi)*2**0.5 return -m * C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5
def Y(l, m, theta, phi): if m == 0: #return _Y(l,m,theta,phi) return C(l, m) * legendre(l, abs(m), np.cos(theta)) elif m > 0: #return (-1)**m*np.real(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+_Y(l,m,theta,phi).conj())/2**0.5 #return (-1)**m*(_Y(l,m,theta,phi)+(-1)**m*_Y(l,-m,theta,phi))/2**0.5 #return (-1)**m*_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.cos(m*phi)*2**0.5 return C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.cos( m * phi) * 2**0.5 else: #return (-1)**m*np.imag(_Y(l,abs(m),theta,phi))*2**0.5 #return (-1)**m*(_Y(l,abs(m),theta,phi)-_Y(l,abs(m),theta,phi).conj())/(2**0.5*1j) #return (-1)**m*(_Y(l,abs(m),theta,phi)-(-1)**abs(m)*_Y(l,-abs(m),theta,phi))/(2**0.5*1j) #return -_C(l,m)*legendre(l,abs(m),np.cos(theta))*np.sin(m*phi)*2**0.5 return -C(l, m) * legendre(l, abs(m), np.cos(theta)) * np.sin( m * phi) * 2**0.5
def test_addition_theorem(self): lmax = 9 # Test that the complex spherical harmonic addition theorem holds thetam_L = np.random.uniform(0, np.pi, size=theta_L.shape) world.broadcast(thetam_L, 0) phim_L = np.random.uniform(0, 2*np.pi, size=phi_L.shape) world.broadcast(phim_L, 0) cosv_L = np.cos(theta_L)*np.cos(thetam_L) \ + np.sin(theta_L)*np.sin(thetam_L)*np.cos(phi_L-phim_L) P0_lL = np.array([legendre(l, 0, cosv_L) for l in range(lmax+1)]) P_lL = np.zeros_like(P0_lL) for l,m in lmiter(lmax, comm=world): P_lL[l] += 4 * np.pi / (2*l + 1.) * Y(l, m, theta_L, phi_L) \ * Y(l, m, thetam_L, phim_L).conj() world.sum(P_lL) self.assertAlmostEqual(np.abs(P_lL-P0_lL).max(), 0, 6)
def test_addition_theorem(self): lmax = 9 # Test that the complex spherical harmonic addition theorem holds thetam_L = np.random.uniform(0, np.pi, size=theta_L.shape) world.broadcast(thetam_L, 0) phim_L = np.random.uniform(0, 2 * np.pi, size=phi_L.shape) world.broadcast(phim_L, 0) cosv_L = np.cos(theta_L)*np.cos(thetam_L) \ + np.sin(theta_L)*np.sin(thetam_L)*np.cos(phi_L-phim_L) P0_lL = np.array([legendre(l, 0, cosv_L) for l in range(lmax + 1)]) P_lL = np.zeros_like(P0_lL) for l, m in lmiter(lmax, comm=world): P_lL[l] += 4 * np.pi / (2*l + 1.) * Y(l, m, theta_L, phi_L) \ * Y(l, m, thetam_L, phim_L).conj() world.sum(P_lL) self.assertAlmostEqual(np.abs(P_lL - P0_lL).max(), 0, 6)
import numpy as np from gpaw.utilities import fact from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0+np.sign(x))/2.0 # Define spherical harmoncics and normalization coefficient C = lambda l,m: (-1)**((m+abs(m))//2)*((2.*l+1.)/(4*np.pi*lmfact(l,m)))**0.5 Y = lambda l,m,theta,phi: C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define theta-derivative of spherical harmoncics dYdtheta = lambda l,m,theta,phi: C(l,m)*dlegendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define phi-derivative of spherical harmoncics dYdphi = lambda l,m,theta,phi: 1j*m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # ------------------------------------------------------------------- def intYY(l1, m1, l2, m2): """Calculates:: pi 2pi / / * A = | | Y (u,v) Y (u,v) sin(u) dv du LL' / / lm l'm' 0 0
from math import factorial as fact import numpy as np from gpaw.sphere import lmfact from gpaw.sphere.legendre import ilegendre, legendre, dlegendre # Define the Heaviside function heaviside = lambda x: (1.0+np.sign(x))/2.0 # Define spherical harmoncics and normalization coefficient C = lambda l,m: (-1)**((m+abs(m))//2)*((2.*l+1.)/(4*np.pi*lmfact(l,m)))**0.5 Y = lambda l,m,theta,phi: C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define theta-derivative of spherical harmoncics dYdtheta = lambda l,m,theta,phi: C(l,m)*dlegendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # Define phi-derivative of spherical harmoncics dYdphi = lambda l,m,theta,phi: 1j*m*C(l,m)*legendre(l,abs(m),np.cos(theta))*np.exp(1j*m*phi) # ------------------------------------------------------------------- def intYY(l1, m1, l2, m2): """Calculates:: pi 2pi / / * A = | | Y (u,v) Y (u,v) sin(u) dv du LL' / / lm l'm' 0 0 where u = theta and v = phi in the usual notation. Note that the result