コード例 #1
0
ファイル: testing.py プロジェクト: kishkash555/biu
def grad_sanity():
    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    # import sys
    #sys.path.append("C:\Shahar\BarIlan\NLP-courses\89687-DL\Assignment1\code\loglinear.py")
    #print(sys.path)
    #from .grad_check import gradient_check
    global W, b
    W, b = ll.create_classifier(3, 6)
    b = np.array(b, ndmin=2)

    def _loss_and_W_grad(W):
        global b
        x = np.array([[1, 2, 3]], np.double)
        loss, grads = ll.loss_and_gradients(x, 0, [W, b])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        x = np.array([[1, 2, 3]], np.double)
        loss, grads = ll.loss_and_gradients(x, 0, [W, b])
        return loss, grads[1]

    for _ in range(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0], b.shape[1])
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_W_grad, W)
コード例 #2
0
def main():

    data, target = load_digits(return_X_y=True)
    data, target = shuffle(data, target)
    target = target.reshape(len(target), 1)
    enc = sklearn.preprocessing.OneHotEncoder()
    enc.fit(target)
    target = enc.transform(target).toarray()
    data = data / 16.0  # VERY IMPORTANT: ALWAYS SCALE DATA

    # import ipdb; ipdb.set_trace()

    loss = MSE("mse_loss")
    sgd_optimizer = SGD()
    sgd_optimizer.alpha = 0.1
    model = Model(name="mnist_test", loss_layer=loss, optimizer=sgd_optimizer)

    model.add(Dense(n_in=64, n_out=32, name="dense1"))
    model.add(Sigmoid(name="act1"))
    model.add(Dense(n_in=32, n_out=10, name="dense2"))
    model.add(Sigmoid(name="act2"))

    from grad_check import gradient_check
    model.feature_size = 64
    gradient_check(model)

    for epoch in range(500):
        print("Epoch: {}".format(epoch))
        epoch_loss = []
        for start_idx in range(0, len(data), 25):

            #batching
            end_idx = min(len(data), start_idx + 25)
            batch_x = data[start_idx:end_idx, :]
            batch_y = target[start_idx:end_idx, :]

            # forward -> backward -> loss
            _ = model.do_forward(batch_x)
            batch_loss = model.do_loss(batch_y)
            model.do_backward()
            model.do_update()

            epoch_loss.append(batch_loss)

        print("Loss: {}".format(sum(epoch_loss) / len(epoch_loss)))
        model.optimizer.alpha = model.optimizer.alpha

    # Predict
    data_test, target_test = data[:200], target[:200]
    y_preds = model.do_forward(data_test)
    target_test = np.argmax(target_test, axis=1)
    y_preds = np.argmax(y_preds, axis=1)
    print((y_preds == target_test).mean())
コード例 #3
0
def sanity_check():
    from grad_check import gradient_check

    W, b, U, b_tag = create_classifier(3, 3, 4)

    def _loss_and_W_grad(W):
        global b
        global U
        global b_tag
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        global U
        global b_tag
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[1]

    def _loss_and_U_grad(U):
        global W
        global b
        global b_tag
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[2]

    def _loss_and_b_tag_grad(b_tag):
        global W
        global b
        global U
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[3]

    for _ in xrange(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        U = np.random.randn(W.shape[0], W.shape[1])
        b_tag = np.random.randn(b.shape[0])
        print 'W:'
        gradient_check(_loss_and_W_grad, W)
        print 'b:'
        gradient_check(_loss_and_b_grad, b)
        print 'U:'
        gradient_check(_loss_and_U_grad, U)
        print 'b_tag:'
        gradient_check(_loss_and_b_tag_grad, b_tag)
コード例 #4
0
ファイル: testing.py プロジェクト: kishkash555/biu
def mlpn_grad_sanity():
    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    # import sys
    #sys.path.append("C:\Shahar\BarIlan\NLP-courses\89687-DL\Assignment1\code\loglinear.py")
    #print(sys.path)
    #from .grad_check import gradient_check
    W, b, U, b_tag = mlpn.create_classifier([3, 4, 6])

    def _loss_and_W_grad(W):
        x = np.array([1, 2, 3], np.double)
        loss, grads = mlpn.loss_and_gradients(x, 0, [W, b, U, b_tag])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        x = np.array([1, 2, 3], np.double)
        loss, grads = mlpn.loss_and_gradients(x, 0, [W, b, U, b_tag])
        return loss, grads[1]

    def _loss_and_U_grad(U):
        x = np.array([1, 2, 3], np.double)
        loss, grads = mlpn.loss_and_gradients(x, 0, [W, b, U, b_tag])
        return loss, grads[2]

    def _loss_and_b_tag_grad(b_tag):
        x = np.array([1, 2, 3], np.double)
        loss, grads = mlpn.loss_and_gradients(x, 0, [W, b, U, b_tag])
        return loss, grads[3]

    for _ in range(1):
        W = randomize_array(W)
        b = randomize_array(b)
        U = randomize_array(U)
        b_tag = randomize_array(b_tag)
        print("b_tag")
        gradient_check(_loss_and_b_tag_grad, b_tag)
        print("U:")
        gradient_check(_loss_and_U_grad, U)
        print("b:")
        gradient_check(_loss_and_b_grad, b)
        print("W:")
        gradient_check(_loss_and_W_grad, W)
コード例 #5
0
ファイル: mlpn.py プロジェクト: shon-otmazgin/loglinear_mlp
    W, b = create_classifier([3, 4])

    def _loss_and_W_grad(W):
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[1]

    for _ in range(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_W_grad, W)

    W1, b1, W2, b2, W3, b3 = create_classifier([3, 20, 30, 4])

    def _loss_and_W1_grad(W1):
        global b1, W2, b2, W3, b3
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W1, b1, W2, b2, W3, b3])
        return loss, grads[0]

    def _loss_and_b1_grad(b1):
        global W1, W2, b2, W3, b3
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W1, b1, W2, b2, W3, b3])
        return loss, grads[1]
コード例 #6
0
ファイル: mlp1.py プロジェクト: dmoshayof/ML-Deep_Network

    def _loss_and_b_grad(b):
        global W, U, b_tag
        loss, grads = loss_and_gradients([1, 2], 0, [W, b, U, b_tag])
        return loss, grads[1]


    def _loss_and_U_grad(U):
        global W, b, b_tag
        loss, grads = loss_and_gradients([1, 2], 0, [W, b, U, b_tag])
        return loss, grads[2]


    def _loss_and_b_tag_grad(b_tag):
        global W, U, b
        loss, grads = loss_and_gradients([1, 2], 0, [W, b, U, b_tag])
        return loss, grads[3]


    for _ in range(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        U = np.random.randn(U.shape[0], U.shape[1])
        b = np.random.randn(b.shape[0])
        b_tag = np.random.randn(b_tag.shape[0])

        gradient_check(_loss_and_W_grad, W)
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_U_grad, U)
        gradient_check(_loss_and_b_tag_grad, b_tag)
コード例 #7
0
ファイル: mlpn.py プロジェクト: tomergill/Deep_Learning_Ass1

if __name__ == '__main__':
    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    from grad_check import gradient_check

    dims = [5, 4, 7, 3]
    params = create_classifier(dims)


    def _loss_and_p_grad(p):
        """
        General function - return loss and the gradients with respect to parameter p
        """
        params_to_send = np.copy(params)
        par_num = 0
        for i in range(len(params)):
            if p.shape == params[i].shape:
                params_to_send[i] = p
                par_num = i

        loss, grads = loss_and_gradients(np.array(range(dims[0])), 0, params_to_send)
        return loss, grads[par_num]


    for _ in xrange(10):
        my_params = create_classifier(dims)
        for p in my_params:
            gradient_check(_loss_and_p_grad, p)
コード例 #8
0
ファイル: mlpn.py プロジェクト: omerz10/Deep-Learning
                                         [W, b, U1, b_tag1, U2, b_tag2])
        return loss, grads[2]

    def _loss_and_b_tag1_grad(b_tag1):
        global W, b, U1, U2, b_tag2
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U1, b_tag1, U2, b_tag2])
        return loss, grads[3]

    def _loss_and_U2_grad(U2):
        global W, b, U1, b_tag1, b_tag2
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U1, b_tag1, U2, b_tag2])
        return loss, grads[4]

    def _loss_and_b_tag2_grad(b_tag2):
        global W, b, U1, b_tag1, U2
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U1, b_tag1, U2, b_tag2])
        return loss, grads[5]

    for _ in xrange(10):
        W, b, U1, b_tag1, U2, b_tag2 = create_classifier([3, 5, 7, 9])

        gradient_check(_loss_and_b_tag2_grad, b_tag2)
        gradient_check(_loss_and_U2_grad, U2)
        gradient_check(_loss_and_b_tag1_grad, b_tag1)
        gradient_check(_loss_and_U1_grad, U1)
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_W_grad, W)
コード例 #9
0
def check():
    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    from grad_check import gradient_check

    W1, b1, W2, b2, W3, b3 = init_net([3, 4, 8, 5])

    def _loss_and_W1_grad(W1):
        global b1, W2, b2, W3, b3
        loss, grads = backprop([-7.3, 5, 0], 0, [W1, b1, W2, b2, W3, b3])
        return loss, grads[0]

    def _loss_and_b1_grad(b1):
        global W1, W2, b2, W3, b3
        loss, grads = backprop([-9, 22, 3.2], 2, [W1, b1, W2, b2, W3, b3])
        return loss, grads[1]

    def _loss_and_W2_grad(W2):
        global W1, b1, b2, W3, b3
        loss, grads = backprop([-1, 7, 4], 1, [W1, b1, W2, b2, W3, b3])
        return loss, grads[2]

    def _loss_and_b2_grad(b2):
        global W1, b1, W2, W3, b3
        loss, grads = backprop([1, 2, 3], 0, [W1, b1, W2, b2, W3, b3])
        return loss, grads[3]

    def _loss_and_W3_grad(W3):
        global W1, b1, W2, b2, b3
        loss, grads = backprop([-1, 78, 4], 1, [W1, b1, W2, b2, W3, b3])
        return loss, grads[4]

    def _loss_and_b3_grad(b3):
        global W1, b1, W2, b2, W3
        loss, grads = backprop([1, 2, 7.25], 3, [W1, b1, W2, b2, W3, b3])
        return loss, grads[5]

    for _ in range(10):
        W1 = np.random.randn(W1.shape[0], W1.shape[1])
        b1 = np.random.randn(b1.shape[0])
        W2 = np.random.randn(W2.shape[0], W2.shape[1])
        b2 = np.random.randn(b2.shape[0])
        W3 = np.random.randn(W3.shape[0], W3.shape[1])
        b3 = np.random.randn(b3.shape[0])
        gradient_check(_loss_and_b1_grad, b1)
        gradient_check(_loss_and_W1_grad, W1)
        gradient_check(_loss_and_b2_grad, b2)
        gradient_check(_loss_and_W2_grad, W2)
        gradient_check(_loss_and_b3_grad, b3)
        gradient_check(_loss_and_W3_grad, W3)
コード例 #10
0
    test2 = softmax(np.array([1001, 1002]))
    print test2
    assert np.amax(np.fabs(test2 - np.array([0.26894142, 0.73105858]))) <= 1e-6

    test3 = softmax(np.array([-1001, -1002]))
    print test3
    assert np.amax(np.fabs(test3 - np.array([0.73105858, 0.26894142]))) <= 1e-6

    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    from grad_check import gradient_check

    W1, b1 = create_classifier(3, 4)

    def _loss_and_W_grad(W):
        global b1
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W1
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[1]

    for _ in xrange(1000):
        W1 = np.random.randn(W1.shape[0], W1.shape[1])
        b1 = np.random.randn(b1.shape[0])
        gradient_check(_loss_and_b_grad, b1)
        gradient_check(_loss_and_W_grad, W1)
コード例 #11
0
    test3 = softmax(np.array([-1001, -1002]))
    print(test3)
    assert np.amax(np.fabs(test3 - np.array([0.73105858, 0.26894142]))) <= 1e-6

    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    from grad_check import gradient_check

    W, b = create_classifier(3, 4)

    def _loss_and_W_grad(W):
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[1]

    for _ in xrange(1000):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        # result = gradient_check(_loss_and_b_grad, b)
        # if (not result):
        #     print "ERROR"
        #     exit()
        if (not gradient_check(_loss_and_W_grad, W)):
            print("ERROR")
            exit()
コード例 #12
0
    def _loss_and_W1_grad(W1):
        global b1
        loss, grads = loss_and_gradients(np.array([1, 2, 3]), 0,
                                         [W1, b1, W2, b2])
        return loss, grads[0]

    def _loss_and_b1_grad(b1):
        global W1
        loss, grads = loss_and_gradients(np.array([1, 2, 3]), 0,
                                         [W1, b1, W2, b2])
        return loss, grads[1]

    def _loss_and_b2_grad(b2):
        loss, grads = loss_and_gradients(np.array([1, 2, 3]), 0,
                                         [W1, b1, W2, b2])
        return loss, grads[3]

    for _ in xrange(10):
        W1 = np.random.randn(W1.shape[0], W1.shape[1])
        b1 = np.random.randn(b1.shape[0])
        W2 = np.random.randn(W2.shape[0], W2.shape[1])
        b2 = np.random.randn(b2.shape[0])
        loss, grads = loss_and_gradients(np.array([1, 2, 3]), 0,
                                         [W1, b1, W2, b2])

        gradient_check(_loss_and_W2_grad, W2)
        gradient_check(_loss_and_W1_grad, W1)
        gradient_check(_loss_and_b1_grad, b1)
        gradient_check(_loss_and_b2_grad, b2)
コード例 #13
0
        global b_tag
        global W
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[2]

    def _loss_and_b_tag_grad(b_tag):
        global U
        global W
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b, U, b_tag])
        return loss, grads[3]

    for _ in xrange(100):
        U = np.random.randn(U.shape[0], U.shape[1])
        b_tag = np.random.randn(b_tag.shape[0])
        b = np.random.randn(b.shape[0])
        W = np.random.randn(W.shape[0], W.shape[1])
        if (not gradient_check(_loss_and_b_grad, b)):
            print("ERROR")
            exit()
        if (not gradient_check(_loss_and_W_grad, W)):
            print("ERROR")
            exit()
        if (not gradient_check(_loss_and_U_grad, U)):
            print("ERROR")
            exit()
        if (not gradient_check(_loss_and_b_tag_grad, b_tag)):
            print("ERROR")
            exit()
コード例 #14
0
def sanity_check():
    from grad_check import gradient_check

    W, b, U, b_tag, V, b_t = create_classifier([3, 3, 4, 4])

    def _loss_and_W_grad(W):
        global b
        global U
        global b_tag
        global V
        global b_t
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        global U
        global b_tag
        global V
        global b_t
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[1]

    def _loss_and_U_grad(U):
        global W
        global b
        global b_tag
        global V
        global b_t
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[2]

    def _loss_and_b_tag_grad(b_tag):
        global W
        global b
        global U
        global V
        global b_t
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[3]

    def _loss_and_V_grad(V):
        global W
        global b
        global U
        global b_tag
        global b_t
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[4]

    def _loss_and_b_t_grad(b_t):
        global W
        global b
        global U
        global b_tag
        global V
        loss, grads = loss_and_gradients([1, 2, 3], 0,
                                         [W, b, U, b_tag, V, b_t])
        return loss, grads[5]

    for _ in xrange(2):
        print _, '!!!!!!!!!!!!!!!!!!'
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        U = np.random.randn(U.shape[0], U.shape[1])
        b_tag = np.random.randn(b_tag.shape[0])
        V = np.random.randn(V.shape[0], V.shape[1])
        b_t = np.random.randn(b_t.shape[0])
        print 'W:'
        gradient_check(_loss_and_W_grad, W)
        print 'b:'
        gradient_check(_loss_and_b_grad, b)
        print 'U:'
        gradient_check(_loss_and_U_grad, U)
        print 'b_tag:'
        gradient_check(_loss_and_b_tag_grad, b_tag)
        print 'V:'
        gradient_check(_loss_and_V_grad, V)
        print 'bb:'
        gradient_check(_loss_and_b_t_grad, b_t)
コード例 #15
0
    U, W, b, b_prime = create_classifier(3, 2, 4)

    def _loss_and_U_grad(U):
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, W, b, b_prime])
        return loss, grads[0]

    def _loss_and_W_grad(W):
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, W, b, b_prime])
        return loss, grads[1]

    def _loss_and_b_grad(b):
        global W
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, W, b, b_prime])
        return loss, grads[2]

    def _loss_and_bprime_grad(b_prime):
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, W, b, b_prime])
        return loss, grads[3]

    for _ in xrange(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        U = np.random.randn(U.shape[0], U.shape[1])
        b_prime = np.random.randn(b_prime.shape[0])
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, W, b, b_prime])
        gradient_check(_loss_and_U_grad, U)
        gradient_check(_loss_and_W_grad, W)
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_bprime_grad, b_prime)
コード例 #16
0
ファイル: mlp1.py プロジェクト: shauli-ravfogel/DL4Seq_EX1
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, b2, W, b1])
        return loss, grads[2]

    def _loss_and_b1_grad(b1):

        loss, grads = loss_and_gradients([1, 2, 3], 1, [U, b2, W, b1])
        return loss, grads[3]

    def _loss_and_U_grad(U):
        loss, grads = loss_and_gradients([1, 2, 3], 0, [U, b2, W, b1])
        return loss, grads[0]

    def _loss_and_b2_grad(b2):

        loss, grads = loss_and_gradients([1, 2, 3], 1, [U, b2, W, b1])
        return loss, grads[1]

    for _ in xrange(10):

        U = np.random.randn(U.shape[0], U.shape[1])
        b1 = np.random.randn(b1.shape[0])
        b2 = np.random.randn(b2.shape[0])
        W = np.random.randn(W.shape[0], W.shape[1])

        #set dropout_rate=0 before gradient test

        gradient_check(_loss_and_U_grad, U)
        gradient_check(_loss_and_W_grad, W)
        gradient_check(_loss_and_b1_grad, b1)
        gradient_check(_loss_and_b2_grad, b2)
コード例 #17
0
    test2 = softmax(np.array([1001, 1002]))
    print(test2)
    assert np.amax(np.fabs(test2 - np.array([0.26894142, 0.73105858]))) <= 1e-6

    test3 = softmax(np.array([-1001, -1002]))
    print(test3)
    assert np.amax(np.fabs(test3 - np.array([0.73105858, 0.26894142]))) <= 1e-6

    # Sanity checks. If these fail, your gradient calculation is definitely wrong.
    # If they pass, it is likely, but not certainly, correct.
    from grad_check import gradient_check

    W, b = create_classifier(3, 4)

    def _loss_and_W_grad(W):
        global b
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[0]

    def _loss_and_b_grad(b):
        global W
        loss, grads = loss_and_gradients([1, 2, 3], 0, [W, b])
        return loss, grads[1]

    # for _ in xrange(10):
    for _ in range(10):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_W_grad, W)
コード例 #18
0
                                         [W, b, U, b_tag, W2, b2, W3, b3])
        return loss, grads[7]

    def text_to_unigrams(text):
        return ["%s" % c1 for c1 in zip(text[1:])]

    for _ in range(100):
        W = np.random.randn(W.shape[0], W.shape[1])
        b = np.random.randn(b.shape[0])
        U = np.random.randn(U.shape[0], U.shape[1])
        b_tag = np.random.randn(b_tag.shape[0])
        W2 = np.random.randn(W2.shape[0], W2.shape[1])
        b2 = np.random.randn(b2.shape[0])
        W3 = np.random.randn(W3.shape[0], W3.shape[1])
        b3 = np.random.randn(b3.shape[0])
        gradient_check(_loss_and_b_grad, b)
        gradient_check(_loss_and_W_grad, W)
        gradient_check(_loss_and_U_grad, U)
        gradient_check(_loss_and_b_tag_grad, b_tag)
        gradient_check(_loss_and_W2_grad, W2)
        gradient_check(_loss_and_b2_grad, b2)
        gradient_check(_loss_and_W3_grad, W3)
        gradient_check(_loss_and_b3_grad, b3)

    # classier_params = create_classifier([5,10,15,20,30,10,5,3,32,11])
    # for _ in range(10):
    #     for i in range(0,len(classier_params) - 1,2):
    #         s1 = classier_params[i].shape[0]
    #         s2 = classier_params[i].shape[1]
    #         classier_params[i] = np.random.rand(classier_params[i].shape[0],classier_params[i].shape[1])
    #         classier_params[i+1] = np.random.rand(classier_params[i+1].shape[0])