コード例 #1
0
ファイル: Custom_GP.py プロジェクト: LSchultz114/Calibration
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        stats_X: Any,
        stats_Y: Any,
        likelihood: Optional[Likelihood] = None,
        covar_module: Optional[Module] = None,
        mean_module: Optional[Module] = None,
    ) -> None:
        r"""A single-task exact GP model.

        Args:
            train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training
                features.
            train_Y: A `n x m` or `batch_shape x n x m` (batch mode) tensor of
                training observations.
            likelihood: A likelihood. If omitted, use a standard
                GaussianLikelihood with inferred noise level.
            covar_module: The covariance (kernel) matrix. If omitted, use the
                MaternKernel.

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> model = SingleTaskGP(train_X, train_Y)
        """
        validate_input_scaling(train_X=train_X, train_Y=train_Y)
        self._validate_tensor_args(X=train_X, Y=train_Y)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_X, train_Y, _ = self._transform_tensor_args(X=train_X, Y=train_Y)
        if likelihood is None:
            noise_prior = GammaPrior(1.1, 0.05)
            noise_prior_mode = (noise_prior.concentration -
                                1) / noise_prior.rate
            likelihood = GaussianLikelihood(
                noise_prior=noise_prior,
                batch_shape=self._aug_batch_shape,
                noise_constraint=GreaterThan(
                    MIN_INFERRED_NOISE_LEVEL,
                    transform=None,
                    initial_value=noise_prior_mode,
                ),
            )
        else:
            self._is_custom_likelihood = True
        ExactGP.__init__(self, train_X, train_Y, likelihood)
        if mean_module is None:
            self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        else:
            self.mean_module = Mean_Function.Ed_Mean(
                mean_module,
                stats_X,
                stats_Y,
                batch_shape=self._aug_batch_shape)
        if covar_module is None:
            self.covar_module = ScaleKernel(
                MaternKernel(
                    nu=2.5,
                    ard_num_dims=train_X.shape[-1],
                    batch_shape=self._aug_batch_shape,
                    lengthscale_prior=GammaPrior(3.0, 6.0),
                ),
                batch_shape=self._aug_batch_shape,
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
        else:
            self.covar_module = covar_module
        self.to(train_X)
コード例 #2
0
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        train_Yvar: Tensor,
        covar_module: Optional[Module] = None,
        outcome_transform: Optional[OutcomeTransform] = None,
        **kwargs: Any,
    ) -> None:
        r"""A single-task exact GP model using fixed noise levels.

        Args:
            train_X: A `batch_shape x n x d` tensor of training features.
            train_Y: A `batch_shape x n x m` tensor of training observations.
            train_Yvar: A `batch_shape x n x m` tensor of observed measurement
                noise.
            outcome_transform: An outcome transform that is applied to the
                training data during instantiation and to the posterior during
                inference (that is, the `Posterior` obtained by calling
                `.posterior` on the model will be on the original scale).

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> train_Yvar = torch.full_like(train_Y, 0.2)
            >>> model = FixedNoiseGP(train_X, train_Y, train_Yvar)
        """
        if outcome_transform is not None:
            train_Y, train_Yvar = outcome_transform(train_Y, train_Yvar)
        self._validate_tensor_args(X=train_X, Y=train_Y, Yvar=train_Yvar)
        validate_input_scaling(train_X=train_X,
                               train_Y=train_Y,
                               train_Yvar=train_Yvar)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_X, train_Y, train_Yvar = self._transform_tensor_args(
            X=train_X, Y=train_Y, Yvar=train_Yvar)
        likelihood = FixedNoiseGaussianLikelihood(
            noise=train_Yvar, batch_shape=self._aug_batch_shape)
        ExactGP.__init__(self,
                         train_inputs=train_X,
                         train_targets=train_Y,
                         likelihood=likelihood)
        self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        if covar_module is None:
            self.covar_module = ScaleKernel(
                base_kernel=MaternKernel(
                    nu=2.5,
                    ard_num_dims=train_X.shape[-1],
                    batch_shape=self._aug_batch_shape,
                    lengthscale_prior=GammaPrior(3.0, 6.0),
                ),
                batch_shape=self._aug_batch_shape,
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
            self._subset_batch_dict = {
                "mean_module.constant": -2,
                "covar_module.raw_outputscale": -1,
                "covar_module.base_kernel.raw_lengthscale": -3,
            }
        else:
            self.covar_module = covar_module
        # TODO: Allow subsetting of other covar modules
        if outcome_transform is not None:
            self.outcome_transform = outcome_transform

        self.to(train_X)
コード例 #3
0
ファイル: gp_regression.py プロジェクト: vaibhavsri9/botorch
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        likelihood: Optional[Likelihood] = None,
        covar_module: Optional[Module] = None,
        outcome_transform: Optional[OutcomeTransform] = None,
    ) -> None:
        r"""A single-task exact GP model.

        Args:
            train_X: A `batch_shape x n x d` tensor of training features.
            train_Y: A `batch_shape x n x m` tensor of training observations.
            likelihood: A likelihood. If omitted, use a standard
                GaussianLikelihood with inferred noise level.
            covar_module: The module computing the covariance (Kernel) matrix.
                If omitted, use a `MaternKernel`.
            outcome_transform: An outcome transform that is applied to the
                training data during instantiation and to the posterior during
                inference (that is, the `Posterior` obtained by calling
                `.posterior` on the model will be on the original scale).

        Example:
            >>> train_X = torch.rand(20, 2)
            >>> train_Y = torch.sin(train_X).sum(dim=1, keepdim=True)
            >>> model = SingleTaskGP(train_X, train_Y)
        """
        if outcome_transform is not None:
            train_Y, _ = outcome_transform(train_Y)
        self._validate_tensor_args(X=train_X, Y=train_Y)
        validate_input_scaling(train_X=train_X, train_Y=train_Y)
        self._set_dimensions(train_X=train_X, train_Y=train_Y)
        train_X, train_Y, _ = self._transform_tensor_args(X=train_X, Y=train_Y)
        if likelihood is None:
            noise_prior = GammaPrior(1.1, 0.05)
            noise_prior_mode = (noise_prior.concentration -
                                1) / noise_prior.rate
            likelihood = GaussianLikelihood(
                noise_prior=noise_prior,
                batch_shape=self._aug_batch_shape,
                noise_constraint=GreaterThan(
                    MIN_INFERRED_NOISE_LEVEL,
                    transform=None,
                    initial_value=noise_prior_mode,
                ),
            )
        else:
            self._is_custom_likelihood = True
        ExactGP.__init__(self, train_X, train_Y, likelihood)
        self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape)
        if covar_module is None:
            self.covar_module = ScaleKernel(
                MaternKernel(
                    nu=2.5,
                    ard_num_dims=train_X.shape[-1],
                    batch_shape=self._aug_batch_shape,
                    lengthscale_prior=GammaPrior(3.0, 6.0),
                ),
                batch_shape=self._aug_batch_shape,
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
            self._subset_batch_dict = {
                "likelihood.noise_covar.raw_noise": -2,
                "mean_module.constant": -2,
                "covar_module.raw_outputscale": -1,
                "covar_module.base_kernel.raw_lengthscale": -3,
            }
        else:
            self.covar_module = covar_module
        # TODO: Allow subsetting of other covar modules
        if outcome_transform is not None:
            self.outcome_transform = outcome_transform
        self.to(train_X)