コード例 #1
0
        (
            torch.ones(
                1, faces_gt.shape[1], 2, 1, dtype=torch.float32,
                device=device),
            torch.zeros(
                1, faces_gt.shape[1], 2, 1, dtype=torch.float32,
                device=device),
            torch.zeros(
                1, faces_gt.shape[1], 2, 1, dtype=torch.float32,
                device=device),
        ),
        dim=-1,
    )

    # Initialize the renderer.
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 8.0
    elevation = 0.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    pendulum_gt = SimplePendulum(args.mass, args.radius, args.gravity,
                                 args.length, args.damping).to(device)
    theta_init = torch.tensor([0.0, 3.0], device=device)
    times = torch.arange(
        args.starttime,
        args.starttime + args.simsteps * args.dtime,
        args.dtime,
        device=device,
    )
    numsteps = times.numel()
コード例 #2
0
        # # writer = imageio.get_writer("cache/a.gif", mode="I")
        # for i in trange(60):
        #     img = seqs[0, i]
        #     # writer.append_data(img.astype(np.uint8))
        #     imgs_gt.append(img.astype(np.uint8))
        # # writer.close()

        # Initialize the renderer
        image_size = 256
        camera_mode = "look_at"
        camera_distance = 8.0
        elevation = 30.0
        azimuth = 0.0
        # Initialize the renderer.
        renderer = SoftRenderer(image_size=image_size,
                                camera_mode=camera_mode,
                                device=device)
        renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

        sim_duration = 2.0  # seconds
        fps = 30  # frames per second
        sim_steps = int((sim_duration * fps) / 2)

        # obj = get_primitive_obj(shape[0])
        obj = get_primitive_obj(INT_TO_PRIMITIVE[shape[0]])
        # print(obj)
        mesh = TriangleMesh.from_obj(obj)
        vertices = ((
            meshutils.normalize_vertices(mesh.vertices)  # + \
            # torch.from_numpy(init_pos[i]).float().unsqueeze(0)
        ).to(device).unsqueeze(0))
コード例 #3
0
    model.contact_ke = 1.0e4
    model.contact_kd = 1000.0
    model.contact_kf = 1000.0
    model.contact_mu = 0.5

    model.particle_radius = 0.01
    model.ground = False

    target = torch.tensor((3.5, 0.0, 0.0))
    initial_velocity = torch.tensor((1.0, 0.0, 0.0), requires_grad=True)

    integrator = df.sim.SemiImplicitIntegrator()

    # Setup SoftRasterizer
    device = "cuda:0"
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 15.0
    elevation = 0.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    faces = model.tri_indices
    textures = torch.cat(
        (
            torch.zeros(1, faces.shape[-2], 2, 1, dtype=torch.float32, device=device),
            torch.ones(1, faces.shape[-2], 2, 1, dtype=torch.float32, device=device),
            torch.zeros(1, faces.shape[-2], 2, 1, dtype=torch.float32, device=device),
        ),
        dim=-1,
    )
コード例 #4
0
ファイル: demo_h5.py プロジェクト: gradsim/gradsim
        # copy_scripts(
        #     os.path.abspath(
        #         os.path.join(os.path.dirname(os.path.abspath(__file__)), "../gradsim")
        #     ),
        #     os.path.join(args.out_dir, "gradsim"),
        # )
        shutil.copy(os.path.abspath(__file__), args.out_dir)
        os.makedirs(os.path.join(args.out_dir, "obj"), exist_ok=True)
        for obj in glob.glob(os.path.join(args.data_dir, "*.obj")):
            shutil.copy(obj, os.path.join(args.out_dir, "obj"))
        with open(os.path.join(args.out_dir, "args.yaml"), "w") as f:
            yaml.dump(vars(args), f, default_flow_style=False)

    # Initialize the renderer.
    renderer = SoftRenderer(image_size=args.image_size,
                            camera_mode=args.camera_mode,
                            device=device)
    renderer.set_eye_from_angles(args.camera_distance, args.elevation,
                                 args.azimuth)

    # Initialize sampler
    prim_gen = PrimitiveGenerator(mass_scaling=args.mass_scaling,
                                  mass_offset=args.mass_offset,
                                  data_type=args.data_type,
                                  data_dir=args.data_dir)

    objects = sorted(glob.glob(os.path.join(args.data_dir, "*.obj")))

    pos, ornt, linvel, angvel = None, None, None, None

    try:
コード例 #5
0
        mesh=mesh,
        scale=scale_gt,
        density=density_gt,
        ke=ke_gt,
        kd=kd_gt,
        kf=kf_gt,
        mu=mu_gt,
    )
    model_gt = builder_gt.finalize("cpu")
    model_gt.ground = True

    integrator = df.sim.SemiImplicitIntegrator()

    # Setup SoftRasterizer
    device = "cuda:0"
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 10.0
    elevation = 30.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    render_every = 60 * 4

    vertices = torch.from_numpy(np.array(points).astype(np.float32))
    faces = torch.from_numpy(np.asarray(indices).reshape((-1, 3)))
    textures = torch.cat(
        (
            torch.ones(
                1, faces.shape[-2], 2, 1, dtype=torch.float32, device=device),
            torch.zeros(
                1, faces.shape[-2], 2, 1, dtype=torch.float32, device=device),
コード例 #6
0
    # Add this force to the body.
    body.add_external_force(gravity)

    sim_duration = 2.0
    fps = 30
    sim_substeps = 32
    dtime = (1 / 30) / sim_substeps
    sim_steps = int(sim_duration / dtime)
    render_every = sim_substeps

    # Initialize the simulator with the body at the origin.
    sim = Simulator(bodies=[body], engine=SemiImplicitEulerWithContacts(), dtime=dtime,)

    # Initialize the renderer.
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 10.0
    elevation = 30.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    # Run the simulation.
    writer = imageio.get_writer(outfile, mode="I")
    for i in trange(sim_steps):
        sim.step()
        # print("Body is at:", body.position)
        if i % render_every == 0:
            rgba = renderer.forward(
                body.get_world_vertices().unsqueeze(0), faces, textures
            )
            img = rgba[0].permute(1, 2, 0).detach().cpu().numpy()
コード例 #7
0
if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--iters",
        type=int,
        default=2000,
        help="Number of iterations to run optimization for.",
    )
    parser.add_argument(
        "--no-viz", action="store_true", help="Skip visualization steps."
    )
    args = parser.parse_args()

    # Initialize the soft rasterizer.
    renderer = SoftRenderer(camera_mode="look_at", device="cuda:0")

    # Camera settings.
    camera_distance = (
        2.0  # Distance of the camera from the origin (i.e., center of the object)
    )
    elevation = 30.0  # Angle of elevation
    azimuth = 0.0  # Azimuth angle

    # Directory in which sample data is located.
    DATA_DIR = Path(__file__).parent / "sampledata"

    # Read in the input mesh. TODO: Add filepath as argument.
    mesh = TriangleMesh.from_obj(DATA_DIR / "sphere.obj")

    # Output filename to write out a rendered .gif to, showing the progress of optimization.
コード例 #8
0
    # Seed RNG for repeatability
    torch.manual_seed(args.seed)

    device = "cuda:0"

    # # Hyperparams
    # dtime = 0.1  # 1 / 30
    # simsteps = 50
    # seed = 123
    # numepochs = 100
    # compare_every = 10
    # log = True
    # logdir = Path("cache/bounce2d")

    # Initialize the differentiable renderer.
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 15.0
    elevation = 0.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    # GT parameters
    position_initial_gt = torch.tensor([-7.5, 0.0], device=device)
    radius_gt = 0.75
    speed_gt = 1.0
    height_gt = 5.0
    gravity_gt = -9.0

    ball2d_gt = BouncingBall2D(
        pos=position_initial_gt,
        radius=radius_gt,