def test_get_extra_mll_args(self): train_X = torch.rand(3, 5) train_Y = torch.rand(3) model = SingleTaskGP(train_X=train_X, train_Y=train_Y) # test ExactMarginalLogLikelihood exact_mll = ExactMarginalLogLikelihood(model.likelihood, model) exact_extra_args = _get_extra_mll_args(mll=exact_mll) self.assertEqual(len(exact_extra_args), 1) self.assertTrue(torch.equal(exact_extra_args[0], train_X)) # test VariationalELBO elbo = VariationalELBO(model.likelihood, model, num_data=train_X.shape[0]) elbo_extra_args = _get_extra_mll_args(mll=elbo) self.assertEqual(len(elbo_extra_args), 0) # test SumMarginalLogLikelihood model2 = ModelListGP(gp_models=[model]) sum_mll = SumMarginalLogLikelihood(model2.likelihood, model2) sum_mll_extra_args = _get_extra_mll_args(mll=sum_mll) self.assertEqual(len(sum_mll_extra_args), 1) self.assertEqual(len(sum_mll_extra_args[0]), 1) self.assertTrue(torch.equal(sum_mll_extra_args[0][0], train_X)) # test unsupported MarginalLogLikelihood type unsupported_mll = MarginalLogLikelihood(model.likelihood, model) with self.assertRaises(ValueError): _get_extra_mll_args(mll=unsupported_mll)
def _scipy_objective_and_grad( x: np.ndarray, mll: MarginalLogLikelihood, property_dict: Dict[str, TorchAttr]) -> Tuple[float, np.ndarray]: r"""Get objective and gradient in format that scipy expects. Args: x: The (flattened) input parameters. mll: The MarginalLogLikelihood module to evaluate. property_dict: The property dictionary required to "unflatten" the input parameter vector, as generated by `module_to_array`. Returns: 2-element tuple containing - The objective value. - The gradient of the objective. """ mll = set_params_with_array(mll, x, property_dict) train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets mll.zero_grad() output = mll.model(*train_inputs) args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() loss.backward() param_dict = OrderedDict(mll.named_parameters()) grad = [] for p_name in property_dict: t = param_dict[p_name].grad if t is None: # this deals with parameters that do not affect the loss grad.append(np.zeros(property_dict[p_name].shape.numel())) else: grad.append(t.detach().view(-1).cpu().double().clone().numpy()) mll.zero_grad() return loss.item(), np.concatenate(grad)
def _scipy_objective_and_grad( x: np.ndarray, mll: MarginalLogLikelihood, property_dict: Dict[str, TorchAttr] ) -> Tuple[float, np.ndarray]: r"""Get objective and gradient in format that scipy expects. Args: x: The (flattened) input parameters. mll: The MarginalLogLikelihood module to evaluate. property_dict: The property dictionary required to "unflatten" the input parameter vector, as generated by `module_to_array`. Returns: 2-element tuple containing - The objective value. - The gradient of the objective. """ mll = set_params_with_array(mll, x, property_dict) train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets mll.zero_grad() output = mll.model(*train_inputs) args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() loss.backward() param_dict = OrderedDict(mll.named_parameters()) grad = [] for p_name in property_dict: t = param_dict[p_name].grad if t is None: # this deals with parameters that do not affect the loss grad.append(np.zeros(property_dict[p_name].shape.numel())) else: grad.append(t.detach().view(-1).cpu().double().clone().numpy()) mll.zero_grad() return loss.item(), np.concatenate(grad)
def fit_gpytorch_model(mll: MarginalLogLikelihood, optimizer: Callable = fit_gpytorch_scipy, **kwargs: Any) -> MarginalLogLikelihood: r"""Fit hyperparameters of a gpytorch model. Optimizer functions are in botorch.optim.fit. Args: mll: MarginalLogLikelihood to be maximized. optimizer: The optimizer function. kwargs: Arguments passed along to the optimizer function. Returns: MarginalLogLikelihood with optimized parameters. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll) """ mll.train() mll, _ = optimizer(mll, track_iterations=False, **kwargs) mll.eval() return mll
def fit_gpytorch_model( mll: MarginalLogLikelihood, optimizer: Callable = fit_gpytorch_scipy, **kwargs: Any ) -> MarginalLogLikelihood: r"""Fit hyperparameters of a gpytorch model. Optimizer functions are in botorch.optim.fit. Args: mll: MarginalLogLikelihood to be maximized. optimizer: The optimizer function. kwargs: Arguments passed along to the optimizer function. Returns: MarginalLogLikelihood with optimized parameters. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll) """ mll.train() mll, _ = optimizer(mll, track_iterations=False, **kwargs) mll.eval() return mll
def test_get_extra_mll_args(self): train_X = torch.rand(3, 5) train_Y = torch.rand(3, 1) model = SingleTaskGP(train_X=train_X, train_Y=train_Y) # test ExactMarginalLogLikelihood exact_mll = ExactMarginalLogLikelihood(model.likelihood, model) exact_extra_args = _get_extra_mll_args(mll=exact_mll) self.assertEqual(len(exact_extra_args), 1) self.assertTrue(torch.equal(exact_extra_args[0], train_X)) # test SumMarginalLogLikelihood model2 = ModelListGP(model) sum_mll = SumMarginalLogLikelihood(model2.likelihood, model2) sum_mll_extra_args = _get_extra_mll_args(mll=sum_mll) self.assertEqual(len(sum_mll_extra_args), 1) self.assertEqual(len(sum_mll_extra_args[0]), 1) self.assertTrue(torch.equal(sum_mll_extra_args[0][0], train_X)) # test unsupported MarginalLogLikelihood type unsupported_mll = MarginalLogLikelihood(model.likelihood, model) unsupported_mll_extra_args = _get_extra_mll_args(mll=unsupported_mll) self.assertEqual(unsupported_mll_extra_args, [])
def fit_gpytorch_torch( mll: MarginalLogLikelihood, bounds: Optional[ParameterBounds] = None, optimizer_cls: Optimizer = Adam, options: Optional[Dict[str, Any]] = None, track_iterations: bool = True, approx_mll: bool = True, ) -> Tuple[MarginalLogLikelihood, Dict[str, Union[float, List[OptimizationIteration]]]]: r"""Fit a gpytorch model by maximizing MLL with a torch optimizer. The model and likelihood in mll must already be in train mode. Note: this method requires that the model has `train_inputs` and `train_targets`. Args: mll: MarginalLogLikelihood to be maximized. bounds: A ParameterBounds dictionary mapping parameter names to tuples of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. optimizer_cls: Torch optimizer to use. Must not require a closure. options: options for model fitting. Relevant options will be passed to the `optimizer_cls`. Additionally, options can include: "disp" to specify whether to display model fitting diagnostics and "maxiter" to specify the maximum number of iterations. track_iterations: Track the function values and wall time for each iteration. approx_mll: If True, use gpytorch's approximate MLL computation ( according to the gpytorch defaults based on the training at size). Unlike for the deterministic algorithms used in fit_gpytorch_scipy, this is not an issue for stochastic optimizers. Returns: 2-element tuple containing - mll with parameters optimized in-place. - Dictionary with the following key/values: "fopt": Best mll value. "wall_time": Wall time of fitting. "iterations": List of OptimizationIteration objects with information on each iteration. If track_iterations is False, will be empty. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> mll.train() >>> fit_gpytorch_torch(mll) >>> mll.eval() """ optim_options = {"maxiter": 100, "disp": True, "lr": 0.05} optim_options.update(options or {}) exclude = optim_options.pop("exclude", None) if exclude is not None: mll_params = [ t for p_name, t in mll.named_parameters() if p_name not in exclude ] else: mll_params = list(mll.parameters()) optimizer = optimizer_cls( params=[{"params": mll_params}], **_filter_kwargs(optimizer_cls, **optim_options), ) # get bounds specified in model (if any) bounds_: ParameterBounds = {} if hasattr(mll, "named_parameters_and_constraints"): for param_name, _, constraint in mll.named_parameters_and_constraints(): if constraint is not None and not constraint.enforced: bounds_[param_name] = constraint.lower_bound, constraint.upper_bound # update with user-supplied bounds (overwrites if already exists) if bounds is not None: bounds_.update(bounds) iterations = [] t1 = time.time() param_trajectory: Dict[str, List[Tensor]] = { name: [] for name, param in mll.named_parameters() } loss_trajectory: List[float] = [] i = 0 converged = False convergence_criterion = ConvergenceCriterion( **_filter_kwargs(ConvergenceCriterion, **optim_options) ) train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets while not converged: optimizer.zero_grad() with gpt_settings.fast_computations(log_prob=approx_mll): output = mll.model(*train_inputs) # we sum here to support batch mode args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() loss.backward() loss_trajectory.append(loss.item()) for name, param in mll.named_parameters(): param_trajectory[name].append(param.detach().clone()) if optim_options["disp"] and ( (i + 1) % 10 == 0 or i == (optim_options["maxiter"] - 1) ): print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}") if track_iterations: iterations.append(OptimizationIteration(i, loss.item(), time.time() - t1)) optimizer.step() # project onto bounds: if bounds_: for pname, param in mll.named_parameters(): if pname in bounds_: param.data = param.data.clamp(*bounds_[pname]) i += 1 converged = convergence_criterion.evaluate(fvals=loss.detach()) info_dict = { "fopt": loss_trajectory[-1], "wall_time": time.time() - t1, "iterations": iterations, } return mll, info_dict
def fit_gpytorch_model(mll: MarginalLogLikelihood, optimizer: Callable = fit_gpytorch_scipy, **kwargs: Any) -> MarginalLogLikelihood: r"""Fit hyperparameters of a GPyTorch model. On optimizer failures, a new initial condition is sampled from the hyperparameter priors and optimization is retried. The maximum number of retries can be passed in as a `max_retries` kwarg (default is 5). Optimizer functions are in botorch.optim.fit. Args: mll: MarginalLogLikelihood to be maximized. optimizer: The optimizer function. kwargs: Arguments passed along to the optimizer function, including `max_retries` and `sequential` (controls the fitting of `ModelListGP` and `BatchedMultiOutputGPyTorchModel` models) or `approx_mll` (whether to use gpytorch's approximate MLL computation). Returns: MarginalLogLikelihood with optimized parameters. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll) """ sequential = kwargs.pop("sequential", True) max_retries = kwargs.pop("max_retries", 5) if isinstance(mll, SumMarginalLogLikelihood) and sequential: for mll_ in mll.mlls: fit_gpytorch_model(mll=mll_, optimizer=optimizer, max_retries=max_retries, **kwargs) return mll elif (isinstance(mll.model, BatchedMultiOutputGPyTorchModel) and mll.model._num_outputs > 1 and sequential): tf = None try: # check if backwards-conversion is possible # remove the outcome transform since the training targets are already # transformed and the outcome transform cannot currently be split. # TODO: support splitting outcome transforms. if hasattr(mll.model, "outcome_transform"): tf = mll.model.outcome_transform mll.model.outcome_transform = None model_list = batched_to_model_list(mll.model) mll_ = SumMarginalLogLikelihood(model_list.likelihood, model_list) fit_gpytorch_model( mll=mll_, optimizer=optimizer, sequential=True, max_retries=max_retries, **kwargs, ) model_ = model_list_to_batched(mll_.model) mll.model.load_state_dict(model_.state_dict()) # setting the transformed inputs is necessary because gpytorch # stores the raw training inputs on the ExactGP in the # ExactGP.__init__ call. At evaluation time, the test inputs will # already be in the transformed space if some transforms have # transform_on_eval set to False. ExactGP.__call__ will # concatenate the test points with the training inputs. Therefore, # it is important to set the ExactGP's train_inputs to also be # transformed data using all transforms (including the transforms # with transform_on_train set to True). mll.train() if tf is not None: mll.model.outcome_transform = tf return mll.eval() # NotImplementedError is omitted since it derives from RuntimeError except (UnsupportedError, RuntimeError, AttributeError): warnings.warn(FAILED_CONVERSION_MSG, BotorchWarning) if tf is not None: mll.model.outcome_transform = tf return fit_gpytorch_model(mll=mll, optimizer=optimizer, sequential=False, max_retries=max_retries) # retry with random samples from the priors upon failure mll.train() original_state_dict = deepcopy(mll.model.state_dict()) retry = 0 while retry < max_retries: with warnings.catch_warnings(record=True) as ws: if retry > 0: # use normal initial conditions on first try mll.model.load_state_dict(original_state_dict) sample_all_priors(mll.model) try: mll, _ = optimizer(mll, track_iterations=False, **kwargs) except NotPSDError: retry += 1 logging.log( logging.DEBUG, f"Fitting failed on try {retry} due to a NotPSDError.", ) continue has_optwarning = False for w in ws: # Do not count reaching `maxiter` as an optimization failure. if "ITERATIONS REACHED LIMIT" in str(w.message): logging.log( logging.DEBUG, "Fitting ended early due to reaching the iteration limit.", ) continue has_optwarning |= issubclass(w.category, OptimizationWarning) warnings.warn(w.message, w.category) if not has_optwarning: mll.eval() return mll retry += 1 logging.log(logging.DEBUG, f"Fitting failed on try {retry}.") warnings.warn("Fitting failed on all retries.", OptimizationWarning) return mll.eval()
def fit_gpytorch_torch( mll: MarginalLogLikelihood, bounds: Optional[ParameterBounds] = None, optimizer_cls: Optimizer = Adam, options: Optional[Dict[str, Any]] = None, track_iterations: bool = True, ) -> Tuple[MarginalLogLikelihood, List[OptimizationIteration]]: r"""Fit a gpytorch model by maximizing MLL with a torch optimizer. The model and likelihood in mll must already be in train mode. Note: this method requires that the model has `train_inputs` and `train_targets`. Args: mll: MarginalLogLikelihood to be maximized. bounds: A ParameterBounds dictionary mapping parameter names to tuples of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. optimizer_cls: Torch optimizer to use. Must not require a closure. options: options for model fitting. Relevant options will be passed to the `optimizer_cls`. Additionally, options can include: "disp" to specify whether to display model fitting diagnostics and "maxiter" to specify the maximum number of iterations. track_iterations: Track the function values and wall time for each iteration. Returns: 2-element tuple containing - mll with parameters optimized in-place. - List of OptimizationIteration objects with information on each iteration. If track_iterations is False, this will be an empty list. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> mll.train() >>> fit_gpytorch_torch(mll) >>> mll.eval() """ optim_options = {"maxiter": 100, "disp": True, "lr": 0.05} optim_options.update(options or {}) optimizer = optimizer_cls( params=[{"params": mll.parameters()}], **_filter_kwargs(optimizer_cls, **optim_options), ) # get bounds specified in model (if any) bounds_: ParameterBounds = {} if hasattr(mll, "named_parameters_and_constraints"): for param_name, _, constraint in mll.named_parameters_and_constraints(): if constraint is not None and not constraint.enforced: bounds_[param_name] = constraint.lower_bound, constraint.upper_bound # update with user-supplied bounds (overwrites if already exists) if bounds is not None: bounds_.update(bounds) iterations = [] t1 = time.time() param_trajectory: Dict[str, List[Tensor]] = { name: [] for name, param in mll.named_parameters() } loss_trajectory: List[float] = [] i = 0 converged = False train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets while not converged: optimizer.zero_grad() output = mll.model(*train_inputs) # we sum here to support batch mode args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() loss.backward() loss_trajectory.append(loss.item()) for name, param in mll.named_parameters(): param_trajectory[name].append(param.detach().clone()) if optim_options["disp"] and ( (i + 1) % 10 == 0 or i == (optim_options["maxiter"] - 1) ): print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}") if track_iterations: iterations.append(OptimizationIteration(i, loss.item(), time.time() - t1)) optimizer.step() # project onto bounds: if bounds_: for pname, param in mll.named_parameters(): if pname in bounds_: param.data = param.data.clamp(*bounds_[pname]) i += 1 converged = check_convergence( loss_trajectory=loss_trajectory, param_trajectory=param_trajectory, options={"maxiter": optim_options["maxiter"]}, ) return mll, iterations
def fit_gpytorch_model(mll: MarginalLogLikelihood, optimizer: Callable = fit_gpytorch_scipy, **kwargs: Any) -> MarginalLogLikelihood: r"""Fit hyperparameters of a GPyTorch model. On optimizer failures, a new initial condition is sampled from the hyperparameter priors and optimization is retried. The maximum number of retries can be passed in as a `max_retries` kwarg (default is 5). Optimizer functions are in botorch.optim.fit. Args: mll: MarginalLogLikelihood to be maximized. optimizer: The optimizer function. kwargs: Arguments passed along to the optimizer function, including `max_retries` and `sequential` (controls the fitting of `ModelListGP` and `BatchedMultiOutputGPyTorchModel` models). Returns: MarginalLogLikelihood with optimized parameters. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll) """ sequential = kwargs.pop("sequential", True) max_retries = kwargs.pop("max_retries", 5) if isinstance(mll, SumMarginalLogLikelihood) and sequential: for mll_ in mll.mlls: fit_gpytorch_model(mll=mll_, optimizer=optimizer, max_retries=max_retries, **kwargs) return mll elif (isinstance(mll.model, BatchedMultiOutputGPyTorchModel) and mll.model._num_outputs > 1 and sequential): try: # check if backwards-conversion is possible model_list = batched_to_model_list(mll.model) model_ = model_list_to_batched(model_list) mll_ = SumMarginalLogLikelihood(model_list.likelihood, model_list) fit_gpytorch_model( mll=mll_, optimizer=optimizer, sequential=True, max_retries=max_retries, **kwargs, ) model_ = model_list_to_batched(mll_.model) mll.model.load_state_dict(model_.state_dict()) return mll.eval() except (NotImplementedError, UnsupportedError, RuntimeError, AttributeError): warnings.warn(FAILED_CONVERSION_MSG, BotorchWarning) return fit_gpytorch_model(mll=mll, optimizer=optimizer, sequential=False, max_retries=max_retries) # retry with random samples from the priors upon failure mll.train() original_state_dict = deepcopy(mll.model.state_dict()) retry = 0 while retry < max_retries: with warnings.catch_warnings(record=True) as ws: if retry > 0: # use normal initial conditions on first try mll.model.load_state_dict(original_state_dict) sample_all_priors(mll.model) mll, _ = optimizer(mll, track_iterations=False, **kwargs) if not any( issubclass(w.category, OptimizationWarning) for w in ws): mll.eval() return mll retry += 1 logging.log(logging.DEBUG, f"Fitting failed on try {retry}.") warnings.warn("Fitting failed on all retries.", OptimizationWarning) return mll.eval()
def fit_gpytorch_torch( mll: MarginalLogLikelihood, bounds: Optional[ParameterBounds] = None, optimizer_cls: Optimizer = Adam, options: Optional[Dict[str, Any]] = None, track_iterations: bool = True, ) -> Tuple[MarginalLogLikelihood, List[OptimizationIteration]]: r"""Fit a gpytorch model by maximizing MLL with a torch optimizer. The model and likelihood in mll must already be in train mode. Note: this method requires that the model has `train_inputs` and `train_targets`. Args: mll: MarginalLogLikelihood to be maximized. bounds: A ParameterBounds dictionary mapping parameter names to tuples of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. optimizer_cls: Torch optimizer to use. Must not require a closure. options: options for model fitting. Relevant options will be passed to the `optimizer_cls`. Additionally, options can include: "disp" to specify whether to display model fitting diagnostics and "maxiter" to specify the maximum number of iterations. track_iterations: Track the function values and wall time for each iteration. Returns: 2-element tuple containing - mll with parameters optimized in-place. - List of OptimizationIteration objects with information on each iteration. If track_iterations is False, this will be an empty list. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> mll.train() >>> fit_gpytorch_torch(mll) >>> mll.eval() """ optim_options = {"maxiter": 100, "disp": True, "lr": 0.05} optim_options.update(options or {}) optimizer = optimizer_cls( params=[{ "params": mll.parameters() }], **_filter_kwargs(optimizer_cls, **optim_options), ) # get bounds specified in model (if any) bounds_: ParameterBounds = {} if hasattr(mll, "named_parameters_and_constraints"): for param_name, _, constraint in mll.named_parameters_and_constraints( ): if constraint is not None and not constraint.enforced: bounds_[ param_name] = constraint.lower_bound, constraint.upper_bound # update with user-supplied bounds (overwrites if already exists) if bounds is not None: bounds_.update(bounds) iterations = [] t1 = time.time() param_trajectory: Dict[str, List[Tensor]] = { name: [] for name, param in mll.named_parameters() } loss_trajectory: List[float] = [] i = 0 converged = False train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets while not converged: optimizer.zero_grad() output = mll.model(*train_inputs) # we sum here to support batch mode args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() loss.backward() loss_trajectory.append(loss.item()) for name, param in mll.named_parameters(): param_trajectory[name].append(param.detach().clone()) if optim_options["disp"] and ((i + 1) % 10 == 0 or i == (optim_options["maxiter"] - 1)): print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}") if track_iterations: iterations.append( OptimizationIteration(i, loss.item(), time.time() - t1)) optimizer.step() # project onto bounds: if bounds_: for pname, param in mll.named_parameters(): if pname in bounds_: param.data = param.data.clamp(*bounds_[pname]) i += 1 converged = check_convergence( loss_trajectory=loss_trajectory, param_trajectory=param_trajectory, options={"maxiter": optim_options["maxiter"]}, ) return mll, iterations
def fit_gpytorch_manifold( mll: MarginalLogLikelihood, bounds: Optional[ParameterBounds] = None, solver: Solver = pyman_solvers.ConjugateGradient(maxiter=500), nb_init_candidates: int = 200, last_x_as_candidate_prob: float = 0.9, options: Optional[Dict[str, Any]] = None, track_iterations: bool = True, approx_mll: bool = False, module_to_array_func: TModToArray = module_to_list_of_array, module_from_array_func: TArrayToMod = set_params_with_list_of_array, ) -> Tuple[MarginalLogLikelihood, Dict[str, Union[ float, List[OptimizationIteration]]]]: """ This function fits a gpytorch model by maximizing MLL with a pymanopt optimizer. The model and likelihood in mll must already be in train mode. This method requires that the model has `train_inputs` and `train_targets`. Parameters ---------- :param mll: MarginalLogLikelihood to be maximized. Optional parameters ------------------- :param nb_init_candidates: number of random initial candidates for the GP parameters :param last_x_as_candidate_prob: probability that the last set of parameter is among the initial candidates :param bounds: A dictionary mapping parameter names to tuples of lower and upper bounds. :param solver: Pymanopt solver. :param options: Dictionary of solver options, passed along to scipy.minimize. :param track_iterations: Track the function values and wall time for each iteration. :param approx_mll: If True, use gpytorch's approximate MLL computation. This is disabled by default since the stochasticity is an issue for determistic optimizers). Enabling this is only recommended when working with large training data sets (n>2000). Returns ------- :return: 2-element tuple containing - MarginalLogLikelihood with parameters optimized in-place. - Dictionary with the following key/values: "fopt": Best mll value. "wall_time": Wall time of fitting. "iterations": List of OptimizationIteration objects with information on each iteration. If track_iterations is False, will be empty. Example: gp = SingleTaskGP(train_X, train_Y) mll = ExactMarginalLogLikelihood(gp.likelihood, gp) mll.train() fit_gpytorch_scipy(mll) mll.eval() """ options = options or {} # Current parameters x0, property_dict, bounds = module_to_array_func(module=mll, bounds=bounds, exclude=options.pop( "exclude", None)) x0 = [x0i.astype(np.float64) for x0i in x0] if bounds is not None: warnings.warn( 'Bounds handling not supported yet in fit_gpytorch_manifold') # bounds = Bounds(lb=bounds[0], ub=bounds[1], keep_feasible=True) t1 = time.time() # Define cost function def cost(x): param_dict = OrderedDict(mll.named_parameters()) idx = 0 for p_name, attrs in property_dict.items(): # Construct the new tensor if len(attrs.shape) == 0: # deal with scalar tensors # new_data = torch.tensor(x[0], dtype=attrs.dtype, device=attrs.device) new_data = torch.tensor(x[idx][0], dtype=attrs.dtype, device=attrs.device) else: # new_data = torch.tensor(x, dtype=attrs.dtype, device=attrs.device).view(*attrs.shape) new_data = torch.tensor(x[idx], dtype=attrs.dtype, device=attrs.device).view(*attrs.shape) param_dict[p_name].data = new_data idx += 1 # mllx = set_params_with_array(mll, x, property_dict) train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets mll.zero_grad() output = mll.model(*train_inputs) args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() return loss def egrad(x): loss = cost(x) loss.backward() param_dict = OrderedDict(mll.named_parameters()) grad = [] for p_name in property_dict: t = param_dict[p_name].grad if t is None: # this deals with parameters that do not affect the loss if len(property_dict[p_name].shape ) > 1 and property_dict[p_name].shape[0] > 1: # if the variable is a matrix, keep its shape grad.append(np.zeros(property_dict[p_name].shape)) else: grad.append(np.zeros(property_dict[p_name].shape)) else: if t.ndim > 1 and t.shape[ 0] > 1: # if the variable is a matrix, keep its shape grad.append(t.detach().cpu().double().clone().numpy()) else: # Vector case grad.append( t.detach().view(-1).cpu().double().clone().numpy()) return grad # Define the manifold (product of manifolds) manifolds_list = [] for p_name, t in mll.named_parameters(): try: # If a manifold is given add it manifolds_list.append(attrgetter(p_name + "_manifold")(mll)) except AttributeError: # Otherwise, default: Euclidean manifolds_list.append( Euclidean(int(np.prod(property_dict[p_name].shape)))) # Product of manifolds manifold = Product(manifolds_list) # Instanciate the problem on the manifold if track_iterations: verbosity = 2 else: verbosity = 0 problem = Problem(manifold=manifold, cost=cost, egrad=egrad, verbosity=verbosity, arg=torch.Tensor()) #, precon=precon) # For cases where the Hessian is hard/long to compute, we approximate it with finite differences of the gradient. # Typical cases: the Hessian can be hard to compute due to the 2nd derivative of the eigenvalue decomposition, # e.g. in the SPD affine-invariant distance. problem._hess = types.MethodType(get_hessianfd, problem) # Choose initial parameters # Do not always consider x0, to encourage variations of the parameters. if np.random.rand() < last_x_as_candidate_prob: x0_candidates = [x0] x0_candidates += [ manifold.rand() for i in range(nb_init_candidates - 1) ] else: x0_candidates = [] x0_candidates += [manifold.rand() for i in range(nb_init_candidates)] for i in range(int(3 * nb_init_candidates / 4)): x0_candidates[i][0:4] = x0[0:4] #TODO remove hard-coding y0_candidates = [cost(x0_candidates[i]) for i in range(nb_init_candidates)] y_init, x_init_idx = torch.Tensor(y0_candidates).min(0) x_init = x0_candidates[x_init_idx] with gpt_settings.fast_computations(log_prob=approx_mll): # Logverbosity of the solver to 1 solver._logverbosity = 1 # Solve opt_x, opt_log = solver.solve(problem, x=x_init) # Construct info dict info_dict = { "fopt": float(cost(opt_x).detach().numpy()), "wall_time": time.time() - t1, "opt_log": opt_log, } # if not res.success: # TODO update # try: # # Some res.message are bytes # msg = res.message.decode("ascii") # except AttributeError: # # Others are str # msg = res.message # warnings.warn( # f"Fitting failed with the optimizer reporting '{msg}'", OptimizationWarning # ) # Set to optimum mll = module_from_array_func(mll, opt_x, property_dict) return mll, info_dict