コード例 #1
0
def test_check_array_min_samples_and_features_messages():
    # empty list is considered 2D by default:
    msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [])

    # If considered a 1D collection when ensure_2d=False, then the minimum
    # number of samples will break:
    msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False)

    # Invalid edge case when checking the default minimum sample of a scalar
    msg = "Singleton array array(42) cannot be considered a valid collection."
    assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False)

    # But this works if the input data is forced to look like a 2 array with
    # one sample and one feature:
    X_checked = check_array(42, ensure_2d=True)
    assert_array_equal(np.array([[42]]), X_checked)

    # Simulate a model that would need at least 2 samples to be well defined
    X = np.ones((1, 10))
    y = np.ones(1)
    msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_samples=2)

    # The same message is raised if the data has 2 dimensions even if this is
    # not mandatory
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_samples=2, ensure_2d=False)

    # Simulate a model that would require at least 3 features (e.g. SelectKBest
    # with k=3)
    X = np.ones((10, 2))
    y = np.ones(2)
    msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_features=3)

    # Only the feature check is enabled whenever the number of dimensions is 2
    # even if allow_nd is enabled:
    assert_raise_message(ValueError, msg, check_X_y, X, y,
                         ensure_min_features=3, allow_nd=True)

    # Simulate a case where a pipeline stage as trimmed all the features of a
    # 2D dataset.
    X = np.empty(0).reshape(10, 0)
    y = np.ones(10)
    msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y)

    # nd-data is not checked for any minimum number of features by default:
    X = np.ones((10, 0, 28, 28))
    y = np.ones(10)
    X_checked, y_checked = check_X_y(X, y, allow_nd=True)
    assert_array_equal(X, X_checked)
    assert_array_equal(y, y_checked)
コード例 #2
0
ファイル: test_validation.py プロジェクト: strongwolf/gplearn
def test_ordering():
    # Check that ordering is enforced correctly by validation utilities.
    # We need to check each validation utility, because a 'copy' without
    # 'order=K' will kill the ordering.
    X = np.ones((10, 5))
    for A in X, X.T:
        for copy in (True, False):
            B = check_array(A, order="C", copy=copy)
            assert_true(B.flags["C_CONTIGUOUS"])
            B = check_array(A, order="F", copy=copy)
            assert_true(B.flags["F_CONTIGUOUS"])
            if copy:
                assert_false(A is B)

    X = sp.csr_matrix(X)
    X.data = X.data[::-1]
    assert_false(X.data.flags["C_CONTIGUOUS"])

    for copy in (True, False):
        Y = check_array(X, accept_sparse="csr", copy=copy, order="C")
        assert_true(Y.data.flags["C_CONTIGUOUS"])
コード例 #3
0
ファイル: test_validation.py プロジェクト: strongwolf/gplearn
def test_check_array_min_samples_and_features_messages():
    # empty list is considered 2D by default:
    msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [])

    # If considered a 1D collection when ensure_2d=False, then the minimum
    # number of samples will break:
    msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False)

    # Invalid edge case when checking the default minimum sample of a scalar
    msg = "Singleton array array(42) cannot be considered a valid collection."
    assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False)

    # But this works if the input data is forced to look like a 2 array with
    # one sample and one feature:
    X_checked = check_array(42, ensure_2d=True)
    assert_array_equal(np.array([[42]]), X_checked)

    # Simulate a model that would need at least 2 samples to be well defined
    X = np.ones((1, 10))
    y = np.ones(1)
    msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2)

    # The same message is raised if the data has 2 dimensions even if this is
    # not mandatory
    assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False)

    # Simulate a model that would require at least 3 features (e.g. SelectKBest
    # with k=3)
    X = np.ones((10, 2))
    y = np.ones(2)
    msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3)

    # Only the feature check is enabled whenever the number of dimensions is 2
    # even if allow_nd is enabled:
    assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True)

    # Simulate a case where a pipeline stage as trimmed all the features of a
    # 2D dataset.
    X = np.empty(0).reshape(10, 0)
    y = np.ones(10)
    msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required."
    assert_raise_message(ValueError, msg, check_X_y, X, y)

    # nd-data is not checked for any minimum number of features by default:
    X = np.ones((10, 0, 28, 28))
    y = np.ones(10)
    X_checked, y_checked = check_X_y(X, y, allow_nd=True)
    assert_array_equal(X, X_checked)
    assert_array_equal(y, y_checked)
コード例 #4
0
def test_ordering():
    # Check that ordering is enforced correctly by validation utilities.
    # We need to check each validation utility, because a 'copy' without
    # 'order=K' will kill the ordering.
    X = np.ones((10, 5))
    for A in X, X.T:
        for copy in (True, False):
            B = check_array(A, order='C', copy=copy)
            assert_true(B.flags['C_CONTIGUOUS'])
            B = check_array(A, order='F', copy=copy)
            assert_true(B.flags['F_CONTIGUOUS'])
            if copy:
                assert_false(A is B)

    X = sp.csr_matrix(X)
    X.data = X.data[::-1]
    assert_false(X.data.flags['C_CONTIGUOUS'])

    for copy in (True, False):
        Y = check_array(X, accept_sparse='csr', copy=copy, order='C')
        assert_true(Y.data.flags['C_CONTIGUOUS'])
コード例 #5
0
ファイル: test_validation.py プロジェクト: strongwolf/gplearn
def test_check_array():
    # accept_sparse == None
    # raise error on sparse inputs
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    assert_raises(TypeError, check_array, X_csr)
    # ensure_2d
    X_array = check_array([0, 1, 2])
    assert_equal(X_array.ndim, 2)
    X_array = check_array([0, 1, 2], ensure_2d=False)
    assert_equal(X_array.ndim, 1)
    # don't allow ndim > 3
    X_ndim = np.arange(8).reshape(2, 2, 2)
    assert_raises(ValueError, check_array, X_ndim)
    check_array(X_ndim, allow_nd=True)  # doesn't raise
    # force_all_finite
    X_inf = np.arange(4).reshape(2, 2).astype(np.float)
    X_inf[0, 0] = np.inf
    assert_raises(ValueError, check_array, X_inf)
    check_array(X_inf, force_all_finite=False)  # no raise
    # nan check
    X_nan = np.arange(4).reshape(2, 2).astype(np.float)
    X_nan[0, 0] = np.nan
    assert_raises(ValueError, check_array, X_nan)
    check_array(X_inf, force_all_finite=False)  # no raise

    # dtype and order enforcement.
    X_C = np.arange(4).reshape(2, 2).copy("C")
    X_F = X_C.copy("F")
    X_int = X_C.astype(np.int)
    X_float = X_C.astype(np.float)
    Xs = [X_C, X_F, X_int, X_float]
    dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object]
    orders = ["C", "F", None]
    copys = [True, False]

    for X, dtype, order, copy in product(Xs, dtypes, orders, copys):
        X_checked = check_array(X, dtype=dtype, order=order, copy=copy)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if order == "C":
            assert_true(X_checked.flags["C_CONTIGUOUS"])
            assert_false(X_checked.flags["F_CONTIGUOUS"])
        elif order == "F":
            assert_true(X_checked.flags["F_CONTIGUOUS"])
            assert_false(X_checked.flags["C_CONTIGUOUS"])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if (
                X.dtype == X_checked.dtype
                and X_checked.flags["C_CONTIGUOUS"] == X.flags["C_CONTIGUOUS"]
                and X_checked.flags["F_CONTIGUOUS"] == X.flags["F_CONTIGUOUS"]
            ):
                assert_true(X is X_checked)

    # allowed sparse != None
    X_csc = sp.csc_matrix(X_C)
    X_coo = X_csc.tocoo()
    X_dok = X_csc.todok()
    X_int = X_csc.astype(np.int)
    X_float = X_csc.astype(np.float)

    Xs = [X_csc, X_coo, X_dok, X_int, X_float]
    accept_sparses = [["csr", "coo"], ["coo", "dok"]]
    for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys):
        with warnings.catch_warnings(record=True) as w:
            X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy)
        if (dtype is object or sp.isspmatrix_dok(X)) and len(w):
            message = str(w[0].message)
            messages = [
                "object dtype is not supported by sparse matrices",
                "Can't check dok sparse matrix for nan or inf.",
            ]
            assert_true(message in messages)
        else:
            assert_equal(len(w), 0)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if X.format in accept_sparse:
            # no change if allowed
            assert_equal(X.format, X_checked.format)
        else:
            # got converted
            assert_equal(X_checked.format, accept_sparse[0])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if X.dtype == X_checked.dtype and X.format == X_checked.format:
                assert_true(X is X_checked)

    # other input formats
    # convert lists to arrays
    X_dense = check_array([[1, 2], [3, 4]])
    assert_true(isinstance(X_dense, np.ndarray))
    # raise on too deep lists
    assert_raises(ValueError, check_array, X_ndim.tolist())
    check_array(X_ndim.tolist(), allow_nd=True)  # doesn't raise
    # convert weird stuff to arrays
    X_no_array = NotAnArray(X_dense)
    result = check_array(X_no_array)
    assert_true(isinstance(result, np.ndarray))
コード例 #6
0
def test_check_array():
    # accept_sparse == None
    # raise error on sparse inputs
    X = [[1, 2], [3, 4]]
    X_csr = sp.csr_matrix(X)
    assert_raises(TypeError, check_array, X_csr)
    # ensure_2d
    X_array = check_array([0, 1, 2])
    assert_equal(X_array.ndim, 2)
    X_array = check_array([0, 1, 2], ensure_2d=False)
    assert_equal(X_array.ndim, 1)
    # don't allow ndim > 3
    X_ndim = np.arange(8).reshape(2, 2, 2)
    assert_raises(ValueError, check_array, X_ndim)
    check_array(X_ndim, allow_nd=True)  # doesn't raise
    # force_all_finite
    X_inf = np.arange(4).reshape(2, 2).astype(np.float)
    X_inf[0, 0] = np.inf
    assert_raises(ValueError, check_array, X_inf)
    check_array(X_inf, force_all_finite=False)  # no raise
    # nan check
    X_nan = np.arange(4).reshape(2, 2).astype(np.float)
    X_nan[0, 0] = np.nan
    assert_raises(ValueError, check_array, X_nan)
    check_array(X_inf, force_all_finite=False)  # no raise

    # dtype and order enforcement.
    X_C = np.arange(4).reshape(2, 2).copy("C")
    X_F = X_C.copy("F")
    X_int = X_C.astype(np.int)
    X_float = X_C.astype(np.float)
    Xs = [X_C, X_F, X_int, X_float]
    dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object]
    orders = ['C', 'F', None]
    copys = [True, False]

    for X, dtype, order, copy in product(Xs, dtypes, orders, copys):
        X_checked = check_array(X, dtype=dtype, order=order, copy=copy)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if order == 'C':
            assert_true(X_checked.flags['C_CONTIGUOUS'])
            assert_false(X_checked.flags['F_CONTIGUOUS'])
        elif order == 'F':
            assert_true(X_checked.flags['F_CONTIGUOUS'])
            assert_false(X_checked.flags['C_CONTIGUOUS'])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if (X.dtype == X_checked.dtype and
                    X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS']
                    and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']):
                assert_true(X is X_checked)

    # allowed sparse != None
    X_csc = sp.csc_matrix(X_C)
    X_coo = X_csc.tocoo()
    X_dok = X_csc.todok()
    X_int = X_csc.astype(np.int)
    X_float = X_csc.astype(np.float)

    Xs = [X_csc, X_coo, X_dok, X_int, X_float]
    accept_sparses = [['csr', 'coo'], ['coo', 'dok']]
    for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses,
                                                 copys):
        with warnings.catch_warnings(record=True) as w:
            X_checked = check_array(X, dtype=dtype,
                                    accept_sparse=accept_sparse, copy=copy)
        if (dtype is object or sp.isspmatrix_dok(X)) and len(w):
            message = str(w[0].message)
            messages = ["object dtype is not supported by sparse matrices",
                        "Can't check dok sparse matrix for nan or inf."]
            assert_true(message in messages)
        else:
            assert_equal(len(w), 0)
        if dtype is not None:
            assert_equal(X_checked.dtype, dtype)
        else:
            assert_equal(X_checked.dtype, X.dtype)
        if X.format in accept_sparse:
            # no change if allowed
            assert_equal(X.format, X_checked.format)
        else:
            # got converted
            assert_equal(X_checked.format, accept_sparse[0])
        if copy:
            assert_false(X is X_checked)
        else:
            # doesn't copy if it was already good
            if (X.dtype == X_checked.dtype and X.format == X_checked.format):
                assert_true(X is X_checked)

    # other input formats
    # convert lists to arrays
    X_dense = check_array([[1, 2], [3, 4]])
    assert_true(isinstance(X_dense, np.ndarray))
    # raise on too deep lists
    assert_raises(ValueError, check_array, X_ndim.tolist())
    check_array(X_ndim.tolist(), allow_nd=True)  # doesn't raise
    # convert weird stuff to arrays
    X_no_array = NotAnArray(X_dense)
    result = check_array(X_no_array)
    assert_true(isinstance(result, np.ndarray))