def test_multiple_hparams(self): opt_dict = { 'hp-beta1': optim.GradientDescent(learning_rate=1 ).create(np.array([0.0, 0.1, 0.2, 0.9])), 'hp-learning_rate': optim.GradientDescent(learning_rate=1 ).create(np.array([0.0, 0.1, 0.2, 0.9])), } gv_dict = { 'beta1': { 'learning_rate_scalar': 1, 'activation_fn': 'linear', 'activation_ceiling': None, 'activation_floor': None, 'clip_min': None, 'clip_max': None, }, 'learning_rate': { 'learning_rate_scalar': 1, 'activation_fn': 'linear', 'activation_ceiling': None, 'activation_floor': None, 'clip_min': None, 'clip_max': None, } } out = guided_parameters.get_activated_hparams(opt_dict, gv_dict) self.assertListEqual(list(out['hp-beta1']), [0.0, 0.1, 0.2, 0.9]) self.assertListEqual(list(out['hp-learning_rate']), [0.0, 0.1, 0.2, 0.9])
def test_empty(self): opt_dict = {} gv_dict = {} out = guided_parameters.get_activated_hparams(opt_dict, gv_dict) self.assertEqual( out, { 'hp-beta1': None, 'hp-decay_rate': None, 'hp-eps': None, 'hp-learning_rate': None, 'hp-weight_decay': None, 'hp-label_smoothing': None, })
def test_ignores_model(self): opt_dict = { 'model': optim.GradientDescent(learning_rate=1 ).create(np.array([0.0, 0.1, 0.2, 0.9])), } gv_dict = {} out = guided_parameters.get_activated_hparams(opt_dict, gv_dict) self.assertEqual( out, { 'hp-beta1': None, 'hp-decay_rate': None, 'hp-eps': None, 'hp-learning_rate': None, 'hp-weight_decay': None, 'hp-label_smoothing': None, })