コード例 #1
0
def test_init():
    model = gpmodel.GPRegressor(kernel)
    assert np.allclose(model.mean_func.mean(X), np.zeros((len(X), )))
    assert model.objective == model._log_ML
    assert model.kernel == kernel
    assert model.guesses is None
    model = gpmodel.GPRegressor(kernel, guesses=(0.1, 0.1, 0.1))
    assert model.guesses == (0.1, 0.1, 0.1)
コード例 #2
0
def test_log_ML_from_lambda():
    g = 0.0
    model = gpmodel.LassoGPRegressor(gpkernel.LinearKernel())
    model2 = gpmodel.GPRegressor(gpkernel.LinearKernel())
    X, mask = model._regularize(X_df, gamma=g, y=Y)
    model2.fit(X, Y)
    neg_ML = model._log_ML_from_gamma(g, X, Y)
    assert np.isclose(neg_ML, model2.ML)
コード例 #3
0
def test_normalize():
    model = gpmodel.GPRegressor(kernel)
    m, s, normed = model._normalize(Y)
    assert np.isclose(m, Y.mean())
    assert np.isclose(s, Y.std())
    assert np.allclose(normed, (Y - m) / s)
    model.std = s
    model.mean = m
    assert np.allclose(Y, model.unnormalize(normed))
コード例 #4
0
def test_K():
    model = gpmodel.GPRegressor(kernel)
    model.kernel.fit(X)
    K, Ky = model._make_Ks((1, 1, 1))
    assert np.allclose(K, kernel.cov(X, X))
    assert np.allclose(Ky, K + np.diag(np.ones(len(K))))
    model.variances = variances
    K, Ky = model._make_Ks((1, 1))
    assert np.allclose(K, kernel.cov(X, X))
    assert np.allclose(Ky, K + np.diag(variances))
コード例 #5
0
def test_pickles():
    model = gpmodel.GPRegressor(kernel)
    model.fit(X, Y)
    m1, v1 = model.predict(X_test)
    model.dump('test.pkl')
    new_model = gpmodel.GPRegressor.load('test.pkl')
    os.remove('test.pkl')
    m2, v2 = new_model.predict(X_test)
    assert np.allclose(m1, m2)
    assert np.allclose(v1, v2)
コード例 #6
0
def test_predict():
    model = gpmodel.LassoGPRegressor(gpkernel.LinearKernel(), gamma=-2)
    model.fit(X_df, Y)
    np.random.seed(1)
    X_test = np.random.random(size=(1, n_dims))
    X_test = pd.DataFrame(X_test, index=['A'])
    X_masked = X_test.transpose()[model._mask].transpose()
    Y_test = model.predict(X_test)
    check_model = gpmodel.GPRegressor(gpkernel.LinearKernel())
    check_model.fit(model.X, Y)
    Y_check = check_model.predict(X_masked)
    assert np.isclose(Y_test, Y_check).all()
コード例 #7
0
def test_ML():
    model = gpmodel.GPRegressor(kernel)
    model.kernel.fit(X)
    model.normed_Y = model._normalize(Y)[2]
    model._ell = len(Y)
    hypers = np.random.random(size=(3, ))
    y_mat = model.normed_Y.reshape((n, 1))
    K, Ky = model._make_Ks(hypers)
    first = 0.5 * y_mat.T @ np.linalg.inv(Ky) @ y_mat
    second = 0.5 * np.log(np.linalg.det(Ky))
    third = model._ell / 2.0 * np.log(2 * np.pi)
    actual = first + second + third
    assert np.isclose(actual, model._log_ML(hypers))
コード例 #8
0
def test_predict():
    model = gpmodel.GPRegressor(kernel)
    model.fit(X, Y)
    h = model.hypers[1::]
    m, s, normed = model._normalize(Y)
    k_star = model.kernel.cov(X_test, X, hypers=h)
    k_star_star = model.kernel.cov(X_test, X_test, hypers=h)
    K = kernel.cov(X, X, h)
    Ky = K + np.diag(model.hypers[0] * np.ones(len(K)))
    means = k_star @ np.linalg.inv(Ky) @ normed.reshape(len(Y), 1)
    means = means * s + m
    var = k_star_star - k_star @ np.linalg.inv(Ky) @ k_star.T
    var *= s**2
    m, v = model.predict(X_test)
    print(v)
    print(var)
    print(model.hypers[0])
    assert (np.abs(v - var) < 1e-1).all()
    assert np.allclose(means[:, 0], m, rtol=1.e-8, atol=1e-4)
コード例 #9
0
def test_fit():
    model = gpmodel.GPRegressor(kernel)
    model.fit(X, Y)
    assert model._n_hypers == kernel._n_hypers + 1
    assert np.allclose(model.X, X)
    assert np.allclose(model.Y, Y)
    m, s, normed = model._normalize(Y)
    assert np.allclose(model.normed_Y, normed)
    assert np.isclose(m, model.mean)
    assert np.isclose(s, model.std)
    vn, s0, ell = model.hypers
    K = kernel.cov(X, X, (s0, ell))
    Ky = K + np.diag(vn * np.ones(len(K)))
    ML = model._log_ML(model.hypers)
    L = np.linalg.cholesky(Ky)
    alpha = np.linalg.inv(Ky) @ normed.reshape((n, 1))
    assert np.isclose(model.ML, ML)
    assert np.allclose(model._K, K)
    assert np.allclose(model._Ky, Ky)
    assert np.allclose(model._L, L)
    assert np.allclose(model._alpha, alpha)