コード例 #1
0
def read_simple_templates(velscale, lamrange):

    hdul = fits.open(UT.lgal_dir() + "/simple_mocks/template_fluxbc03.fits")
    wave_s = hdul[1].data['wave']
    flux_bulge = hdul[1].data['L_bulge']
    flux_disk = hdul[1].data['L_disk']
    hdul.close()

    wave, flux_bulge = to_common_grid(wave_s, flux_bulge, lamrange[0],
                                      lamrange[1])
    wave, flux_disk = to_common_grid(wave_s, flux_disk, lamrange[0],
                                     lamrange[1])

    mask = ((wave >= lamrange[0]) & (wave <= lamrange[1]))
    wave = wave[mask]

    flux_bulge = flux_bulge[mask]
    model1, logLam1, velscale_out = util.log_rebin([wave[0], wave[-1]],
                                                   flux_bulge,
                                                   velscale=velscale)
    model1 /= np.median(model1)
    print(velscale, velscale_out)
    flux_disk = flux_disk[mask]
    model2, logLam2, velscale_out = util.log_rebin([wave[0], wave[-1]],
                                                   flux_disk,
                                                   velscale=velscale)
    model2 /= np.median(model2)

    templates = np.column_stack([model1, model2])
    #print([wave[0], wave[-1]])

    plt.plot(np.exp(1)**logLam1, model1)
    plt.plot(np.exp(1)**logLam2, model2)

    return (logLam1, templates)
コード例 #2
0
ファイル: fm_lgal.py プロジェクト: kgb0255/gqp_mc
def _mini_mocha_galid(lib='bc03'):
    ''' pick 100 unique Lgal galids that roughly fall under the BGS target selection 
    for the mini mock challenge: r < 20. 
    '''
    # gather all galids
    galids = []
    dir_inputs = os.path.join(UT.lgal_dir(), 'gal_inputs')
    for finput in glob.glob(dir_inputs + '/*'):
        galids.append(int(os.path.basename(finput).split('_')[2]))
    galids = np.array(galids)
    n_id = len(galids)

    # get noiseless source spectra
    _, spectra_s = _lgal_noiseless_spectra(galids, lib=lib)
    # get DECAM photometry
    photo, _ = FM.Photo_DESI(spectra_s['wave'], spectra_s['flux_dust'])

    target_selection = (photo[:, 1] <= 20.)
    print('%i Lgal galaxies within target_selection' %
          np.sum(target_selection))

    # now randomly choose 100 galids
    mini_galids = np.random.choice(galids[target_selection],
                                   size=100,
                                   replace=False)
    fids = os.path.join(UT.dat_dir(), 'mini_mocha', 'lgal.galids.%s.txt' % lib)
    np.savetxt(fids,
               mini_galids,
               fmt='%i',
               header='%i Lgal galids for mini mock challenge' %
               len(mini_galids))
    return None
コード例 #3
0
ファイル: mocha.py プロジェクト: msiudek/gqp_mc
def Fbestfit_photo(igal,
                   noise='bgs0_legacy',
                   sample='mini_mocha',
                   method='ifsps'):
    ''' file name of best-fit of photometry of spectral_challenge galaxy #igal
    :param igal: 
        index of spectral_challenge galaxy 
    :param noise:
        noise of the spectra. If noise == 'none', no noise. If noise =='legacy', 
        then legacy like noise. (default: 'none') 
    :param sample: 
        mini_mocha
    :param method: 
        fitting method. (default: ifsps)
    '''
    if noise != 'none':
        noise_spec = noise.split('_')[0]
        noise_photo = noise.split('_')[1]
    else:
        noise_spec = 'none'
        noise_photo = 'none'
    model = 'vanilla'
    f_bf = os.path.join(
        UT.lgal_dir(), sample, method,
        'lgal.photo.noise_%s.%s.%i.hdf5' % (noise_photo, model, igal))
    return f_bf
コード例 #4
0
def Fbestfit_photo(igal, noise='none', dust=False, method='ifsps'):
    ''' file name of best-fit of photometry of spectral_challenge galaxy #igal

    :param igal: 
        index of spectral_challenge galaxy 

    :param noise:
        noise of the spectra. If noise == 'none', no noise. If noise =='legacy', 
        then legacy like noise. (default: 'none') 

    :param dust: 
        spectra has dust or not. 
    
    :param method: 
        fitting method. (default: ifsps)
    '''
    if dust:
        model = 'vanilla'
    else:
        model = 'dustless_vanilla'

    f_bf = os.path.join(
        UT.lgal_dir(), 'spectral_challenge', method,
        'photo.noise_%s.dust_%s.%s.%i.hdf5' %
        (noise, ['no', 'yes'][dust], model, igal))
    return f_bf
コード例 #5
0
def read_simple_templates(velscale, lamrange):

    hdul = fits.open(UT.lgal_dir() + "/simple_mocks/template_fluxbc03.fits")
    wave = hdul[1].data['wave']
    flux_bulge = hdul[1].data['L_bulge']
    flux_disk = hdul[1].data['L_disk']
    hdul.close()

    #put on constant grid, as this is assumed by log_rebin
    wave_s, flux_bulge = to_constant_grid(wave, flux_bulge, lamrange[0],
                                          lamrange[1])
    wave_s, flux_disk = to_constant_grid(wave, flux_disk, lamrange[0],
                                         lamrange[1])

    print('full model wavelength range: ', wave_s[0], wave_s[-1])
    print('requested model wavelength range:', lamrange)

    #flux_bulge = flux_bulge[mask]
    model1, logLam1, velscale_out = util.log_rebin([lamrange[0], lamrange[1]],
                                                   flux_bulge,
                                                   velscale=velscale)
    norm1 = np.median(model1)
    model1 /= norm1
    print(velscale, velscale_out)
    #flux_disk = flux_disk[mask]
    model2, logLam2, velscale_out = util.log_rebin([lamrange[0], lamrange[1]],
                                                   flux_disk,
                                                   velscale=velscale)
    norm2 = np.median(model2)
    model2 /= norm2
    print(velscale, velscale_out)

    #print([wave[0], wave[-1]])

    #protect against data goint outside of models wavelength range
    #Stelib library is defined below 3400, but at lower resolution
    if lamrange[0] < 3400.0:
        lamrange_new = [3400.0, lamrange[1]]
        print(lamrange_new)

        mask = ((np.exp(1)**logLam1 >= lamrange_new[0]) &
                (np.exp(1)**logLam1 <= lamrange_new[1]))
        logLam1 = logLam1[mask]
        logLam2 = logLam2[mask]
        model1 = model1[mask]
        model2 = model2[mask]

    templates = np.column_stack([model1, model2])

    plt.plot(np.exp(1)**logLam1, model1)
    plt.plot(np.exp(1)**logLam2, model2)

    return (logLam1, templates, [norm1, norm2])
コード例 #6
0
ファイル: fm_lgal.py プロジェクト: kgb0255/gqp_mc
def _lgal_metadata(galids):
    ''' return galaxy properties (meta data) of Lgal galaxies 
    given the galids 
    '''
    tlookback, dt = [], []
    sfh_disk, sfh_bulge, Z_disk, Z_bulge, logM_disk, logM_bulge, logM_total = [], [], [], [], [], [], []
    t_age_MW, Z_MW = [], []
    for i, galid in enumerate(galids):
        f_input = os.path.join(
            UT.lgal_dir(), 'gal_inputs',
            'gal_input_%i_BGS_template_FSPS_uvmiles.csv' % galid)
        gal_input = Table.read(f_input, delimiter=' ')

        tlookback.append(gal_input['sfh_t'])  # lookback time (age)
        dt.append(gal_input['dt'])
        # SF history
        sfh_disk.append(gal_input['sfh_disk'])
        sfh_bulge.append(gal_input['sfh_bulge'])
        # metalicity history
        Z_disk.append(gal_input['Z_disk'])
        Z_bulge.append(gal_input['Z_bulge'])
        # formed mass
        logM_disk.append(np.log10(np.sum(gal_input['sfh_disk'])))
        logM_bulge.append(np.log10(np.sum(gal_input['sfh_bulge'])))
        logM_total.append(
            np.log10(
                np.sum(gal_input['sfh_disk']) +
                np.sum(gal_input['sfh_bulge'])))
        # mass weighted
        t_age_MW.append(
            np.sum(gal_input['sfh_t'] *
                   (gal_input['sfh_disk'] + gal_input['sfh_bulge'])) /
            np.sum(gal_input['sfh_disk'] + gal_input['sfh_bulge']))
        Z_MW.append(
            np.sum(gal_input['Z_disk'] * gal_input['sfh_disk'] +
                   gal_input['Z_bulge'] * gal_input['sfh_bulge']) /
            np.sum(gal_input['sfh_disk'] + gal_input['sfh_bulge']))

    meta = {}
    meta['galid'] = galids
    meta['t_lookback'] = tlookback
    meta['dt'] = dt
    meta['sfh_disk'] = sfh_disk
    meta['sfh_bulge'] = sfh_bulge
    meta['Z_disk'] = Z_disk
    meta['Z_bulge'] = Z_bulge
    meta['logM_disk'] = logM_disk
    meta['logM_bulge'] = logM_bulge
    meta['logM_total'] = logM_total
    meta['t_age_MW'] = t_age_MW
    meta['Z_MW'] = Z_MW
    return meta
コード例 #7
0
ファイル: fm_lgal.py プロジェクト: kgb0255/gqp_mc
def _lgal_noiseless_spectra(galids, lib='bc03'):
    ''' return noiseless source spectra of Lgal galaxies given the galids and 
    the library. The spectra is interpolated to a standard wavelength grid. 
    '''
    n_id = len(galids)

    if lib == 'bc03': str_lib = 'BC03_Stelib'

    # noiseless source spectra
    _Fsource = lambda galid: os.path.join(
        UT.lgal_dir(), 'templates', 'gal_spectrum_%i_BGS_template_%s.fits' %
        (galid, str_lib))

    wavemin, wavemax = 3000.0, 3e5
    wave = np.arange(wavemin, wavemax, 0.2)
    flux_dust = np.zeros((n_id, len(wave)))
    flux_nodust = np.zeros((n_id, len(wave)))

    redshift, cosi, tau_ism, tau_bc, vd_disk, vd_bulge = [], [], [], [], [], []
    for i, galid in enumerate(galids):
        f_source = fits.open(_Fsource(galid))
        # grab extra meta data from header
        hdr = f_source[0].header
        redshift.append(hdr['REDSHIFT'])
        cosi.append(hdr['COSI'])
        tau_ism.append(hdr['TAUISM'])
        tau_bc.append(hdr['TAUBC'])
        vd_disk.append(hdr['VD_DISK'])
        vd_bulge.append(hdr['VD_BULGE'])

        specin = f_source[1].data

        _flux_dust = specin[
            'flux_dust_nonoise'] * 1e-4 * 1e7 * 1e17  #from W/A/m2 to 10e-17 erg/s/cm2/A
        _flux_nodust = specin[
            'flux_nodust_nonoise'] * 1e-4 * 1e7 * 1e17  #from W/A/m2 to 10e-17 erg/s/cm2/A

        interp_flux_dust = sp.interpolate.interp1d(specin['wave'],
                                                   _flux_dust,
                                                   fill_value='extrapolate')
        interp_flux_nodust = sp.interpolate.interp1d(specin['wave'],
                                                     _flux_nodust,
                                                     fill_value='extrapolate')

        flux_dust[i, :] = interp_flux_dust(wave)
        flux_nodust[i, :] = interp_flux_nodust(wave)

    meta = {
        'redshift': np.array(redshift),
        'cosi': np.array(cosi),
        'tau_ism': np.array(tau_ism),
        'tau_bc': np.array(tau_bc),
        'vd_disk': np.array(vd_disk),
        'vd_bulge': np.array(vd_bulge)
    }
    spectra = {
        'wave': wave,
        'flux_dust': flux_dust,
        'flux_nodust': flux_nodust
    }
    return meta, spectra
コード例 #8
0
# --- plotting ---
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['text.usetex'] = True
mpl.rcParams['font.family'] = 'serif'
mpl.rcParams['axes.linewidth'] = 1.5
mpl.rcParams['axes.xmargin'] = 1
mpl.rcParams['xtick.labelsize'] = 'x-large'
mpl.rcParams['xtick.major.size'] = 5
mpl.rcParams['xtick.major.width'] = 1.5
mpl.rcParams['ytick.labelsize'] = 'x-large'
mpl.rcParams['ytick.major.size'] = 5
mpl.rcParams['ytick.major.width'] = 1.5
mpl.rcParams['legend.frameon'] = False

dir_fig = os.path.join(UT.lgal_dir(), 'spectral_challenge')


def mock_challenge_spec(noise='none', dust=False, method='ifsps'):
    ''' Compare properties inferred from forward modeled spectra to input properties
    '''
    # read Lgal spectra of the spectral_challenge mocks and get input properties
    specs, meta = Data.Spectra(sim='lgal',
                               noise=noise,
                               lib='bc03',
                               sample='spectral_challenge')
    Mstar_input = meta['logM_total']  # total mass
    Z_MW_input = meta['Z_MW']  # mass-weighted metallicity
    tage_input = meta['t_age_MW']  # mass-weighted age

    theta_inf = []