def test(): env = Graphenv() env.init() name1='JJCEX.ACS.PH.03.OAT' name2= 'JJCEX.ACS.PH.04.OAT' name3 = 'JJCEX.ACS.PH.03.COOLING.VLV' name4 = 'JJCEX.ACS.PH.03.STEAM.VLV.2' L =[(name1,env.getSensorId(name1)),\ (name2,env.getSensorId(name2))] gr = Graph() #print a[0].head() expr = "{0};{1};{t}.hour" a = gr.getXY(L,'',expr) #a = gr.getPredict(L,'x.month == 7',expr,'SVM',4,30,'ada1',True) #b = gr.getPredict(L,'x.month == 9','','Ada Boost',4,0,'svm1',False) print a #a = gr.getCorrelations(L,expr) #ex = gr.getMSTF(L,expr) #ex = gr.getExpression(L,expr,a,True) #print a return a
def graph(type,h,dtfilter,req,expression,mtype,maw,pct,mname,learn): keys= [(n,int(x)) for n,x in h] g = Graph() j0=g.getRequest(req,dtfilter) if type =='Moving Std': print "type",type j = g.getMSTF(keys,dtfilter,expression) ctype='StockChart' elif type =='Time Series': print type,keys j = g.getRegular(keys,dtfilter,expression,False) ctype='StockChart' elif type =='XY': print type,keys j = g.getXY(keys,dtfilter,expression) ctype='scatter' elif type =='Correl': print type,keys j = g.getCorrelations(keys,dtfilter,expression) ctype='StockChart' elif type =='Frequencies': print type,keys j = g.getFreq(keys,dtfilter,expression) ctype='Histogram' elif type =='Learn': print type,keys,mtype,maw j = g.getPredict(keys,dtfilter,expression,mtype,maw,float(pct),mname,learn) ctype='StockChart' elif type =='Table': print type,keys j = g.getRegular(keys,dtfilter,expression,False) ctype='Table' else: return {} if not isinstance(j, str): j.extend(j0) return json.dumps(j),ctype