コード例 #1
0
ファイル: quantize_mixin.py プロジェクト: mfkiwl/gap_sdk
    def common_quantize(cls, in_qtype, out_qtype, node, **kwargs):
        all_nodes = kwargs['all_nodes']
        opts = kwargs['opts']
        G = kwargs['G']
        inputs = [all_nodes[t] for t in node.input]
        x = inputs[0]
        in_qtype = in_qtype.make_symmetric_signed()
        out_qtype = out_qtype.make_symmetric_signed()
        if cls.is_constant(x):
            LOG.info("reducing %s to a constant", node.name)
            if out_qtype:
                val = x[0].value_as(out_qtype)
            else:
                val = cls.get_constant(x)
            params = ConstantInputParameters(node.name,
                                             value=val,
                                             dims=Dim.unnamed(val.shape),
                                             qtype=out_qtype,
                                             constant_store=G.constant_store)
            if opts.get('load_quantization'):
                G.quantization[NodeId(params)] = QRec.scaled(
                    in_qs=[out_qtype], out_qs=[out_qtype])
        else:
            if in_qtype == out_qtype:
                LOG.info('removing (de)quantize node %s with no effect',
                         node.name)
                params = NoOPParameters(node.name,
                                        desc="quantize with no effect")
            elif in_qtype.dtype == out_qtype.dtype:
                LOG.info('removing (de)quantize node %s with scale change',
                         node.name)
                params = NoOPParameters(node.name,
                                        desc="quantize with scale change")
                out_qtype = in_qtype
            else:
                params = QuantizeParameters(node.name,
                                            from_qtype=in_qtype,
                                            to_qtype=out_qtype)
            G.add_edge(
                NNEdge(from_node=x[0], to_node=params, from_idx=x[1],
                       to_idx=0))

            if opts.get('load_quantization'):
                G.quantization[NodeId(params)] = QRec.scaled(
                    in_qs=[in_qtype], out_qs=[out_qtype])
        all_nodes[node.output[0]] = (params, 0, deepcopy(x[2]))
        return params
コード例 #2
0
ファイル: pad.py プロジェクト: brupa9/gap_sdk
    def _common(cls,
                node,
                mode='constant',
                pads=None,
                constant_value=0,
                **kwargs):
        all_nodes = kwargs['all_nodes']
        G = kwargs['G']
        valid_name = kwargs['valid_name']
        inputs = [all_nodes[inp] for inp in node.input]
        x = inputs[0]
        x_shape = x[2].shape

        apads = np.array(pads).reshape((-1, 2))
        if cls.is_constant(x):
            logger.info("reducing %s to a constant", valid_name)
            val = cls.get_constant(x)
            if mode == 'constant':
                val = np.pad(val,
                             apads,
                             mode=mode,
                             constant_values=constant_value)
            else:
                val = np.pad(val, apads, mode=mode)
            params = ConstantInputParameters(valid_name,
                                             value=val,
                                             constant_store=G.constant_store)
            all_nodes[node.output[0]] = (params, 0, ProvisionalDim(x_shape))
            return params

        if mode != 'constant':
            raise ValueError('%s - pad mode %s is not supported' %
                             (valid_name, mode))
        if constant_value != 0:
            raise ValueError('%s - only zero padding is supported' %
                             valid_name)

        trimmed_pads = tuple(
            [pad for idx, pad in enumerate(apads) if x_shape[idx] is not None])

        if all(sum(trimmed_pad) == 0 for trimmed_pad in trimmed_pads):
            params = NoOPParameters(valid_name, desc="eliminated pad of 0")
            pshape = x_shape
        else:
            pshape = [
                dim + sum(apads[idx]) if dim is not None else None
                for idx, dim in enumerate(x_shape)
            ]
            # pshape = [None if dim is None else dim + sum(apads[idx]) for idx, dim in enumerate(x_shape)]
            padvals = [(constant_value, constant_value)] * len(trimmed_pads)
            params = PadParameters(valid_name,
                                   padding=trimmed_pads,
                                   pad_vals=padvals)
        G.add_edge(
            NNEdge(from_node=x[0], to_node=params, from_idx=x[1], to_idx=0))
        all_nodes[node.output[0]] = (params, 0, ProvisionalDim(pshape))
        return params
コード例 #3
0
ファイル: cast.py プロジェクト: mfkiwl/gap_sdk
    def _common(cls, node: TFLiteNode, **kwargs):
        node_opts = node.get_options(CastOptions)
        G = kwargs['G']
        all_nodes = kwargs['all_nodes']

        inputs = [all_nodes[t] for t in node.input]
        x = inputs[0]

        if node_opts:
            in_qtype = QType(dtype=TFLiteTensorWrapper.TF_TO_NUMPY_TYPE[node_opts.InDataType()])
            out_qtype = QType(dtype=TFLiteTensorWrapper.TF_TO_NUMPY_TYPE[node_opts.OutDataType()])
            return cls.common_quantize(in_qtype, out_qtype, node, **kwargs)

        params = NoOPParameters(node.name, desc='cast with no type information')
        G.add_edge(NNEdge(from_node=x[0], to_node=params, from_idx=x[1], to_idx=0))

        all_nodes[node.output[0]] = (params, 0, deepcopy(x[2]))
        return params
コード例 #4
0
    def _common(cls,
                node,
                mode='constant',
                pads=None,
                constant_value=0,
                **kwargs):
        all_nodes = kwargs['all_nodes']
        G = kwargs['G']
        valid_name = kwargs['valid_name']
        inputs = [all_nodes[inp] for inp in node.input]
        x = inputs[0]
        x_shape = x[2].shape

        ndim = len(x_shape)
        npad = len(pads) // 2
        if npad != ndim:
            if all(not pad for pad in pads):
                logger.warning(
                    f'Pad {valid_name} has {npad} pad values and {ndim} input rank. '
                    'Since pad is zero this is ignored but it probably indicates a bug in the ONNX graph.'
                )
            else:
                raise ValueError(
                    f'Eroor in ONNX graph - pad {valid_name} has {npad} pad values and {ndim} input rank.'
                )
        apads = np.array([[pads[idx], pads[idx + ndim]]
                          for idx in range(ndim)])
        # apads = np.array(pads).reshape((-1, 2))
        if cls.is_constant(x):
            logger.info("reducing %s to a constant", valid_name)
            val = cls.get_constant(x)
            if mode == 'constant':
                val = np.pad(val,
                             apads,
                             mode=mode,
                             constant_values=constant_value)
            else:
                val = np.pad(val, apads, mode=mode)
            params = ConstantInputParameters(valid_name, value=val)
            pshape = [
                dim + sum(apads[idx]) if dim is not None else None
                for idx, dim in enumerate(x_shape)
            ]
            all_nodes[node.output[0]] = (params, 0, ProvisionalDim(pshape),
                                         x[3])
            return params

        if mode != 'constant':
            raise ValueError('%s - pad mode %s is not supported' %
                             (valid_name, mode))

        if any(
                sum(pad) > 0 and x_shape[idx] is None
                for idx, pad in enumerate(apads)):
            raise ValueError(
                f'unknown/batch axis is being padded in {valid_name}. Manipulation of '
                'unknown/batch axis is not supported')
        trimmed_pads = tuple(
            [pad for idx, pad in enumerate(apads) if x_shape[idx] is not None])

        if all(sum(trimmed_pad) == 0 for trimmed_pad in trimmed_pads):
            params = NoOPParameters(valid_name, desc="eliminated pad of 0")
            pshape = x_shape
        else:
            pshape = [
                dim + sum(apads[idx]) if dim is not None else None
                for idx, dim in enumerate(x_shape)
            ]
            # pshape = [None if dim is None else dim + sum(apads[idx]) for idx, dim in enumerate(x_shape)]
            padvals = [(constant_value, constant_value)] * len(trimmed_pads)
            params = PadParameters(valid_name,
                                   padding=trimmed_pads,
                                   pad_vals=padvals)
        G.add_edge(
            NNEdge(from_node=x[0], to_node=params, from_idx=x[1], to_idx=0))
        all_nodes[node.output[0]] = (params, 0, ProvisionalDim(pshape), x[3])
        return params