コード例 #1
0
def add_preprocessing(g, preproc_g):
  # type: (gde.Graph, gde.Graph) -> None
  """
  Add preprocessing ops to a graph.

  Replaces one or more input `Placeholders` in the target graph with
  subgraphs that preprocess the input values prior to feeding them into the
  original graph.

  After performing this rewrite, the inputs of the resulting graph may have a
  different shape and dtype than before, but they will have the same names.

  Args:
    g: `gde.Graph` to which preprocessing should be added. *Modified in place.*
    preproc_g: `gde.Graph` containing the preprocessing ops to add.
      For each placeholder in `g` that needs preprocessing, `preproc_g`
      should contain a placeholder with the same name and a second op named
      "<name of placeholder>_preprocessed", where `<name of placeholder>` is
      the name of the Placeholder op.
  """
  placeholders = gde.filter_ops_by_optype(preproc_g, "Placeholder")

  def preproc_name(placeholder_name):
    return placeholder_name + "_preprocessed"

  def orig_name(placeholder_name):
    return "__original__" + placeholder_name

  # Validate before modifying the graph
  for p in placeholders:
    if not g.contains_node(p.name):
      raise ValueError("Preprocessing graph contains a Placeholder called "
                       "'{}', but target graph does not have an input "
                       "Placeholder by that name."
                       "".format(p.name))
    if not preproc_g.contains_node(preproc_name(p.name)):
      raise ValueError("Preprocessing graph contains a Placeholder called "
                       "'{}', but it does not have an output node called '{}' "
                       "to produce the preprocessed version of that input."
                       "".format(p.name, preproc_name(p.name)))

  # Rename all the target placeholders so we can bulk-copy the preprocessing
  # graph.
  for p in placeholders:
    g.rename_node(p.name, orig_name(p.name))

  # Now it should be safe to copy the preprocessing graph into the original
  # graph.
  gde.copy(preproc_g, g)

  for p in placeholders:
    preproc_p = g.get_node_by_name(preproc_name(p.name))
    orig_p = g.get_node_by_name(orig_name(p.name))

    # Reroute all connections from original placeholder to go to the
    # corresponding output of the preprocessing graph.
    gde.reroute_ts(preproc_p.output(0), orig_p.output(0))

    # Get rid of the original placeholder
    g.remove_node_by_name(orig_p.name)
コード例 #2
0
    def test_reroute(self):
        gde.reroute_ts([self.a0, self.b0], [self.a1, self.b1])
        self.assertTrue(gde.OpMatcher("c0").input_ops("a0", "b0")(self.c0.op))
        self.assertTrue(gde.OpMatcher("c1").input_ops("a0", "b0")(self.c1.op))

        gde.reroute_ts([self.a1, self.b1], [self.a0, self.b0])
        self.assertTrue(gde.OpMatcher("c0").input_ops("a1", "b1")(self.c0.op))
        self.assertTrue(gde.OpMatcher("c1").input_ops("a1", "b1")(self.c1.op))
コード例 #3
0
def _graft_pre_and_post_processing_to_main_graph(g):
    # type: (gde.Graph) -> None
    """
  Attach pre- and post-processing subgraphs to the main graph.

  Args:
    g: GDE representation of the core graph. Modified in place.
  """
    # Build the pre- and post-processing subgraphs and import into GDE
    pre_g = gde.Graph(_build_preprocessing_graph_def())
    post_g = gde.Graph(_build_postprocessing_graph_def())

    # Replace the graph's input placeholder with the contents of our
    # pre-processing graph.
    name_of_input_node = _INPUT_NODE_NAMES[0]
    gde.copy(pre_g, g)
    gde.reroute_ts(
        g.get_node_by_name("preprocessed_image").output(0),
        g.get_node_by_name(name_of_input_node).output(0))
    g.remove_node_by_name(name_of_input_node)
    g.rename_node("raw_image", name_of_input_node)

    # Tack on the postprocessing graph at the original output and rename
    # the postprocessed output to the original output's name
    # The original graph produces an output called "detection_classes".
    # The postprocessing graph goes from "detection_classes" to
    # "decoded_detection_classes".
    # The graph after modification produces decoded classes under the original
    # "detection_classes" name. The original output is renamed to
    # "raw_detection_classes".
    g.rename_node("detection_classes", "raw_detection_classes")
    gde.copy(post_g, g)
    gde.reroute_ts(
        g.get_node_by_name("raw_detection_classes").output(0),
        g.get_node_by_name("detection_classes").output(0))
    g.remove_node_by_name("detection_classes")
    g.rename_node("decoded_detection_classes", "detection_classes")
コード例 #4
0
def gradients(ys, xs, grad_ys=None, checkpoints='collection', **kwargs):
    '''
    Authors: Tim Salimans & Yaroslav Bulatov

    memory efficient gradient implementation inspired by "Training Deep Nets with Sublinear Memory Cost"
    by Chen et al. 2016 (https://arxiv.org/abs/1604.06174)

    ys,xs,grad_ys,kwargs are the arguments to standard tensorflow tf.gradients
    (https://www.tensorflow.org/versions/r0.12/api_docs/python/train.html#gradients)

    'checkpoints' can either be
        - a list consisting of tensors from the forward pass of the neural net
          that we should re-use when calculating the gradients in the backward pass
          all other tensors that do not appear in this list will be re-computed
        - a string specifying how this list should be determined. currently we support
            - 'speed':  checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive,
                        so checkpointing them maximizes the running speed
                        (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory)
            - 'memory': try to minimize the memory usage
                        (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint)
            - 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint
    '''

    #    print("Calling memsaving gradients with", checkpoints)
    if not isinstance(ys,list):
        ys = [ys]
    if not isinstance(xs,list):
        xs = [xs]

    bwd_ops = ge.get_backward_walk_ops([y.op for y in ys],
                                       inclusive=True)

    debug_print("bwd_ops: %s", bwd_ops)

    # forward ops are all ops that are candidates for recomputation
    fwd_ops = ge.get_forward_walk_ops([x.op for x in xs],
                                      inclusive=True,
                                      within_ops=bwd_ops)
    debug_print("fwd_ops: %s", fwd_ops)

    # exclude ops with no inputs
    fwd_ops = [op for op in fwd_ops if op.inputs]

    # don't recompute xs, remove variables
    xs_ops = _to_ops(xs)
    fwd_ops = [op for op in fwd_ops if not op in xs_ops]
    fwd_ops = [op for op in fwd_ops if not '/assign' in op.name]
    fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name]
    fwd_ops = [op for op in fwd_ops if not '/read' in op.name]
    ts_all = ge.filter_ts(fwd_ops, True) # get the tensors
    ts_all = [t for t in ts_all if '/read' not in t.name]
    ts_all = set(ts_all) - set(xs) - set(ys)

    # construct list of tensors to checkpoint during forward pass, if not
    # given as input
    if type(checkpoints) is not list:
        if checkpoints == 'collection':
            checkpoints = tf.compat.v1.get_collection('checkpoints')

        elif checkpoints == 'speed':
            # checkpoint all expensive ops to maximize running speed
            checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul')

        elif checkpoints == 'memory':

            # remove very small tensors and some weird ops
            def fixdims(t): # tf.Dimension values are not compatible with int, convert manually
                try:
                    return [int(e if e.value is not None else 64) for e in t]
                except:
                    return [0]  # unknown shape
            ts_all = [t for t in ts_all if np.prod(fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE]
            ts_all = [t for t in ts_all if 'L2Loss' not in t.name]
            ts_all = [t for t in ts_all if 'entropy' not in t.name]
            ts_all = [t for t in ts_all if 'FusedBatchNorm' not in t.name]
            ts_all = [t for t in ts_all if 'Switch' not in t.name]
            ts_all = [t for t in ts_all if 'dropout' not in t.name]
            # DV: FP16_FIX - need to add 'Cast' layer here to make it work for FP16
            ts_all = [t for t in ts_all if 'Cast' not in t.name]

            # filter out all tensors that are inputs of the backward graph
            with util.capture_ops() as bwd_ops:
                tf_gradients(ys, xs, grad_ys, **kwargs)

            bwd_inputs = [t for op in bwd_ops for t in op.inputs]
            # list of tensors in forward graph that is in input to bwd graph
            ts_filtered = list(set(bwd_inputs).intersection(ts_all))
            debug_print("Using tensors %s", ts_filtered)

            # try two slightly different ways of getting bottlenecks tensors
            # to checkpoint
            for ts in [ts_filtered, ts_all]:

                # get all bottlenecks in the graph
                bottleneck_ts = []
                for t in ts:
                    b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops))
                    f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops))
                    # check that there are not shortcuts
                    b_inp = set([inp for op in b for inp in op.inputs]).intersection(ts_all)
                    f_inp = set([inp for op in f for inp in op.inputs]).intersection(ts_all)
                    if not set(b_inp).intersection(f_inp) and len(b_inp)+len(f_inp) >= len(ts_all):
                        bottleneck_ts.append(t)  # we have a bottleneck!
                    else:
                        debug_print("Rejected bottleneck candidate and ops %s", [t] + list(set(ts_all) - set(b_inp) - set(f_inp)))

                # success? or try again without filtering?
                if len(bottleneck_ts) >= np.sqrt(len(ts_filtered)): # yes, enough bottlenecks found!
                    break

            if not bottleneck_ts:
                raise Exception('unable to find bottleneck tensors! please provide checkpoint nodes manually, or use checkpoints="speed".')

            # sort the bottlenecks
            bottlenecks_sorted_lists = tf_toposort(bottleneck_ts, within_ops=fwd_ops)
            sorted_bottlenecks = [t for ts in bottlenecks_sorted_lists for t in ts]

            # save an approximately optimal number ~ sqrt(N)
            N = len(ts_filtered)
            if len(bottleneck_ts) <= np.ceil(np.sqrt(N)):
                checkpoints = sorted_bottlenecks
            else:
                step = int(np.ceil(len(bottleneck_ts) / np.sqrt(N)))
                checkpoints = sorted_bottlenecks[step::step]

        else:
            raise Exception('%s is unsupported input for "checkpoints"' % (checkpoints,))

    checkpoints = list(set(checkpoints).intersection(ts_all))

    # at this point automatic selection happened and checkpoints is list of nodes
    assert isinstance(checkpoints, list)

    debug_print("Checkpoint nodes used: %s", checkpoints)
    # better error handling of special cases
    # xs are already handled as checkpoint nodes, so no need to include them
    xs_intersect_checkpoints = set(xs).intersection(set(checkpoints))
    if xs_intersect_checkpoints:
        debug_print("Warning, some input nodes are also checkpoint nodes: %s",
                    xs_intersect_checkpoints)
    ys_intersect_checkpoints = set(ys).intersection(set(checkpoints))
    debug_print("ys: %s, checkpoints: %s, intersect: %s", ys, checkpoints,
                ys_intersect_checkpoints)
    # saving an output node (ys) gives no benefit in memory while creating
    # new edge cases, exclude them
    if ys_intersect_checkpoints:
        debug_print("Warning, some output nodes are also checkpoints nodes: %s",
              format_ops(ys_intersect_checkpoints))

    # remove initial and terminal nodes from checkpoints list if present
    checkpoints = list(set(checkpoints) - set(ys) - set(xs))

    # check that we have some nodes to checkpoint
    # if not checkpoints:
    #     raise Exception('no checkpoints nodes found or given as input! ')

    # disconnect dependencies between checkpointed tensors
    checkpoints_disconnected = {}
    for x in checkpoints:
        if x.op and x.op.name is not None:
            grad_node = tf.stop_gradient(x, name=x.op.name+"_sg")
        else:
            grad_node = tf.stop_gradient(x)
        checkpoints_disconnected[x] = grad_node

    # partial derivatives to the checkpointed tensors and xs
    ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys],
                                    stop_at_ts=checkpoints, within_ops=fwd_ops)
    debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s",
                    len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints)
    debug_print("ops_to_copy = %s", ops_to_copy)
    debug_print("Processing list %s", ys)
    copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
    for origin_op, op in info._transformed_ops.items():
        op._set_device(origin_op.node_def.device)
    copied_ops = info._transformed_ops.values()
    debug_print("Copied %s to %s", ops_to_copy, copied_ops)
    ge.reroute_ts(checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops)
    debug_print("Rewired %s in place of %s restricted to %s",
                checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops)

    # get gradients with respect to current boundary + original x's
    copied_ys = [info._transformed_ops[y.op]._outputs[0] for y in ys]
    boundary = list(checkpoints_disconnected.values())
    dv = tf_gradients(ys=copied_ys, xs=boundary+xs, grad_ys=grad_ys, **kwargs)
    debug_print("Got gradients %s", dv)
    debug_print("for %s", copied_ys)
    debug_print("with respect to %s", boundary+xs)

    inputs_to_do_before = [y.op for y in ys]
    if grad_ys is not None:
        inputs_to_do_before += grad_ys
    wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None]
    my_add_control_inputs(wait_to_do_ops, inputs_to_do_before)

    # partial derivatives to the checkpointed nodes
    # dictionary of "node: backprop" for nodes in the boundary
    d_checkpoints = {r: dr for r,dr in zip(checkpoints_disconnected.keys(),
                                        dv[:len(checkpoints_disconnected)])}
    # partial derivatives to xs (usually the params of the neural net)
    d_xs = dv[len(checkpoints_disconnected):]

    # incorporate derivatives flowing through the checkpointed nodes
    checkpoints_sorted_lists = tf_toposort(checkpoints, within_ops=fwd_ops)
    for ts in checkpoints_sorted_lists[::-1]:
        debug_print("Processing list %s", ts)
        checkpoints_other = [r for r in checkpoints if r not in ts]
        checkpoints_disconnected_other = [checkpoints_disconnected[r] for r in checkpoints_other]

        # copy part of the graph below current checkpoint node, stopping at
        # other checkpoints nodes
        ops_to_copy = fast_backward_ops(within_ops=fwd_ops, seed_ops=[r.op for r in ts], stop_at_ts=checkpoints_other)
        debug_print("Found %s ops to copy within %s, seed %s, stop_at %s",
                    len(ops_to_copy), fwd_ops, [r.op for r in ts],
                    checkpoints_other)
        debug_print("ops_to_copy = %s", ops_to_copy)
        if not ops_to_copy: # we're done!
            break
        copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
        for origin_op, op in info._transformed_ops.items():
            op._set_device(origin_op.node_def.device)
        copied_ops = info._transformed_ops.values()
        debug_print("Copied %s to %s", ops_to_copy, copied_ops)
        ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops)
        debug_print("Rewired %s in place of %s restricted to %s",
                    checkpoints_disconnected_other, checkpoints_other, copied_ops)

        # gradient flowing through the checkpointed node
        boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts]
        substitute_backprops = [d_checkpoints[r] for r in ts]
        dv = tf_gradients(boundary,
                          checkpoints_disconnected_other+xs,
                          grad_ys=substitute_backprops, **kwargs)
        debug_print("Got gradients %s", dv)
        debug_print("for %s", boundary)
        debug_print("with respect to %s", checkpoints_disconnected_other+xs)
        debug_print("with boundary backprop substitutions %s", substitute_backprops)

        inputs_to_do_before = [d_checkpoints[r].op for r in ts]
        wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None]
        my_add_control_inputs(wait_to_do_ops, inputs_to_do_before)

        # partial derivatives to the checkpointed nodes
        for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]):
            if dr is not None:
                if d_checkpoints[r] is None:
                    d_checkpoints[r] = dr
                else:
                    d_checkpoints[r] += dr
        def _unsparsify(x):
            if not isinstance(x, tf.IndexedSlices):
                return x
            assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape"
            indices = x.indices
            while indices.shape.ndims < x.values.shape.ndims:
                indices = tf.expand_dims(indices, -1)
            return tf.scatter_nd(indices, x.values, x.dense_shape)

        # partial derivatives to xs (usually the params of the neural net)
        d_xs_new = dv[len(checkpoints_other):]
        for j in range(len(xs)):
            if d_xs_new[j] is not None:
                if d_xs[j] is None:
                    d_xs[j] = _unsparsify(d_xs_new[j])
                else:
                    d_xs[j] += _unsparsify(d_xs_new[j])


    return d_xs
コード例 #5
0
 def test_compatibility(self):
     with self.assertRaises(ValueError):
         gde.reroute_ts([self.a0, self.b0], [self.a2, self.b2])
コード例 #6
0
def add_postprocessing(g, postproc_g):
  # type: (gde.Graph, gde.Graph) -> None
  """
  Add postprocessing ops to a graph.

  The postprocessing ops can replace one or more output operations of the
  original graph with a series of operations that apply additional
  transformations to the output and return the result of the transformations.

  After performing this rewrite, the outputs of the resulting graph may have a
  different shape and dtype than before, but they will have the same names.

  Args:
    g: `gde.Graph` to which postprocessing should be added. *Modified in place.*
    postproc_g: `gde.Graph` containing the postprocessing ops to add.
      For each op in `g` that needs postprocessing, `postproc_g`
      should contain a placeholder with the same name and a second op named
      "<name of output>_postprocessed", where `<name of output>` is
      the name of the original op.
  """
  placeholders = gde.filter_ops_by_optype(postproc_g, "Placeholder")

  def postproc_name(placeholder_name):
    return placeholder_name + "_postprocessed"

  def orig_name(placeholder_name):
    return "__original__" + placeholder_name

  # Validate before modifying the graph
  for p in placeholders:
    if not g.contains_node(p.name):
      raise ValueError("Postprocessing graph contains a Placeholder called "
                       "'{}', but target graph does not have an op by that "
                       "name".format(p.name))
    if 1 != len(g.get_node_by_name(p.name).outputs):
      raise ValueError("Output node '{}' of target graph has {} output "
                       "tensors. Only one output is supported."
                       "".format(p.name,
                                 len(g.get_node_by_name(p.name).outputs)))
    if not postproc_g.contains_node(postproc_name(p.name)):
      raise ValueError("Postprocessing graph contains a Placeholder called "
                       "'{}', but it does not have a node called '{}' "
                       "to produce the postprocessed version of that output."
                       "".format(p.name, postproc_name(p.name)))

  # Rename all the original output ops so we can bulk-copy the preprocessing
  # graph.
  for p in placeholders:
    g.rename_node(p.name, orig_name(p.name))

  # Now it should be safe to copy the preprocessing graph into the original
  # graph.
  gde.copy(postproc_g, g)

  for p in placeholders:
    postproc_input_p = g.get_node_by_name(p.name)
    orig_output_node = g.get_node_by_name(orig_name(p.name))

    # Reroute all connections from original placeholder to go to the
    # corresponding output of the original graph.
    gde.reroute_ts(orig_output_node.output(0), postproc_input_p.output(0))

    # Get rid of the placeholder
    g.remove_node_by_name(postproc_input_p.name)

    # Rename the postprocessed output to the name of the original output
    g.rename_node(postproc_name(p.name), p.name)