コード例 #1
0
ファイル: state.py プロジェクト: spieseba/gpt
 def R_z(self, i, phi):
     phase_one = np.exp(1j * phi)
     g.bilinear_combination(
         [self.lattice],
         [self.bit_map.zero_mask[i], self.bit_map.one_mask[i]],
         [self.lattice],
         [[1.0, phase_one]],
         [[0, 1]],
         [[0, 0]],
     )
コード例 #2
0
ファイル: state.py プロジェクト: spieseba/gpt
 def CNOT(self, control, target):
     assert control != target
     bfl = self.bit_flipped_lattice(target)
     g.bilinear_combination(
         [self.lattice],
         [self.bit_map.zero_mask[control], self.bit_map.one_mask[control]],
         [self.lattice, bfl],
         [[1.0, 1.0]],
         [[0, 1]],
         [[0, 1]],
     )
コード例 #3
0
ファイル: state.py プロジェクト: spieseba/gpt
 def H(self, i):
     bfl = self.bit_flipped_lattice(i)
     nrm = 1.0 / 2.0**0.5
     g.bilinear_combination(
         [self.lattice],
         [self.bit_map.zero_mask[i], self.bit_map.one_mask[i]],
         [self.lattice, bfl],
         [[nrm, nrm, -nrm, nrm]],
         [[0, 0, 1, 1]],
         [[0, 1, 0, 1]],
     )
コード例 #4
0
ファイル: state.py プロジェクト: spieseba/gpt
    def measure(self, i):
        p_one = self.probability(i)
        p_zero = 1.0 - p_one
        l = self.rng.uniform_real()
        if l <= p_one:
            proj = self.bit_map.one_mask[self.bit_permutation[i]]
            nrm = 1.0 / (p_one**0.5)
            r = 1
        else:
            proj = self.bit_map.zero_mask[self.bit_permutation[i]]
            nrm = 1.0 / (p_zero**0.5)
            r = 0

        g.bilinear_combination([self.lattice], [proj], [self.lattice], [[nrm]],
                               [[0]], [[0]])

        self.classical_bit[i] = r
        return r
コード例 #5
0
ファイル: core.py プロジェクト: waterret/gpt
# Test bilinear_combination against expression engine
################################################################################
for grid in [grid_sp, grid_dp]:
    left = [g.complex(grid) for i in range(3)]
    right = [g.complex(grid) for i in range(3)]
    result_bilinear = [g.complex(grid) for i in range(3)]
    rng.cnormal([left, right])
    result = [
        g.eval(left[1] * right[2] - left[2] * right[1]),
        g.eval(left[2] * right[0] - left[0] * right[2]),
        g.eval(left[0] * right[1] + left[2] * right[0]),
    ]
    g.bilinear_combination(
        result_bilinear,
        left,
        right,
        [[1.0, -1.0], [1.0, -1.0], [1.0, 1.0]],
        [[1, 2], [2, 0], [0, 2]],
        [[2, 1], [0, 2], [1, 0]],
    )
    for j in range(len(result)):
        eps2 = g.norm2(result[j] - result_bilinear[j]) / g.norm2(result[j])
        g.message(f"Test bilinear combination of vector {j}: {eps2}")
        assert eps2 < 1e-13


################################################################################
# Test where
################################################################################
grid = grid_dp
sel = g.complex(grid)
rng.uniform_int(sel, min=0, max=1)
コード例 #6
0
ファイル: quarkcontract.py プロジェクト: Lorenzo-Barca/gpt
def quark_contract_xx(mspincolor1, mspincolor2, components):
    """
    This routine is written for Nc = 3

    y^{k2, k1} = \\sum_{i1, i2, j1, j2} \\epsilon^{i1, j1, k1} \\epsilon^{i2, j2, k2} xc1^{i1, i2} xc2^{j1, j2}
    Permutations: +(0, 1, 2), +(1, 2, 0), +(2, 0, 1),
                     -(1, 0, 2), -(0, 2, 1), -(2, 1, 0)
    i.e.
    - y^{0, 0} = \\epsilon^{i1, j1, 0} \\epsilon^{i2, j2, 0} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(1, 2, 0), -(2, 1, 0);         +(1, 2, 0), -(2, 1, 0)
    - y^{0, 1} = \\epsilon^{i1, j1, 1} \\epsilon^{i2, j2, 0} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(2, 0, 1), -(0, 2, 1);         +(1, 2, 0), -(2, 1, 0)
    - y^{0, 2} = \\epsilon^{i1, j1, 2} \\epsilon^{i2, j2, 0} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(0, 1, 2), -(1, 0, 2)          +(1, 2, 0), -(2, 1, 0)
    - y^{1, 0} = \\epsilon^{i1, j1, 0} \\epsilon^{i2, j2, 1} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(1, 2, 0), -(2, 1, 0)          +(2, 0, 1), -(0, 2, 1)
    - y^{1, 1} = \\epsilon^{i1, j1, 1} \\epsilon^{i2, j2, 1} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(2, 0, 1), -(0, 2, 1)          +(2, 0, 1), -(0, 2, 1)
    - y^{1, 2} = \\epsilon^{i1, j1, 2} \\epsilon^{i2, j2, 1} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(0, 1, 2), -(1, 0, 2)          +(2, 0, 1), -(0, 2, 1)
    - y^{2, 0} = \\epsilon^{i1, j1, 0} \\epsilon^{i2, j2, 2} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(1, 2, 0), -(2, 1, 0)          +(0, 1, 2), -(1, 0, 2)
    - y^{2, 1} = \\epsilon^{i1, j1, 1} \\epsilon^{i2, j2, 2} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(2, 0, 1), -(0, 2, 1)          +(0, 1, 2), -(1, 0, 2)
    - y^{2, 2} = \\epsilon^{i1, j1, 2} \\epsilon^{i2, j2, 2} xc1^{i1, i2} xc2^{j1, j2}
        Permutations: +(0, 1, 2), -(1, 0, 2)          +(0, 1, 2), -(1, 0, 2)
    """

    t_separatespin, t_separatecolor, t_create, t_bilinear, t_merge = 0.0, 0.0, 0.0, 0.0, 0.0
    t_start = gpt.time()

    comps1, comps2 = dict(), dict()
    for mspincolor, comps in [[mspincolor1, comps1], [mspincolor2, comps2]]:
        if isinstance(mspincolor, gpt.lattice):
            t_separatespin -= gpt.time()
            spin_separated = gpt.separate_spin(mspincolor)
            t_separatespin += gpt.time()

            for spinkey in spin_separated:
                t_separatecolor -= gpt.time()
                comps[spinkey] = gpt.separate_color(spin_separated[spinkey])
                t_separatecolor += gpt.time()

        elif isinstance(mspincolor, dict):
            for spinkey in mspincolor:
                n_keys = len(mspincolor[spinkey])
                n_colors = np.sqrt(n_keys)
                assert n_colors == int(n_colors)
                assert (int(n_colors) - 1,
                        int(n_colors) - 1) in mspincolor[spinkey]
                comps[spinkey] = mspincolor[spinkey]
    grid = comps1[0, 0][0, 0].grid

    t_create -= gpt.time()
    dst = gpt.mspincolor(grid)
    spinsep_dst = {(ii // 4, ii % 4): gpt.mcolor(grid) for ii in range(16)}
    bilinear_result = [gpt.complex(grid) for _ in range(9)]
    t_create += gpt.time()

    leftbase = np.array(
        [[4, 5, 7, 8], [7, 8, 1, 2], [1, 2, 4, 5], [5, 3, 8, 6], [8, 6, 2, 0],
         [2, 0, 5, 3], [3, 4, 6, 7], [6, 7, 0, 1], [0, 1, 3, 4]],
        dtype=np.int32)
    rightbase = np.array(
        [[8, 7, 5, 4], [2, 1, 8, 7], [5, 4, 2, 1], [6, 8, 3, 5], [0, 2, 6, 8],
         [3, 5, 0, 2], [7, 6, 4, 3], [1, 0, 7, 6], [4, 3, 1, 0]],
        dtype=np.int32)

    for spin_key in components.keys():

        lefts, rights = [], []
        bilin_coeffs, bilin_leftbasis, bilin_rightbasis = [], [], []
        for nn, comps in enumerate(components[spin_key]):
            c0_0, c0_1, c1_0, c1_1 = comps

            for ii in range(9):
                lefts.append(comps1[c0_0, c0_1][ii // 3, ii % 3])
                rights.append(comps2[c1_0, c1_1][ii // 3, ii % 3])

            bilin_coeffs = np.append(bilin_coeffs, [1.0, -1.0, -1.0, +1.0])
            bilin_leftbasis.append(leftbase + nn * 9)
            bilin_rightbasis.append(rightbase + nn * 9)

        bilin_coeffs = np.array([bilin_coeffs for _ in range(9)],
                                dtype=np.int32)
        bilin_leftbasis = np.concatenate(bilin_leftbasis, axis=1)
        bilin_rightbasis = np.concatenate(bilin_rightbasis, axis=1)

        t_bilinear -= gpt.time()
        gpt.bilinear_combination(bilinear_result, lefts, rights, bilin_coeffs,
                                 bilin_leftbasis, bilin_rightbasis)
        t_bilinear += gpt.time()

        cmat_dict = dict()
        for ii in range(9):
            cmat_dict[ii // 3, ii % 3] = bilinear_result[ii]

        t_merge -= gpt.time()
        gpt.merge_color(spinsep_dst[spin_key], cmat_dict)
        t_merge += gpt.time()

    t_merge -= gpt.time()
    gpt.merge_spin(dst, spinsep_dst)
    t_merge += gpt.time()

    t_total = gpt.time() - t_start
    t_profiled = t_separatespin + t_separatecolor + t_create + t_bilinear + t_merge

    if gpt.default.is_verbose("quark_contract_xx"):
        gpt.message("quark_contract_xx: total", t_total, "s")
        gpt.message("quark_contract_xx: t_separatespin", t_separatespin, "s",
                    round(100 * t_separatespin / t_total, 1), "%")
        gpt.message("quark_contract_xx: t_separatecolor", t_separatecolor, "s",
                    round(100 * t_separatecolor / t_total, 1), "%")
        gpt.message("quark_contract_xx: t_create", t_create, "s",
                    round(100 * t_create / t_total, 1), "%")
        gpt.message("quark_contract_xx: t_bilinear", t_bilinear, "s",
                    round(100 * t_bilinear / t_total, 1), "%")
        gpt.message("quark_contract_xx: t_merge", t_merge, "s",
                    round(100 * t_merge / t_total, 1), "%")
        gpt.message("quark_contract_xx: unprofiled", t_total - t_profiled, "s",
                    round(100 * (t_total - t_profiled) / t_total, 1), "%")
    return dst
コード例 #7
0
ファイル: linear_combination.py プロジェクト: wettig/gpt
            rng.cnormal(basis)

            # Typical usecase : nbasis x nbasis -> nbasis
            Qt = np.ones((nbasis, nbasis), np.complex128)
            lidx = np.mod(np.arange(nbasis * nbasis, dtype=np.int32), nbasis).reshape(
                nbasis, nbasis
            )

            # Bytes
            nbytes = nbasis * (2 * nbasis + 1) * result[0].global_bytes() * N

            # Time
            dt = 0.0
            for it in range(N + Nwarmup):
                if it >= Nwarmup:
                    dt -= g.time()
                g.bilinear_combination(result, basis, basis, Qt, lidx, lidx)
                if it >= Nwarmup:
                    dt += g.time()

            # Report
            GBPerSec = nbytes / dt / 1e9
            g.message(
                f"""{N} bilinear_combination
    Object type                 : {tp.__name__}
    Number of basis vectors     : {nbasis}
    Time to complete            : {dt:.2f} s
    Effective memory bandwidth  : {GBPerSec:.2f} GB/s
"""
            )