コード例 #1
0
ファイル: nadirSiteModel.py プロジェクト: mikemoorester/ESM
def setUpCalcSiteModelPostFit(models,site_residuals, info, zen_grid, az_grid, cpus) :   
    nZen = int(90.0/zen_grid) + 1
    nAz = int(360./az_grid) 
    print("nAz",nAz)
    
    #numParamsPerSite = nZen * nAz
    nModels = info['numModels']
    #tSite = numParamsPerSite*params['numModels']
    #numParams = tSat + tSite 

    prefit = np.zeros(nModels)
    prefit_sums = np.zeros((nModels,nAz,nZen))
    prefit_res = np.zeros((nModels,nAz,nZen))
    
    postfit = np.zeros(nModels)
    postfit_sums = np.zeros((nModels,nAz,nZen)) 
    postfit_res = np.zeros((nModels,nAz,nZen))

    numObs = np.zeros(nModels)
    numObs_sums = np.zeros((nModels,nAz,nZen))

    change = info['changes']
    print("Changes for site",info['site'],change)
    # keep track of how may observations are in each bin
    #SiteFreq = np.zeros((nModels,nAz,nZen))
    #Models = np.zeros((nModels,nAz,nZen))
    #model_stdev = np.zeros((int(params['numModels']),nAz,nZen))
    # create a new model everythime there has been a change of antenna
    for m in range(0,nModels):
        print(info['site'],"----> creating model",m+1,"of",info['numModels'])

        # start_yyyy and start_ddd should always be defind, however stop_dd may be absent
        #ie no changes have ocured since the last setup
        minVal_dt = gt.ydhms2dt(change['start_yyyy'][m],change['start_ddd'][m],0,0,0)

        if np.size(change['stop_ddd']) > m  :
            maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][m],change['stop_ddd'][m],23,59,59)
            print("Min:",minVal_dt,"Max:",maxVal_dt,m,np.size(change['stop_ddd']))
            criterion = ( ( site_residuals[:,0] >= calendar.timegm(minVal_dt.utctimetuple()) ) &
                    ( site_residuals[:,0] < calendar.timegm(maxVal_dt.utctimetuple()) ) )
        else:
            criterion = ( site_residuals[:,0] >= calendar.timegm(minVal_dt.utctimetuple()) ) 
            maxVal_dt = gt.unix2dt(site_residuals[-1,0])

        # get the residuals for this model time period
        mind = np.array(np.where(criterion))[0]
        model_residuals = site_residuals[mind,:]
        diff_dt = maxVal_dt - minVal_dt
        numDays = diff_dt.days + 1
        print("Have a total of",numDays,"days",np.shape(models))

        prefit[m], prefit_sums[m,:,:], prefit_res[m,:,:], postfit[m], postfit_sums[m,:,:], postfit_res[m,:,:],numObs[m],numObs_sums[m,:,:] = setUpPostFitTasks(models,model_residuals,args.cpu,zen_grid,az_grid,params,numDays,minVal_dt)
                
        print("FINISHED Post fit RUN for model",m)
        
    return prefit, prefit_sums, prefit_res, postfit, postfit_sums, postfit_res,numObs,numObs_sums
コード例 #2
0
ファイル: residuals.py プロジェクト: mikemoorester/ESM
def parseConsolidatedNumpy(cfile):
    '''
    parseConsolidated   Read in a consolidate phase residual file that contains all of the epochs
                        for a particular site
    
    Usage:  residuals = parseConsolidated('TOW2.2012.DPH.gz')

    Input:  file - TOW2.2012.DPH.gz, can take gzipp'd or plane txt files
    
    Output: residuals - an array of dictionaries

    '''
    nlines = file_len(cfile)
    residuals = np.zeros((nlines,5))

    # work out if the file is compressed or not,
    # and then get the correct file opener.
    file_open = file_opener(cfile)
    ctr = 0

    with file_open(cfile) as f:
        for line in f:
            tmp = {}
            yyyy, ddd, ts, az, zen, lc, prn = line.split( )
            hh,mm,ss = ts.split(':')
            dto = gt.ydhms2dt(yyyy,ddd,hh,mm,ss)
            if float(lc) > 1000:
                next
            else:
                residuals[ctr,0] = calendar.timegm(dto.utctimetuple())
                residuals[ctr,1] = float(az)
                residuals[ctr,2] = float(zen)
                residuals[ctr,3] = float(lc)
                residuals[ctr,4] = int(prn)
                ctr += 1
 
    # check to see if we are tie filtering the residuals
    #if dt_start > 0.0001 :
    #    criterion = ( ( residuals[:,0] >= calendar.timegm(dt_start.utctimetuple()) ) &
    #                         ( residuals[:,0] < calendar.timegm(dt_stop.utctimetuple()) ) )
    #    tind = np.array(np.where(criterion))[0]
    #    print("going from:",nlines,"to:",np.size(tind))
    #    res = np.zeros((np.size(tind,5)))
    #    res = residuals[tind,:]
    #else:
    #print("no time filtering")
    res = np.zeros((ctr,5))
    res = residuals[0:ctr,:]

    return res 
コード例 #3
0
def parseConsolidatedNumpy(cfile):
    '''
    parseConsolidated   Read in a consolidate phase residual file that contains all of the epochs
                        for a particular site
    
    Usage:  residuals = parseConsolidated('TOW2.2012.DPH.gz')

    Input:  file - TOW2.2012.DPH.gz, can take gzipp'd or plane txt files
    
    Output: residuals - an array of dictionaries

    '''
    nlines = file_len(cfile)
    residuals = np.zeros((nlines, 5))

    # work out if the file is compressed or not,
    # and then get the correct file opener.
    file_open = file_opener(cfile)
    ctr = 0

    with file_open(cfile) as f:
        for line in f:
            tmp = {}
            yyyy, ddd, ts, az, zen, lc, prn = line.split()
            hh, mm, ss = ts.split(':')
            dto = gt.ydhms2dt(yyyy, ddd, hh, mm, ss)
            if float(lc) > 1000:
                next
            else:
                residuals[ctr, 0] = calendar.timegm(dto.utctimetuple())
                residuals[ctr, 1] = float(az)
                residuals[ctr, 2] = float(zen)
                residuals[ctr, 3] = float(lc)
                residuals[ctr, 4] = int(prn)
                ctr += 1

    # check to see if we are tie filtering the residuals
    #if dt_start > 0.0001 :
    #    criterion = ( ( residuals[:,0] >= calendar.timegm(dt_start.utctimetuple()) ) &
    #                         ( residuals[:,0] < calendar.timegm(dt_stop.utctimetuple()) ) )
    #    tind = np.array(np.where(criterion))[0]
    #    print("going from:",nlines,"to:",np.size(tind))
    #    res = np.zeros((np.size(tind,5)))
    #    res = residuals[tind,:]
    #else:
    #print("no time filtering")
    res = np.zeros((ctr, 5))
    res = residuals[0:ctr, :]

    return res
コード例 #4
0
ファイル: nadirSiteModel.py プロジェクト: mikemoorester/ESM
def solveSiteModel(site_residuals, svs, params, apr, nadSpacing=0.1, zenSpacing=0.5, azSpacing=0.5, brdc_dir="./"):
    """
    Create a model for the satellites and sites at the same time.
    PWL piece-wise-linear interpolation fit of phase residuals
    -construct a PWL fit for each azimuth bin, and then paste them all together to get 
     the full model
    -inversion is done within each bin

    site_residuals = the one-way L3 post-fit, ambiguity fixed phase residuals
    svs = an array of satellite SVN numbers that are spacebourne/operating
          for the period of this residual stack
    params = meta data about the solution bein attempted
             ['site'] = 4 char site id
             ['changes'] = dictionary of when model changes need to be applied
    apr = satellite apriori data
    
    """
    #prechi = 0
    #NUMD   = 0
    # add one to make sure we have a linspace which includes 0.0 and 14.0
    # add another parameter for the zenith PCO estimate
    numNADS = int(14.0/nadSpacing) + 1 
    PCOEstimates = 1
    numSVS = np.size(svs)
    numParamsPerSat = numNADS + PCOEstimates
    tSat = numParamsPerSat * numSVS

    nZen = int(90.0/zenSpacing) + 1
    nAz = int(360./azSpacing) 
    print("nAz",nAz)
    numParamsPerSite = nZen * nAz
    tSite = numParamsPerSite*params['numModels']
    numParams = tSat + tSite 

    print("------------------------------------------------")
    print("Processing Site:                        ",params['site'])
    print("------------------------------------------------")
    print("Sat Params:----------------",numParamsPerSat)
    print("Number of Sats:------------",np.size(svs))
    print("Total satellite parameters:-------------",tSat)
    print("Site Params:---------------",numParamsPerSite)
    print("Number of Models:----------",params['numModels'])
    print("Total Site Params:----------------------",tSite)
    print("------------------------------------------------")
    print("Total Params:---------------------------",numParams)
    print("------------------------------------------------")

    # Creating matrices
    #Neq = np.zeros((numParams,numParams))
    #AtWb = np.zeros(numParams)
    change = params['changes']
    print("Changes for site",params['site'],change)
    # keep track of how may observations are in each bin
    #NadirFreq = np.zeros((numSVS,numNADS))
    SiteFreq = np.zeros((int(params['numModels']),nAz,nZen))
    Models = np.zeros((int(params['numModels']),nAz,nZen))
    model_stdev = np.zeros((int(params['numModels']),nAz,nZen))
    # create a new model everythime there has been a change of antenna
    for m in range(0,int(params['numModels'])):
        print(params['site'],"----> creating model",m+1,"of",params['numModels'])

        # start_yyyy and start_ddd should always be defind, however stop_dd may be absent
        #ie no changes have ocured since the last setup
        minVal_dt = gt.ydhms2dt(change['start_yyyy'][m],change['start_ddd'][m],0,0,0)

        if np.size(change['stop_ddd']) > m  :
            maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][m],change['stop_ddd'][m],23,59,59)
            print("Min:",minVal_dt,"Max:",maxVal_dt,m,np.size(change['stop_ddd']))
            criterion = ( ( site_residuals[:,0] >= calendar.timegm(minVal_dt.utctimetuple()) ) &
                    ( site_residuals[:,0] < calendar.timegm(maxVal_dt.utctimetuple()) ) )
        else:
            criterion = ( site_residuals[:,0] >= calendar.timegm(minVal_dt.utctimetuple()) ) 
            maxVal_dt = gt.unix2dt(site_residuals[-1,0])

        # get the residuals for this model time period
        mind = np.array(np.where(criterion))[0]
        model_residuals = site_residuals[mind,:]
        diff_dt = maxVal_dt - minVal_dt
        numDays = diff_dt.days + 1
        print("Have a total of",numDays,"days")
        
        Models[m,:,:], model_stdev[m,:,:],SiteFreq[m,:,:] = setUpAzTasks(model_residuals,svs,args,params,numDays,minVal_dt,nAz)
        print("FINISHED AZ RUN for model",m)
        
    print("Normal finish of pwl")
    
    return Models, model_stdev, SiteFreq
コード例 #5
0
                        type=int,
                        help='Day-of-Year of first epoch in DDD format')
    parser.add_argument('--end_yyyy',
                        dest='end_yyyy',
                        type=int,
                        help='Year of last epoch in YYYY format')
    parser.add_argument('--end_ddd',
                        dest='end_ddd',
                        type=int,
                        help='Day-of-Year of last epoch in DDD format')

    args = parser.parse_args()
    #=========================================

    # find the station meta data for a particular site
    station_metadata = parseSite(args.station_file, args.site)

    #print("data",data)

    #ind = antennaChange(data)
    #for i in ind:
    #    print(data['start_yyyy'][i],data['start_ddd'][i],data['antenna_type'][i],data['dome_type'][i])
    #print("ind:",ind)

    if args.esm_report:
        start = gt.ydhms2dt(args.start_yyyy, args.start_ddd, 0, 0, 0)
        end = gt.ydhms2dt(args.end_yyyy, args.end_ddd, 0, 0, 0)
        changes = determineESMChanges(start, end, station_metadata)
        num_models = np.size(changes['ind']) + 1
        print(args.site, "requires ", num_models)
コード例 #6
0
def setUpCalcSiteModelPostFit(models, site_residuals, info, zen_grid, az_grid,
                              cpus):
    nZen = int(90.0 / zen_grid) + 1
    nAz = int(360. / az_grid)
    print("nAz", nAz)

    #numParamsPerSite = nZen * nAz
    nModels = info['numModels']
    #tSite = numParamsPerSite*params['numModels']
    #numParams = tSat + tSite

    prefit = np.zeros(nModels)
    prefit_sums = np.zeros((nModels, nAz, nZen))
    prefit_res = np.zeros((nModels, nAz, nZen))

    postfit = np.zeros(nModels)
    postfit_sums = np.zeros((nModels, nAz, nZen))
    postfit_res = np.zeros((nModels, nAz, nZen))

    numObs = np.zeros(nModels)
    numObs_sums = np.zeros((nModels, nAz, nZen))

    change = info['changes']
    print("Changes for site", info['site'], change)
    # keep track of how may observations are in each bin
    #SiteFreq = np.zeros((nModels,nAz,nZen))
    #Models = np.zeros((nModels,nAz,nZen))
    #model_stdev = np.zeros((int(params['numModels']),nAz,nZen))
    # create a new model everythime there has been a change of antenna
    for m in range(0, nModels):
        print(info['site'], "----> creating model", m + 1, "of",
              info['numModels'])

        # start_yyyy and start_ddd should always be defind, however stop_dd may be absent
        #ie no changes have ocured since the last setup
        minVal_dt = gt.ydhms2dt(change['start_yyyy'][m],
                                change['start_ddd'][m], 0, 0, 0)

        if np.size(change['stop_ddd']) > m:
            maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][m],
                                    change['stop_ddd'][m], 23, 59, 59)
            print("Min:", minVal_dt, "Max:", maxVal_dt, m,
                  np.size(change['stop_ddd']))
            criterion = ((site_residuals[:, 0] >= calendar.timegm(
                minVal_dt.utctimetuple())) &
                         (site_residuals[:, 0] < calendar.timegm(
                             maxVal_dt.utctimetuple())))
        else:
            criterion = (site_residuals[:, 0] >= calendar.timegm(
                minVal_dt.utctimetuple()))
            maxVal_dt = gt.unix2dt(site_residuals[-1, 0])

        # get the residuals for this model time period
        mind = np.array(np.where(criterion))[0]
        model_residuals = site_residuals[mind, :]
        diff_dt = maxVal_dt - minVal_dt
        numDays = diff_dt.days + 1
        print("Have a total of", numDays, "days", np.shape(models))

        prefit[m], prefit_sums[m, :, :], prefit_res[
            m, :, :], postfit[m], postfit_sums[m, :, :], postfit_res[
                m, :, :], numObs[m], numObs_sums[m, :, :] = setUpPostFitTasks(
                    models, model_residuals, args.cpu, zen_grid, az_grid,
                    params, numDays, minVal_dt)

        print("FINISHED Post fit RUN for model", m)

    return prefit, prefit_sums, prefit_res, postfit, postfit_sums, postfit_res, numObs, numObs_sums
コード例 #7
0
def solveSiteModel(site_residuals,
                   svs,
                   params,
                   apr,
                   nadSpacing=0.1,
                   zenSpacing=0.5,
                   azSpacing=0.5,
                   brdc_dir="./"):
    """
    Create a model for the satellites and sites at the same time.
    PWL piece-wise-linear interpolation fit of phase residuals
    -construct a PWL fit for each azimuth bin, and then paste them all together to get 
     the full model
    -inversion is done within each bin

    site_residuals = the one-way L3 post-fit, ambiguity fixed phase residuals
    svs = an array of satellite SVN numbers that are spacebourne/operating
          for the period of this residual stack
    params = meta data about the solution bein attempted
             ['site'] = 4 char site id
             ['changes'] = dictionary of when model changes need to be applied
    apr = satellite apriori data
    
    """
    #prechi = 0
    #NUMD   = 0
    # add one to make sure we have a linspace which includes 0.0 and 14.0
    # add another parameter for the zenith PCO estimate
    numNADS = int(14.0 / nadSpacing) + 1
    PCOEstimates = 1
    numSVS = np.size(svs)
    numParamsPerSat = numNADS + PCOEstimates
    tSat = numParamsPerSat * numSVS

    nZen = int(90.0 / zenSpacing) + 1
    nAz = int(360. / azSpacing)
    print("nAz", nAz)
    numParamsPerSite = nZen * nAz
    tSite = numParamsPerSite * params['numModels']
    numParams = tSat + tSite

    print("------------------------------------------------")
    print("Processing Site:                        ", params['site'])
    print("------------------------------------------------")
    print("Sat Params:----------------", numParamsPerSat)
    print("Number of Sats:------------", np.size(svs))
    print("Total satellite parameters:-------------", tSat)
    print("Site Params:---------------", numParamsPerSite)
    print("Number of Models:----------", params['numModels'])
    print("Total Site Params:----------------------", tSite)
    print("------------------------------------------------")
    print("Total Params:---------------------------", numParams)
    print("------------------------------------------------")

    # Creating matrices
    #Neq = np.zeros((numParams,numParams))
    #AtWb = np.zeros(numParams)
    change = params['changes']
    print("Changes for site", params['site'], change)
    # keep track of how may observations are in each bin
    #NadirFreq = np.zeros((numSVS,numNADS))
    SiteFreq = np.zeros((int(params['numModels']), nAz, nZen))
    Models = np.zeros((int(params['numModels']), nAz, nZen))
    model_stdev = np.zeros((int(params['numModels']), nAz, nZen))
    # create a new model everythime there has been a change of antenna
    for m in range(0, int(params['numModels'])):
        print(params['site'], "----> creating model", m + 1, "of",
              params['numModels'])

        # start_yyyy and start_ddd should always be defind, however stop_dd may be absent
        #ie no changes have ocured since the last setup
        minVal_dt = gt.ydhms2dt(change['start_yyyy'][m],
                                change['start_ddd'][m], 0, 0, 0)

        if np.size(change['stop_ddd']) > m:
            maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][m],
                                    change['stop_ddd'][m], 23, 59, 59)
            print("Min:", minVal_dt, "Max:", maxVal_dt, m,
                  np.size(change['stop_ddd']))
            criterion = ((site_residuals[:, 0] >= calendar.timegm(
                minVal_dt.utctimetuple())) &
                         (site_residuals[:, 0] < calendar.timegm(
                             maxVal_dt.utctimetuple())))
        else:
            criterion = (site_residuals[:, 0] >= calendar.timegm(
                minVal_dt.utctimetuple()))
            maxVal_dt = gt.unix2dt(site_residuals[-1, 0])

        # get the residuals for this model time period
        mind = np.array(np.where(criterion))[0]
        model_residuals = site_residuals[mind, :]
        diff_dt = maxVal_dt - minVal_dt
        numDays = diff_dt.days + 1
        print("Have a total of", numDays, "days")

        Models[m, :, :], model_stdev[m, :, :], SiteFreq[
            m, :, :] = setUpAzTasks(model_residuals, svs, args, params,
                                    numDays, minVal_dt, nAz)
        print("FINISHED AZ RUN for model", m)

    print("Normal finish of pwl")

    return Models, model_stdev, SiteFreq
コード例 #8
0
ファイル: GamitStationFile.py プロジェクト: mikemoorester/ESM
    parser.add_argument('--esm_report', dest='esm_report',default=False, action='store_true',
      help='Determine when a station will need to create a new ESM, based on equipmet changes')
    parser.add_argument('--start_yyyy',dest='start_yyyy',type=int,
            help='Year of first epoch in YYYY format')
    parser.add_argument('--start_ddd',dest='start_ddd',type=int,
            help='Day-of-Year of first epoch in DDD format')
    parser.add_argument('--end_yyyy',dest='end_yyyy',type=int,
            help='Year of last epoch in YYYY format')
    parser.add_argument('--end_ddd',dest='end_ddd',type=int,
            help='Day-of-Year of last epoch in DDD format')

    args = parser.parse_args()
    #=========================================

    # find the station meta data for a particular site
    station_metadata = parseSite(args.station_file, args.site)

    #print("data",data)

    #ind = antennaChange(data)
    #for i in ind:
    #    print(data['start_yyyy'][i],data['start_ddd'][i],data['antenna_type'][i],data['dome_type'][i])
    #print("ind:",ind)

    if args.esm_report:
        start = gt.ydhms2dt(args.start_yyyy,args.start_ddd,0,0,0)
        end   = gt.ydhms2dt(args.end_yyyy,args.end_ddd,0,0,0)
        changes = determineESMChanges(start,end,station_metadata)
        num_models = np.size(changes['ind'])+1
        print(args.site,"requires ",num_models)