コード例 #1
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_c (self, Rf = 0,year_start = 1996, year_finish = 2016, window = 10):
    ## With monthly data, calculate the Efficient frontier
    ## year by year. So lets do it

    self.set_Rf(Rf)
    
    nf_flag = 1
    all_portfolios = []
    for year_test in range(year_start,year_finish - window + 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
#        print self.get_Returns()[1]  # Check that it works

#        portfolios = self.Lintnerian_efficient_frontier(norm = "none", maxRf = 0.00031)
#        optimal, portfolios = self.efficient_frontier(kind = "Markowitz")
#        optimal, portfolios = self.efficient_frontier(kind = "Normal")
        optimal, portfolios = self.efficient_frontier(kind = "Tangent")
        all_portfolios.append(portfolios)
    
        self.plot_allocations(portfolios, labels = ["Efficient Frontiers", "Risk (std)", "Return (%)"],
                              legend = ["Frontier " + str(year_test + window)], nf = nf_flag)
        nf_flag = 0
    
    gl.savefig(folder_images +'effAll.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
コード例 #2
0
def plot_learnt_function(X_data_tr, Y_data_tr, X_data_val, Y_data_val, x_grid,
                         y_grid, cf_a, folder_images):
    gl.init_figure()
    ax1 = gl.scatter(X_data_tr,
                     Y_data_tr,
                     lw=3,
                     legend=["tr points"],
                     labels=["Data", "X", "Y"],
                     alpha=0.2)
    ax2 = gl.scatter(X_data_val,
                     Y_data_val,
                     lw=3,
                     legend=["val points"],
                     alpha=0.2)

    gl.set_fontSizes(ax=[ax1, ax2],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)

    gl.plot(x_grid, y_grid, legend=["training line"])
    gl.savefig(folder_images + 'Training_Example_Data.png',
               dpi=100,
               sizeInches=[14, 4])
コード例 #3
0
def IFE_c(self, Rf=0, year_start=1996, year_finish=2016, window=10):
    ## With monthly data, calculate the Efficient frontier
    ## year by year. So lets do it

    self.set_Rf(Rf)

    nf_flag = 1
    all_portfolios = []
    for year_test in range(year_start, year_finish - window + 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))
        #        print self.get_Returns()[1]  # Check that it works

        #        portfolios = self.Lintnerian_efficient_frontier(norm = "none", maxRf = 0.00031)
        #        optimal, portfolios = self.efficient_frontier(kind = "Markowitz")
        #        optimal, portfolios = self.efficient_frontier(kind = "Normal")
        optimal, portfolios = self.efficient_frontier(kind="Tangent")
        all_portfolios.append(portfolios)

        self.plot_allocations(
            portfolios,
            labels=["Efficient Frontiers", "Risk (std)", "Return (%)"],
            legend=["Frontier " + str(year_test + window)],
            nf=nf_flag)
        nf_flag = 0

    gl.savefig(folder_images + 'effAll.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #4
0
ファイル: plotting_func.py プロジェクト: manuwhs/Trapyng
def create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                                tr_loss, val_loss, x_grid, y_grid, cf_a,
                                video_fotograms_folder, epoch_i):
    """
    Creates the image of the training and validation accuracy
    """
    gl.init_figure();
    ax1 = gl.subplot2grid((2,1), (0,0), rowspan=1, colspan=1)
    ax2 = gl.subplot2grid((2,1), (1,0), rowspan=1, colspan=1)
    
    plt.title("Training")
    ## First plot with the data and predictions !!!
    ax1 = gl.scatter(X_data_tr, Y_data_tr, ax = ax1, lw = 3,legend = ["tr points"], labels = ["Analysis of training", "X","Y"])
    gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"])
    
    gl.plot (x_grid, y_grid, legend = ["Prediction function"])

    gl.set_zoom(xlimPad = [0.2, 0.2], ylimPad = [0.2,0.2], X = X_data_tr, Y = Y_data_tr)
    ## Second plot with the evolution of parameters !!!
    ax2 = gl.plot([], tr_loss, ax = ax2, lw = 3, labels = ["RMSE. lr: %.3f"%cf_a.lr, "epoch","RMSE"], legend = ["train"])
    gl.plot([], val_loss, lw = 3, legend = ["validation"], loc = 3)
    
    
    gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 12, yticks = 12)
    
    # Set final properties and save figure
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.30, hspace=0.30)
    
    gl.savefig(video_fotograms_folder +'%i.png'%epoch_i, 
               dpi = 100, sizeInches = [14, 10], close = True, bbox_inches = None)
コード例 #5
0
ファイル: plotting_func.py プロジェクト: manuwhs/Trapyng
def plot_weights_network(model, folder_images):

#
    weights = model.linear1.weight.detach().numpy()
    biases = model.linear1.bias.detach().numpy().reshape(-1,1)
    neurons = np.concatenate((weights, biases), axis = 1)
    
    weights2 = model.W2.detach().numpy()
    biases2 = model.b2.detach().numpy().reshape(-1,1)
    neurons2 = np.concatenate((weights2, biases2), axis =0).T
    
    gl.init_figure();
    ax1 = gl.subplot2grid((1,4), (0,0), rowspan=1, colspan=2)
    ax2 = gl.subplot2grid((1,4), (0,3), rowspan=1, colspan=4)

    cmap = cm.get_cmap('coolwarm', 30)
    cax = ax1.imshow(neurons, interpolation="nearest", cmap=cmap)
    cax2 = ax2.imshow(neurons2, interpolation="nearest", cmap=cmap)
    
#    plt.xticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='vertical')
#    plt.yticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='horizontal')
    plt.colorbar(cax)
#    plt.colorbar(cax2)
#        ax1.set_xticks(data_df_train.columns) # , rotation='vertical'
#    ax1.grid(True)
    plt.title('Weights ')
#    labels=[str(x) for x in range(Nshow )]
#    ax1.set_xticklabels(labels,fontsize=20)
#    ax1.set_yticklabels(labels,fontsize=20)
    # Add colorbar, make sure to specify tick locations to match desired ticklabels
    plt.show()
    gl.savefig(folder_images +'Weights.png', 
           dpi = 100, sizeInches = [2*8, 2*2])
コード例 #6
0
def plot_weights_network(model, folder_images):

    #
    weights = model.linear1.weight.detach().numpy()
    biases = model.linear1.bias.detach().numpy().reshape(-1, 1)
    neurons = np.concatenate((weights, biases), axis=1)

    weights2 = model.W2.detach().numpy()
    biases2 = model.b2.detach().numpy().reshape(-1, 1)
    neurons2 = np.concatenate((weights2, biases2), axis=0).T

    gl.init_figure()
    ax1 = gl.subplot2grid((1, 4), (0, 0), rowspan=1, colspan=2)
    ax2 = gl.subplot2grid((1, 4), (0, 3), rowspan=1, colspan=4)

    cmap = cm.get_cmap('coolwarm', 30)
    cax = ax1.imshow(neurons, interpolation="nearest", cmap=cmap)
    cax2 = ax2.imshow(neurons2, interpolation="nearest", cmap=cmap)

    #    plt.xticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='vertical')
    #    plt.yticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='horizontal')
    plt.colorbar(cax)
    #    plt.colorbar(cax2)
    #        ax1.set_xticks(data_df_train.columns) # , rotation='vertical'
    #    ax1.grid(True)
    plt.title('Weights ')
    #    labels=[str(x) for x in range(Nshow )]
    #    ax1.set_xticklabels(labels,fontsize=20)
    #    ax1.set_yticklabels(labels,fontsize=20)
    # Add colorbar, make sure to specify tick locations to match desired ticklabels
    plt.show()
    gl.savefig(folder_images + 'Weights.png',
               dpi=100,
               sizeInches=[2 * 8, 2 * 2])
コード例 #7
0
def IFE_b(self, year_start=1996, year_finish=2016, window=10):
    ## Question b of the asqued thing

    all_returns = []
    all_covMatrices = []

    all_dates = []  # To store the dates of the estimation
    for year_test in range(year_start, year_finish - window + 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        ret = self.yearly_Return(self.get_MeanReturns())
        covMat = self.yearly_covMatrix(self.get_covMatrix())

        all_covMatrices.append(covMat)
        all_returns.append(ret)

        # Get the dates from any of the symbols of the portfolio
        dates = self.get_dates()
        all_dates.append(dates[-1])

    ## Plotting the returns
    all_returns = np.array(all_returns)

    #    gl.plot(all_dates, all_returns[:,0],
    #            labels = ["Returns", "Time", "Return"],
    #            legend = [self.pf.symbols.keys()[0]])
    #
    #    gl.plot(all_dates, all_returns[:,1],
    #            legend = [self.pf.symbols.keys()[1]], nf = 0, na = 0)

    ## 1) Plot the returns of all of them together for the eleven windows
    gl.plot(all_dates,
            all_returns,
            labels=[
                "Average Return in 10 years", "Time (years)",
                "Anual return of Assets"
            ],
            legend=self.symbol_names)

    gl.savefig(folder_images + 'returnsAveAll.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    ## 2) Plot the covariance matrix for 9 years
    gl.set_subplots(2, 3)

    for i in range(6):
        gl.bar_3D(self.symbol_names,
                  self.symbol_names,
                  all_covMatrices[i],
                  labels=[str(year_start + window + i), "", ""],
                  fontsize=30,
                  fontsizeA=19)

    gl.savefig(folder_images + 'covsAveAll.png',
               dpi=80,
               sizeInches=[4 * 8, 3 * 6])
コード例 #8
0
def create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                                tr_loss, val_loss, x_grid, y_grid, cf_a,
                                video_fotograms_folder, epoch_i):
    """
    Creates the image of the training and validation accuracy
    """
    gl.init_figure()
    ax1 = gl.subplot2grid((2, 1), (0, 0), rowspan=1, colspan=1)
    ax2 = gl.subplot2grid((2, 1), (1, 0), rowspan=1, colspan=1)

    plt.title("Training")
    ## First plot with the data and predictions !!!
    ax1 = gl.scatter(X_data_tr,
                     Y_data_tr,
                     ax=ax1,
                     lw=3,
                     legend=["tr points"],
                     labels=["Analysis of training", "X", "Y"])
    gl.scatter(X_data_val, Y_data_val, lw=3, legend=["val points"])

    gl.plot(x_grid, y_grid, legend=["Prediction function"])

    gl.set_zoom(xlimPad=[0.2, 0.2],
                ylimPad=[0.2, 0.2],
                X=X_data_tr,
                Y=Y_data_tr)
    ## Second plot with the evolution of parameters !!!
    ax2 = gl.plot([],
                  tr_loss,
                  ax=ax2,
                  lw=3,
                  labels=["RMSE. lr: %.3f" % cf_a.lr, "epoch", "RMSE"],
                  legend=["train"])
    gl.plot([], val_loss, lw=3, legend=["validation"], loc=3)

    gl.set_fontSizes(ax=[ax1, ax2],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)

    # Set final properties and save figure
    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.30)

    gl.savefig(video_fotograms_folder + '%i.png' % epoch_i,
               dpi=100,
               sizeInches=[14, 10],
               close=True,
               bbox_inches=None)
コード例 #9
0
ファイル: plotting_func.py プロジェクト: manuwhs/Trapyng
def plot_evolution_RMSE(tr_loss, val_loss, cf_a, folder_images):
    gl.init_figure()
    ax1 = gl.plot([], tr_loss, lw = 3, labels = ["RMSE loss and parameters. Learning rate: %.3f"%cf_a.lr, "","RMSE"], legend = ["train"])
    gl.plot([], val_loss, lw = 3, legend = ["validation"])
    
    
    gl.set_fontSizes(ax = [ax1], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 12, yticks = 12)
    gl.savefig(folder_images +'Training_Example_Parameters.png', 
               dpi = 100, sizeInches = [14, 7])
コード例 #10
0
ファイル: DOCX_lib.py プロジェクト: vishalbelsare/Trapyng
 def generate_images(self, folder_path):
     self.sensor_images_path = folder_path
     # This function is suposed to generate the cleaning images.
     # Basically the time series with the sensors.
     # It uses the pandas dataframe self.sensors_data_pd
     # The images are stored in self.sensor_images_path using as names the column names of the data
     for sensor_column in self.sensor_names:
         ## TODO: Big task... manage different windows in gl library
         #            gl.init_figure()
         #            gl.plot(self.sensors_data_pd[self.time_name],self.sensors_data_pd[sensor_column])
         path_image = self.sensor_images_path + sensor_column + ".png"
         gl.savefig(path_image, dpi=100, sizeInches=[])  # [2*8, 2*3]
コード例 #11
0
ファイル: DOCX_lib.py プロジェクト: manuwhs/Trapyng
    def generate_images(self, folder_path):
        self.sensor_images_path = folder_path
        # This function is suposed to generate the cleaning images.
        # Basically the time series with the sensors. 
        # It uses the pandas dataframe self.sensors_data_pd
        # The images are stored in self.sensor_images_path using as names the column names of the data
        for sensor_column in self.sensor_names:
            ## TODO: Big task... manage different windows in gl library
#            gl.init_figure()
#            gl.plot(self.sensors_data_pd[self.time_name],self.sensors_data_pd[sensor_column])
            path_image = self.sensor_images_path + sensor_column + ".png"
            gl.savefig( path_image,
               dpi = 100, sizeInches = [])  # [2*8, 2*3]
コード例 #12
0
ファイル: plotting_func.py プロジェクト: manuwhs/Trapyng
def plot_learnt_function(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                          x_grid, y_grid, cf_a,
                          folder_images):
    gl.init_figure()
    ax1 = gl.scatter(X_data_tr, Y_data_tr, lw = 3,legend = ["tr points"], labels = ["Data", "X","Y"], alpha = 0.2)
    ax2 = gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"], alpha = 0.2)
    
    gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 12, yticks = 12)
    
    gl.plot (x_grid, y_grid, legend = ["training line"])
    gl.savefig(folder_images +'Training_Example_Data.png', 
               dpi = 100, sizeInches = [14, 4])
コード例 #13
0
def IFE_2c(self):
    ### Bond question !!
    myBond = CBond.CBOND(name="hola", freq=2, coupon=5.75, par=100.)
    # Set some properties
    myBond.set_price(95.0428)
    myBond.set_timeToMaturity(2.5)
    myBond.set_ytm(0.10)

    # Plot the compound price understanding
    ba.plot_compound_understanding()
    gl.savefig(folder_images + 'compoundUnders.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #14
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_2b(self):  
    ### Calculate the convexity and duration of the bonds and then calculate 
    # the portfolio one by adding the weighted. (It is just weighted average
    # of prices. Nothing more, nothing less.)
    myBond = CBond.CBOND( name = "hola", freq = 2, coupon = 5.75, par = 100.)
    # Set some properties 
    myBond.set_price(95.0428)
    myBond.set_timeToMaturity(2.5)
    myBond.set_ytm(0.10)
    
    # Plot the compound price understanding 
    ba.plot_compound_understanding()
    gl.savefig(folder_images +'compoundUnders.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
コード例 #15
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_b(self,year_start = 1996, year_finish = 2016, window = 10):
    ## Question b of the asqued thing
    
    all_returns = []
    all_covMatrices = []
    
    all_dates = []  # To store the dates of the estimation
    for year_test in range(year_start,year_finish - window + 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        ret = self.yearly_Return(self.get_MeanReturns())
        covMat = self.yearly_covMatrix(self.get_covMatrix())
    
        all_covMatrices.append(covMat)
        all_returns.append(ret)
        
        # Get the dates from any of the symbols of the portfolio
        dates = self.get_dates()
        all_dates.append(dates[-1])
        
    ## Plotting the returns
    all_returns = np.array(all_returns)

#    gl.plot(all_dates, all_returns[:,0],
#            labels = ["Returns", "Time", "Return"],
#            legend = [self.pf.symbols.keys()[0]])
#            
#    gl.plot(all_dates, all_returns[:,1],
#            legend = [self.pf.symbols.keys()[1]], nf = 0, na = 0)

    ## 1) Plot the returns of all of them together for the eleven windows
    gl.plot(all_dates, all_returns,
            labels = ["Average Return in 10 years", "Time (years)", "Anual return of Assets"],
            legend = self.symbol_names) 

    gl.savefig(folder_images +'returnsAveAll.png', 
               dpi = 150, sizeInches = [2*8, 1.5*6])

    ## 2) Plot the covariance matrix for 9 years
    gl.set_subplots(2,3)
    
    for i in range(6):
        gl.bar_3D(self.symbol_names, self.symbol_names, all_covMatrices[i],
                  labels = [str(year_start +window+i),"",""],
                   fontsize = 30, fontsizeA = 19)    

    gl.savefig(folder_images +'covsAveAll.png', 
               dpi = 80, sizeInches = [4*8, 3*6])
コード例 #16
0
def IFE_2b(self):
    ### Calculate the convexity and duration of the bonds and then calculate
    # the portfolio one by adding the weighted. (It is just weighted average
    # of prices. Nothing more, nothing less.)
    myBond = CBond.CBOND(name="hola", freq=2, coupon=5.75, par=100.)
    # Set some properties
    myBond.set_price(95.0428)
    myBond.set_timeToMaturity(2.5)
    myBond.set_ytm(0.10)

    # Plot the compound price understanding
    ba.plot_compound_understanding()
    gl.savefig(folder_images + 'compoundUnders.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #17
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_2c(self):  
    ### Bond question !! 
    myBond = CBond.CBOND( name = "hola", freq = 2, coupon = 5.75, par = 100.)
    # Set some properties 
    myBond.set_price(95.0428)
    myBond.set_timeToMaturity(2.5)
    myBond.set_ytm(0.10)
    
    # Plot the compound price understanding 
    ba.plot_compound_understanding()
    gl.savefig(folder_images +'compoundUnders.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
    

    
    
コード例 #18
0
def IFE_i(self, Rf=0.0, year_start=1996, year_finish=2016, window=10):
    ### Timing. Check if when the market had big return, we incresed the beta (higher return)
    ## And when the market had negative return, we have not so bad return
    ## The way to do this is to perform a cuatratic curve fit.
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))
    print self.marketTiming()

    gl.savefig(folder_images + 'timingPosteriori.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    self.set_Rf(Rf)

    obtained_returns = []
    index_returns = []

    for year_test in range(year_start, year_finish - window):  #
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        self.set_allocation(w)

        # Once the model is found, we obtain the returns of the next year
        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        #        self.pf.set_interval(dt.datetime(fin_year,1,1),dt.datetime(fin_year +1,1,1))

        returns = self.get_PortfolioReturn(
        )  # Get the expected return for that year
        #        dates =  self.get_dates()
        #        print returns.shape
        #        print returns.T.tolist()[0]
        obtained_returns.extend(returns.T.tolist()[0])
        index_returns.extend(self.get_indexReturns().T.tolist()[0])

    obtained_returns = np.array(obtained_returns)
    index_returns = np.array(index_returns)
    print self.marketTiming(obtained_returns, index_returns)

    gl.savefig(folder_images + 'timingBacktest.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #19
0
def IFE_a(self, year_start=1996, year_finish=2016, window=10):
    ## Basic, just look at the bloody graphs
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))

    dates = self.get_dates()
    prices = self.pf.get_timeSeries(self.period)
    returns = self.get_Returns()
    #    print returns.shape
    gl.plot(
        dates,
        prices,
        labels=["Monthly price of Symbols", "Time (years)", "Price (dolar)"],
        legend=self.pf.symbols.keys(),
        loc=2)
    gl.savefig(folder_images + 'pricesAll.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    gl.plot(
        dates,
        returns,
        labels=["Monthly return of the Symbols", "Time (years)", "Return (%)"],
        legend=self.pf.symbols.keys())
    gl.savefig(folder_images + 'returnsAll.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    ## Distribution obtaining
    gl.set_subplots(2, 2)
    for i in range(4):
        gl.histogram(returns[:, i], labels=[self.symbol_names[i]])

    gl.savefig(folder_images + 'returnDistribution.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    ##############  Posible Transformations ##################

    ws = [3, 4, 6, 8]

    gl.set_subplots(2, 2)
    for w in ws:
        means, ranges = bMl.get_meanRange(prices[:, 1], w)
        gl.scatter(means,
                   ranges,
                   lw=4,
                   labels=["", "mean", "range"],
                   legend=["w = %i" % (w)])

    gl.savefig(folder_images + 'rangeMean.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])
コード例 #20
0
def plot_evolution_RMSE(tr_loss, val_loss, cf_a, folder_images):
    gl.init_figure()
    ax1 = gl.plot([],
                  tr_loss,
                  lw=3,
                  labels=[
                      "RMSE loss and parameters. Learning rate: %.3f" %
                      cf_a.lr, "", "RMSE"
                  ],
                  legend=["train"])
    gl.plot([], val_loss, lw=3, legend=["validation"])

    gl.set_fontSizes(ax=[ax1],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)
    gl.savefig(folder_images + 'Training_Example_Parameters.png',
               dpi=100,
               sizeInches=[14, 7])
コード例 #21
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_i (self, Rf = 0.0,  year_start = 1996, year_finish = 2016, window = 10):
    ### Timing. Check if when the market had big return, we incresed the beta (higher return)
    ## And when the market had negative return, we have not so bad return
    ## The way to do this is to perform a cuatratic curve fit.
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    print self.marketTiming()
    
    gl.savefig(folder_images +'timingPosteriori.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
               
    self.set_Rf(Rf)
    
    obtained_returns = []
    index_returns = []
    
    for year_test in range(year_start,year_finish - window): # 
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        self.set_allocation(w)

        # Once the model is found, we obtain the returns of the next year
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
#        self.pf.set_interval(dt.datetime(fin_year,1,1),dt.datetime(fin_year +1,1,1))
        
        returns = self.get_PortfolioReturn()  # Get the expected return for that year
#        dates =  self.get_dates()
#        print returns.shape
#        print returns.T.tolist()[0]
        obtained_returns.extend(returns.T.tolist()[0])
        index_returns.extend(self.get_indexReturns().T.tolist()[0])
        
    obtained_returns = np.array(obtained_returns)
    index_returns = np.array(index_returns)
    print self.marketTiming(obtained_returns, index_returns)
    
    gl.savefig(folder_images +'timingBacktest.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
コード例 #22
0
    def send_email(self,data):
#        self.stop_reading_data(None)
#        return None
        #### Add the watking Logo Images !!
        logo_path =  self.output_folder + "images_IoTubes/mail_warning.png"
        image = mpimg.imread(logo_path)
        ax_img = plt.axes([0.88, self.monitoring_y - 0.02, 0.08, 0.08])
        ax_img.imshow(image)
        ax_img.axis("off")
            

        logo_path =  self.output_folder + "images_IoTubes/warning.png"
        image = mpimg.imread(logo_path)
        ax_img = plt.axes([0.77,  0.09, 0.12, 0.12])
        ax_img.imshow(image)
        ax_img.axis("off")
        
        ## Generate image
        folder_images = self.images_folder;
        path_image = folder_images +'Warning.png'
        gl.savefig( path_image,
           dpi = 100, sizeInches = []) # 2*8, 2*3
        
        ############### Send Email ####################
        myMail = Cemail.Cemail(self.email_config.user,self.email_config.pwd,self.email_config.recipients)
        myMail.create_msgRoot(subject = self.email_config.subject + " CID: " + self.cleaning_ID)
        #myMail.set_subject(subject)  # For some reason we can only initilize the Subject
        myMail.add_HTML(self.email_config.body)
            
        myMail.add_image(filedir = path_image, inline = 1)
        
        send_report_flag = True
        if (send_report_flag):
            self.generate_report(None)
            myMail.add_file(self.report_path)
            
        ########## YOU MAY HAVE TO ACTIVATE THE USED OF UNTRUSTFUL APPS IN GMAIL #####
        myMail.send_email()
コード例 #23
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_a(self, year_start = 1996, year_finish = 2016, window = 10):
    ## Basic, just look at the bloody graphs
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    
    dates = self.get_dates()
    prices = self.pf.get_timeSeries(self.period)
    returns = self.get_Returns()
#    print returns.shape
    gl.plot(dates, prices,
            labels = ["Monthly price of Symbols", "Time (years)", "Price (dolar)"],
            legend = self.pf.symbols.keys(), loc = 2)   
    gl.savefig(folder_images +'pricesAll.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])

    gl.plot(dates, returns,
            labels = ["Monthly return of the Symbols", "Time (years)", "Return (%)"],
            legend = self.pf.symbols.keys())   
    gl.savefig(folder_images +'returnsAll.png', 
               dpi = 150, sizeInches = [2*8, 1.5*6])

    ## Distribution obtaining
    gl.set_subplots(2,2)
    for i in range(4):
        gl.histogram(returns[:,i], labels = [self.symbol_names[i]])
    
    gl.savefig(folder_images +'returnDistribution.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])

    ##############  Posible Transformations ##################

    ws = [3, 4, 6, 8]
    
    gl.set_subplots(2,2)
    for w in ws:
        means, ranges = bMl.get_meanRange(prices[:,1], w)
        gl.scatter(means, ranges, lw = 4,
                   labels = ["", "mean","range"],
                   legend = ["w = %i" %(w)])
                   
    gl.savefig(folder_images +'rangeMean.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])
コード例 #24
0
def IFE_d(self,
          Rf=0.01,
          Rfs_list=[0],
          year_start=1996,
          year_finish=2016,
          window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the money.
    ## The efficient frontier is not going to change.
    ## Only the market line. But we exexute IFE_c again with the new Rf
    ## And plot some market lines !!
    #    self.pf.set_interval(dt.datetime(1996,12,5),dt.datetime(2016,2,21))
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))
    # Just plot some tangeny lines to the portfolio !!
    ## First plot some data !!
    Nalloc = 100000

    self.set_Rf(Rf)
    alloc = self.get_random_allocations(Nalloc, short="yes", mode="gaussian")
    self.scatter_allocations(alloc, alpha=0.3, nf=1)

    # Get upper limit of std to plot market lines
    w = self.TangentPortfolio(Rf=Rf)
    self.set_allocation(w)
    stdR = self.get_PortfolioStd()

    Optimal_portfolios = []
    for Rf in Rfs_list:
        bias, slope = self.Market_line(Rf=Rf)
        Optimal_portfolios.append(self.TangentPortfolio(Rf=Rf))
        gl.plot([0, 4 * stdR], [bias, bias + slope * 4 * stdR],
                legend=["Mkt Line Rf: %0.3f, SR:%0.2f" % (Rf, slope)],
                nf=0,
                loc=2)

    optimal, portfolios = self.efficient_frontier(kind="Tangent", max_exp=20)
    self.plot_allocations(portfolios,
                          nf=0,
                          lw=4,
                          color="k",
                          legend=["Efficient Frontier"])

    self.scatter_allocations(np.eye(self.Nsym),
                             legend=["Assets"],
                             nf=0,
                             alpha=1.0,
                             lw=5)

    self.scatter_allocations(Optimal_portfolios,
                             legend=["Optimal portfollios"],
                             nf=0,
                             alpha=1.0,
                             lw=5)

    gl.savefig(folder_images + 'marketLines.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    ### Only one market line
    Rf = 0
    bias, slope = self.Market_line(Rf=Rf)
    gl.plot([0, 4 * stdR], [bias, bias + slope * 4 * stdR],
            legend=["Mkt Line Rf: %0.3f, SR:%0.2f" % (Rf, slope)],
            nf=1,
            loc=2)

    optimal, portfolios = self.efficient_frontier(kind="Tangent", max_exp=20)
    self.plot_allocations(portfolios,
                          nf=0,
                          lw=4,
                          color="k",
                          legend=["Efficient Frontier"])

    self.scatter_allocations(np.eye(self.Nsym),
                             legend=["Assets"],
                             nf=0,
                             alpha=1.0,
                             lw=5)

    self.scatter_allocations([Optimal_portfolios[2]],
                             legend=["Optimal portfollios"],
                             nf=0,
                             alpha=1.0,
                             lw=5)

    gl.savefig(folder_images + 'marketLine.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #25
0
def plot_multiple_iterations(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list, folder_images):
    ######## Plot the original data #####
    gl.init_figure();
    gl.set_subplots(2,3);
    Ngraph = 6
    
    colors = ["r","b","g"]
    K_G,K_W,K_vMF = Ks
    
    for i in range(Ngraph):
        indx = int(i*((len(theta_list)-1)/float(Ngraph-1)))
        nf = 1
        for xi in range(len( Xs)):
            ## First cluster
            labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"]
            ax1 = gl.scatter(Xs[xi][0,:],Xs[xi][1,:],labels = ["","",""] , 
                              color = colors[xi] ,alpha = 0.2, nf = nf)
            nf =0
            mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mus[xi], Sigma = covs[xi], Chi2val = 2.4477)
            r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
            gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2
                     ,AxesStyle = "Normal2", color = colors[xi], alpha = 0.7)
            

        # Only doable if the clusters dont die
        for k_c in myDManager.clusterk_to_Dname.keys():
            k = myDManager.clusterk_to_thetak[k_c]
            distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
            
            if (distribution_name == "Gaussian"):
                ## Plot the ecolution of the mu
                #### Plot the Covariance of the clusters !
                mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477)
                r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
                gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3,
                        AxesStyle = "Normal2",
                       legend = ["Kg(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            
            elif(distribution_name == "Watson"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1])
                mu = theta_list[indx][k][0]
    
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                
                probs = np.array(probs)
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.",legend = ["Kw(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            elif(distribution_name == "vonMisesFisher"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]); mu = theta_list[indx][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                    
                probs = np.array(probs)
                probs = probs.reshape((probs.size,1)).T
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
    #            print X1_w.shape, X2_w.shape
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            

        ax1.axis('equal')
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01)
    gl.savefig(folder_images +'Final_State2. K_G:'+str(K_G)+ ', K_W:' + str(K_W) + '.png', 
           dpi = 100, sizeInches = [18, 8])
                     xlabel=18,
                     ylabel=18,
                     legend=15,
                     xticks=14,
                     yticks=14)
    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.20,
                       hspace=0.10)
    gl.format_yaxis(ax=ax3, Nticks=10)
    gl.format_xaxis(ax=ax3, Nticks=len(em_train))
    gl.savefig(folder_images + images_prefix + "Accuracies_epoch.png",
               dpi=100,
               sizeInches=[20, 5],
               close=False,
               bbox_inches="tight")

if (Batch_related):
    """
    #############################################
    Batch plots 
    """

    data_loss_batch = training_logger["train"]["loss_batch"]
    em_train_batches = 100 * np.array(training_logger["train"]["em_batch"])
    f1_train_batches = 100 * np.array(training_logger["train"]["f1_batch"])

    gl.init_figure()
    ax1 = gl.subplot2grid((1, 2), (0, 0), rowspan=1, colspan=1)
コード例 #27
0
        mean_val_ll,
        nf=0,
        color="r",
        legend=["Mean Validation LL (EM)"],
        lw=3)
gl.plot(Klusters,
        mean_val_ll + 2 * std_val_ll,
        color="r",
        nf=0,
        lw=1,
        ls="--",
        legend=["Mean Validation LL +- 2std"])
gl.plot(Klusters, mean_val_ll - 2 * std_val_ll, color="r", nf=0, lw=1, ls="--")
gl.fill_between(Klusters,
                mean_val_ll - 2 * std_val_ll,
                mean_val_ll + 2 * std_val_ll,
                c="r",
                alpha=0.1)

for i in range(len(logl_tr_CVs)):
    for k_i in range(len(Klusters)):
        gl.scatter(np.ones((len(logl_val_CVs[i][k_i]), 1)) * Klusters[k_i],
                   logl_val_CVs[i][k_i],
                   color="r",
                   alpha=0.5,
                   lw=1)

gl.savefig(folder_images + 'EM_Gaussian_CV_artificial_data.png',
           dpi=100,
           sizeInches=[12, 6])
コード例 #28
0
ファイル: 2.main_kernel.py プロジェクト: manuwhs/Trapyng
            labels = ["","",""], legend = ["M: %.2e, std: %.2e"%(mean[0], cov[1,1])])
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.01, hspace=0.01)

    
    x_grid, y_val = bMA.gaussian1D_points(X = ret2, std_K = 3)
    gl.plot(y_val, x_grid, color = "b",
            labels = ["","",""], legend = ["M: %.2e, std: %.2e"%(mean[0], cov[1,1])])
    
    
    xx, yy, zz = bMA.kde2D(ret1,ret2, bandwidth = np.std(ret1)/kde_K,
                           xbins=n_grids*1j, ybins=n_grids*1j)
    ax1.contour(xx, yy, zz)
    
    ax1.axis('equal')
    
    gl.savefig(folder_images +'KDEHistogramCLOSE.png', 
               dpi = 100, sizeInches = [18, 14])
               
if(distribution_graph3D):
    ################ Contour plot of the scatter plot ################
    xx, yy, zz = bMA.kde2D(ret1,ret2, bandwidth = np.std(ret1)/kde_K,
                           xbins=n_grids*1j, ybins=n_grids*1j)
    ## Plot the 3D surface
    ax3D = gl.plot_3D(xx, yy, zz, nf = 1)
    
    ## Limits of the plotting !
    xmin,xmax = [np.min(xx.flatten()), np.max(xx.flatten())]
    ymin,ymax = [np.min(yy.flatten()), np.max(yy.flatten())]
    zmin,zmax = [np.min(zz.flatten()), np.max(zz.flatten())]
    
    # Plot the marginalization of X
    x_grid = np.linspace(min(ret1),max(ret1),n_grids)
コード例 #29
0
def IFE_g(self, Rf=0, year_start=1996, year_finish=2016, window=10):
    ## CAPM model question, calculate abs and doubt everything you know

    self.set_Rf(Rf)
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))

    # Plot the correlation between some index and the stock
    gl.set_subplots(2, 3)

    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_start + window, 1, 1))
    for i in range(6):
        self.plot_corrab(self.symbol_names[i])

    gl.savefig(folder_images + 'SymbolAB.png',
               dpi=80,
               sizeInches=[2 * 8, 2 * 6])

    # Plot the jensen alpha of some of the stocks
    gl.set_subplots(2, 3)

    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_start + window, 1, 1))
    for i in range(6):
        JensenAlpha = self.get_symbol_JensenAlpha(self.symbol_names[i])
        gl.histogram(JensenAlpha, labels=[self.symbol_names[i]])

    gl.savefig(folder_images + 'JensenAlphasAll.png',
               dpi=80,
               sizeInches=[4 * 8, 3 * 6])

    ## We set a stupid initial portfolio (Everything equal)
    param = self.get_symbol_ab(self.symbol_names[1])
    print "Params of %s" % self.symbol_names[1]
    print param

    ########## TEST ONE SYMBOL ######
    #    self.test_symbol_ab(self.symbol_names[1])
    # Print stupid portfolio
    # Param
    params = self.get_all_symbols_ab()
    print "All params"
    print params

    # Params of stupid porfolio
    print "Params of stupid portfolio"
    self.set_allocation([])
    param = self.get_portfolio_ab(mode="normal")  # Obtained as definition
    print param
    param = self.get_portfolio_ab(
        mode="gaussian")  # Obtained first getting the cov matrix
    print param

    ########## TEST Portfolio ######
    # Test the jensenAlpha of the portfolio
    JensenAlpha = self.get_portfolio_JensenAlpha()

    ## IDEA !! Maybe use the portfolio in the frontier that maximizes
    ## the alpha and minimizes the beta !!! Maybe minimizing beta is not as important
    ## In the CAMP we already have the total Exp and risk.
    ## Alpha and beta say: Does out portolio perform better than the market ?
    ## If we just follow the market, investing everything on the index,
    ## Thus investing in everything proportionally to their capital.
    ## Then we have alpha = 0 and beta = 1
    #    CAPMillo.test_symbol_ab(symbols[2])

    #   Plot random porfolios correlation with the index
    alloc = self.get_random_allocations(100, short="yes", mode="gaussian")
    gl.set_subplots(2, 3)
    for i in range(6):
        self.set_allocation(alloc[i])
        self.plot_portfoliocorrab(nf=1)

    gl.savefig(folder_images + 'randomPortCorr.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    #   Plot Jesen Alpha for random portfolios
    flag_nf = 1
    for i in range(5):
        self.set_allocation(alloc[i])
        self.test_Jensens_Alpha(nf=flag_nf)
        flag_nf = 0

    gl.savefig(folder_images + 'randomPortJA.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    ##############################################
    ########### ANALIZE 3 optimal portfolios #####
    ##############################################
    Rfs = [0, 0.002, 0.0031]
    print "???????????????:?:::::::::::::::::::::::::::::::::::::::"
    flag_nf = 1
    for Rf in Rfs:
        # Do it again with an optimal portolio
        w = self.TangentPortfolio(Rf=Rf)
        self.set_allocation(w)
        self.test_Jensens_Alpha(nf=flag_nf)
        flag_nf = 0

    flag_nf = 1

    gl.savefig(folder_images + 'optimalPortJA.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
    gl.set_subplots(1, 3)
    for Rf in Rfs:
        # Do it again with an optimal portolio
        w = self.TangentPortfolio(Rf=Rf)
        self.set_allocation(w)
        self.plot_portfoliocorrab(nf=1)
        flag_nf = 0

    gl.savefig(folder_images + 'optimalPortCorr.png',
               dpi=150,
               sizeInches=[2 * 8, 1 * 6])
コード例 #30
0
def IFE_f(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio.
    # Do this for several years as well.
    self.set_Rf(Rf)

    nf_flag = 1

    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1 - 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf) / (expRet - Rf)
        wdesired = w * X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year

        #        print ret
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)

        All_stds.append(self.yearly_covMatrix(stdRet))

        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)

        #        dates = self.get_dates()
        all_dates.append(year_test + window + 1)

        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1, 13),
                np.cumsum(self.get_PortfolioReturn()),
                nf=nf_flag,
                labels=[
                    "Evolution of returns by month", "Months passed",
                    "Cumulative Return"
                ],
                legend=[str(year_test + window + 1)])
        nf_flag = 0


#        print ret

    gl.savefig(folder_images + 'returnsEvolMonth.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:],
           IndexReturns,
           labels=["Obtained returns", "Time (years)", "Return (%)"],
           legend=["Index Return"],
           alpha=0.8,
           nf=1)
    gl.bar(all_dates[:],
           PortfolioReturns,
           labels=["Returns of year", "Year", "Value"],
           legend=["Porfolio Return"],
           alpha=0.8,
           nf=0)

    gl.scatter(all_dates[:],
               self.yearly_Return(ObjectiveR) * np.ones(
                   (len(all_dates[:]), 1)),
               legend=["Objective Return"],
               nf=0)

    gl.scatter(all_dates[:],
               All_stds,
               legend=["Std of the portfolio return"],
               nf=0)

    gl.savefig(folder_images + 'returnsEvolYears.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2, 3)
    for year_test in range(year_start, year_start + 6):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))
        optimal, portfolios = self.efficient_frontier(kind="Tangent")
        self.plot_allocations(
            portfolios,
            labels=["Evolution of the efficient frontier"],
            legend=["Frontier " + str(year_test + window) + " before"],
            color="k",
            nf=1)

        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(self.TangentPortfolio(Rf=Rf))
        self.plot_allocations(
            portfolios,
            legend=["Frontier " + str(year_test + window) + " after"],
            color="r",
            nf=0)

    gl.savefig(folder_images + 'effEvol.png',
               dpi=80,
               sizeInches=[4 * 8, 3 * 6])
コード例 #31
0
                    if (ll_train[ic, K_i] > ll_train_best[ic, K_i]):
                        ll_train_best[ic, K_i] = copy.deepcopy(ll_train[ic,
                                                                        K_i])
                        ll_test_best[ic, K_i] = copy.deepcopy(ll_test[ic, K_i])
                        All_Ks_params_best[K_i] = copy.deepcopy(
                            All_Ks_params[K_i])

        for ic in range(Nclasses):
            gl.plot(Klusters,
                    np.array([ll_train_best[ic], ll_test_best[ic]]).T,
                    legend=["tr", "Val"],
                    labels=["EM class = " + str(ic), "States", "loglike"])
            gl.savefig(
                file_dir="./OnePerson_5fold_cluster" + str(ic) + "/Iteration" +
                str(i) + ".png",
                bbox_inches='tight',
                sizeInches=[],  # The size in inches as a list
                close=True,  # If we close the figure once saved
                dpi=100
            )  # Density of pixels !! Same image but more cuality ! Pixels

loading_precomputed_centroids = 1
if (loading_precomputed_centroids):
    #    pkl.store_pickle("./OnePerson1FoldEM.pkl",[ll_train_best, ll_test_best, All_Ks_params_best])
    cosas = pkl.load_pickle("./OnePerson1FoldEM.pkl")
    class_i = 1
    n_cluster_opt = 5
    good_clusters_EM = cosas[2][n_cluster_opt][class_i]
    Ks_params = good_clusters_EM
    pi_opt = good_clusters_EM[0]
    mu_opt = good_clusters_EM[1][0]
コード例 #32
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_f2 (self, ObjectiveRlist = [0.003], Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio. 
    # Do this for several years as well.

    self.set_Rf(Rf)
    
    All_returns  = []
    All_vars = []
    
    windowslist = range(1,13)
    ObjectiveR = 0.03
    for window in windowslist:
        PortfolioReturns = []
        all_dates = []
        for year_test in range(year_start,year_finish - window + 1 - 1): # +1 !!
            # Set the dates
            self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
            
            # Obtain the market line !!
            w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
            self.set_allocation(w)
            # Obtain the expected return and std when using all our money !
            expRet, stdRet = self.get_metrics (investRf = "no")
            param = bMl.obtain_equation_line(Rf, expRet, stdRet)
            bias, slope = param
            X = (ObjectiveR - Rf)/(expRet - Rf)
            wdesired = w*X
    
            self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
            self.set_allocation(wdesired)  # Set the allocation
            expRet, stdRet = self.get_metrics()  # Get the expected return for that year
            PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
            PortfolioReturns.append(PortfolioRet)
            
            dates = self.get_dates()
            all_dates.append(dates[0])
        
        All_returns.append(np.mean(PortfolioReturns))
        All_vars.append(np.std(PortfolioReturns)/np.sqrt(np.sqrt(12*12)))
#    All_returns = np.array(All_returns).reshape(len(ObjectiveRlist),10)
#    print All_returns
    All_means = All_returns
    print All_returns
#    All_means = np.mean(All_returns, axis = 1)
    print ul.fnp(All_returns).shape
    print All_means
#    print All_means - ObjectiveRlist
#    All_means = np.divide((All_means - ObjectiveRlist),ObjectiveRlist)
#    print All_means
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(windowslist, All_means, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 1)

    gl.plot(windowslist, All_vars, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 0)
            
    gl.savefig(folder_images +'best_Objective.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
コード例 #33
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_d (self, Rf = 0.01, Rfs_list = [0], year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the money.
    ## The efficient frontier is not going to change.
    ## Only the market line. But we exexute IFE_c again with the new Rf 
    ## And plot some market lines !!
#    self.pf.set_interval(dt.datetime(1996,12,5),dt.datetime(2016,2,21))
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    # Just plot some tangeny lines to the portfolio !!
    ## First plot some data !!
    Nalloc = 100000
    
    self.set_Rf(Rf)
    alloc = self.get_random_allocations(Nalloc, short = "yes", mode = "gaussian")
    self.scatter_allocations(alloc, alpha = 0.3,nf = 1)
    
    # Get upper limit of std to plot market lines
    w = self.TangentPortfolio(Rf = Rf)
    self.set_allocation(w)
    stdR = self.get_PortfolioStd()
    
    Optimal_portfolios = []
    for Rf in Rfs_list:
        bias, slope = self.Market_line (Rf = Rf)
        Optimal_portfolios.append(self.TangentPortfolio(Rf = Rf))
        gl.plot([0,4*stdR],[bias, bias + slope*4*stdR],
                legend = ["Mkt Line Rf: %0.3f, SR:%0.2f" % (Rf,slope)],
                nf = 0,loc = 2)


    optimal, portfolios = self.efficient_frontier(kind = "Tangent", max_exp = 20)
    self.plot_allocations(portfolios, nf = 0, lw = 4, color = "k", legend = ["Efficient Frontier"])

    self.scatter_allocations(np.eye(self.Nsym), 
            legend = ["Assets"], nf = 0, alpha = 1.0, lw = 5)
    
    self.scatter_allocations(Optimal_portfolios, 
            legend = ["Optimal portfollios"], nf = 0, alpha = 1.0, lw = 5)
    
    gl.savefig(folder_images +'marketLines.png', 
               dpi = 150, sizeInches = [2*8, 2*6])


    ### Only one market line
    Rf = 0
    bias, slope = self.Market_line (Rf = Rf)
    gl.plot([0,4*stdR],[bias, bias + slope*4*stdR],
            legend = ["Mkt Line Rf: %0.3f, SR:%0.2f" % (Rf,slope)],
            nf = 1,loc = 2)
        
    optimal, portfolios = self.efficient_frontier(kind = "Tangent", max_exp = 20)
    self.plot_allocations(portfolios, nf = 0, lw = 4, color = "k", legend = ["Efficient Frontier"])

    self.scatter_allocations(np.eye(self.Nsym), 
            legend = ["Assets"], nf = 0, alpha = 1.0, lw = 5)
            
    self.scatter_allocations([Optimal_portfolios[2]],
            legend = ["Optimal portfollios"], nf = 0, alpha = 1.0, lw = 5)
    
    gl.savefig(folder_images +'marketLine.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
コード例 #34
0
def create_Bayesian_analysis_charts_simplified(model,
                                               train_dataset,
                                               validation_dataset,
                                               tr_loss,
                                               val_loss,
                                               KL_loss,
                                               folder_images,
                                               epoch_i=None):

    # Configurations of the plots
    alpha_points = 0.2
    color_points_train = "dark navy blue"
    color_points_val = "amber"
    color_train_loss = "cobalt blue"
    color_val_loss = "blood"
    color_truth = "k"
    color_mean = "b"
    color_most_likey = "y"

    ################################ Divide in plots ##############################
    gl.init_figure()
    ax1 = gl.subplot2grid((6, 3), (0, 0), rowspan=3, colspan=1)
    ax2 = gl.subplot2grid((6, 3), (3, 0),
                          rowspan=3,
                          colspan=1,
                          sharex=ax1,
                          sharey=ax1)

    ax3 = gl.subplot2grid((6, 3), (0, 1), rowspan=2, colspan=1)
    ax4 = gl.subplot2grid((6, 3), (2, 1), rowspan=2, colspan=1, sharex=ax3)
    ax5 = gl.subplot2grid((6, 3), (4, 1), rowspan=2, colspan=1, sharex=ax3)

    ax6 = gl.subplot2grid((6, 3), (0, 2), rowspan=3, colspan=1)
    ax7 = gl.subplot2grid((6, 3), (3, 2), rowspan=3, colspan=1, sharex=ax6)

    ####### ax1, ax2: Get confusion matrices ##########

    labels_classes, confusion = model.get_confusion_matrix(train_dataset)
    plot_confusion_matrix(confusion, labels_classes, ax1)
    labels_classes, confusion = model.get_confusion_matrix(validation_dataset)
    plot_confusion_matrix(confusion, labels_classes, ax2)

    ############## ax3 ax4 ax5: Loss Evolution !! ######################
    ## ax3: Evolutoin of the data loss
    gl.plot([],
            tr_loss,
            ax=ax3,
            lw=3,
            labels=["Losses", "", "Data loss (MSE)"],
            legend=["train"],
            color=color_train_loss)
    gl.plot([],
            val_loss,
            ax=ax3,
            lw=3,
            legend=["validation"],
            color=color_val_loss,
            AxesStyle="Normal - No xaxis")

    ## ax4: The evolution of the KL loss
    gl.plot([],
            KL_loss,
            ax=ax4,
            lw=3,
            labels=["", "", "KL loss"],
            legend=["Bayesian Weights"],
            AxesStyle="Normal - No xaxis",
            color="k")

    ## ax5: Evolutoin of the total loss
    gl.plot([],
            tr_loss,
            ax=ax5,
            lw=3,
            labels=["", "epoch", "Total Loss (Bayes)"],
            legend=["train"],
            color=color_train_loss)
    gl.plot([],
            val_loss,
            ax=ax5,
            lw=3,
            legend=["validation"],
            color=color_val_loss)

    ############## ax6 ax7: Variational Weights !! ######################
    create_plot_variational_weights(model, ax6, ax7)

    gl.set_zoom(ax=ax6, ylim=[-0.1, 10])
    gl.set_zoom(ax=ax7, xlim=[-2.5, 2.5], ylim=[-0.1, 0.5])

    # Set final properties and save figure
    gl.set_fontSizes(ax=[ax1, ax2, ax3, ax4, ax5, ax6, ax7],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=10,
                     xticks=12,
                     yticks=12)

    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.10)

    if (type(epoch_i) == type(None)):
        gl.savefig(folder_images + 'Training_Example_Data_Bayesian.png',
                   dpi=100,
                   sizeInches=[20, 10])
    else:
        gl.savefig(folder_images + '%i.png' % epoch_i,
                   dpi=100,
                   sizeInches=[20, 10],
                   close=True,
                   bbox_inches="tight")
コード例 #35
0
ファイル: 3.main_gaussian.py プロジェクト: manuwhs/Trapyng
    gl.init_figure()
    for i in range(Nx):
        
        X_i = X[:,[i]]
        x_grid, y_values = bMA.gaussian1D_points(mean = mus[i], std = stds[i],
        x_grid = x_grid)
        
        color = gl.get_color()
        gl.scatter(X_i, np.zeros(X_i.shape), alpha = 0.1, lw = 4, AxesStyle = "Normal",
                   color = color, labels = ["3 independent Gaussian distributions","x","pdf(x)"])
                   
        gl.plot(x_grid, y_values, color = color, fill = 1, alpha = 0.1,
                legend = ["X%i: m:%.1f, std:%.1f"%(i+1,mus[i],stds[i])])  
        
        
        gl.savefig(folder_images +'Gaussians.png', 
           dpi = 100, sizeInches = [18, 10])
           
############################################################
################# PLOT DATA ###############################
############################################################

if(distribution_graph_2D):
    # Get the histogram and gaussian estimations !
    ## Scatter plot of the points 
#    gl.init_figure()
    i_1 = 2
    i_2 = 0
    X_1,X_2 = X[:,[i_1]], X[:,[i_2]]
    mu_1, mu_2  = mus[i_1],mus[i_2]
    std_1, std_2 = stds[i_1],stds[i_2]
    
コード例 #36
0
            xlimPad = [0.1,0.3], ylimPad = [0.1,0.1],
            marker = marker, AxesStyle = "Normal2")
            
    gl.stem([], diffw2, nf = 1,  sharex = ax1, sharey = ax1,lw = lw,
            labels = ["MOMw(%i)"%ndiff2,"lag",""],
            xlimPad = [0.1,0.3], ylimPad = [0.1,0.1],
            marker = marker, AxesStyle = "Normal2 - No yaxis")
            
    gl.stem([], diffw3, nf = 1,sharex = ax1, sharey = ax1,lw = lw,
            labels = ["MOMw(%i)"%ndiff3,"lag",""],
            xlimPad = [0.1,0.3], ylimPad = [0.1,0.1],
            marker = marker, AxesStyle = "Normal2 - No yaxis")
            
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.050, hspace=0.01)

    gl.savefig(folder_images +'MOMw.png', 
               dpi = 100, sizeInches = [2*8, 2*2])
 
    
    ## Differentation of 1
    gl.set_subplots(1,3)
    # Plotting the 3 of them at the same time.

    ax1 = gl.stem([], dSMAw, nf = 1, lw = lw,
            labels = ["SMASMA","lag","value"],
            legend = ["SMASMA(%i)"%nHMA],
            xlimPad = [0.1,0.3], ylimPad = [0.1,0.1],
            marker = marker, AxesStyle = "Normal2")
            
    gl.stem([], dWMAw, nf = 1,sharex = ax1, sharey = ax1, lw = lw,
            labels = ["WMAWMA","lag"],
            legend = ["WMAWMA(%i)"%nHMA],
コード例 #37
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_g (self, Rf = 0, year_start = 1996, year_finish = 2016, window = 10):
    ## CAPM model question, calculate abs and doubt everything you know

    self.set_Rf(Rf)
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    
    
   # Plot the correlation between some index and the stock
    gl.set_subplots(2,3)
    
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_start + window,1,1))
    for i in range(6):
        self.plot_corrab(self.symbol_names[i])    
        
    gl.savefig(folder_images +'SymbolAB.png', 
               dpi = 80, sizeInches = [2*8, 2*6])

   # Plot the jensen alpha of some of the stocks
    gl.set_subplots(2,3)
    
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_start + window,1,1))
    for i in range(6):
        JensenAlpha = self.get_symbol_JensenAlpha(self.symbol_names[i])
        gl.histogram(JensenAlpha, labels = [self.symbol_names[i]])  
        
    gl.savefig(folder_images +'JensenAlphasAll.png', 
               dpi = 80, sizeInches = [4*8, 3*6])

    
    ## We set a stupid initial portfolio (Everything equal)
    param = self.get_symbol_ab(self.symbol_names[1])
    print "Params of %s" % self.symbol_names[1]
    print param
    
    ########## TEST ONE SYMBOL ######
#    self.test_symbol_ab(self.symbol_names[1])
    # Print stupid portfolio
    # Param
    params = self.get_all_symbols_ab()
    print "All params"
    print params
    
    # Params of stupid porfolio
    print "Params of stupid portfolio"
    self.set_allocation([])
    param = self.get_portfolio_ab(mode = "normal")    # Obtained as definition
    print param
    param = self.get_portfolio_ab(mode = "gaussian")  # Obtained first getting the cov matrix
    print param
    
    ########## TEST Portfolio ######
    # Test the jensenAlpha of the portfolio
    JensenAlpha = self.get_portfolio_JensenAlpha()
    
    ## IDEA !! Maybe use the portfolio in the frontier that maximizes
    ## the alpha and minimizes the beta !!! Maybe minimizing beta is not as important
    ## In the CAMP we already have the total Exp and risk.
    ## Alpha and beta say: Does out portolio perform better than the market ?
    ## If we just follow the market, investing everything on the index,
    ## Thus investing in everything proportionally to their capital.
    ## Then we have alpha = 0 and beta = 1 
#    CAPMillo.test_symbol_ab(symbols[2])
 
#   Plot random porfolios correlation with the index
    alloc = self.get_random_allocations(100, short = "yes", mode = "gaussian")
    gl.set_subplots(2,3)
    for i in range(6):
        self.set_allocation(alloc[i])
        self.plot_portfoliocorrab( nf = 1)

    gl.savefig(folder_images +'randomPortCorr.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

#   Plot Jesen Alpha for random portfolios      
    flag_nf = 1
    for i in range(5):
        self.set_allocation(alloc[i])
        self.test_Jensens_Alpha(nf = flag_nf)
        flag_nf = 0
        
    gl.savefig(folder_images +'randomPortJA.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
               
    ##############################################
    ########### ANALIZE 3 optimal portfolios #####
    ##############################################
    Rfs = [0,0.002, 0.0031]
    print "???????????????:?:::::::::::::::::::::::::::::::::::::::"
    flag_nf = 1
    for Rf in Rfs:
        # Do it again with an optimal portolio
        w = self.TangentPortfolio(Rf = Rf)
        self.set_allocation(w)
        self.test_Jensens_Alpha(nf = flag_nf)
        flag_nf = 0
        
    flag_nf = 1
    
    gl.savefig(folder_images +'optimalPortJA.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
    gl.set_subplots(1,3)
    for Rf in Rfs:
        # Do it again with an optimal portolio
        w = self.TangentPortfolio(Rf = Rf)
        self.set_allocation(w)
        self.plot_portfoliocorrab(nf = 1)
        flag_nf = 0

    gl.savefig(folder_images +'optimalPortCorr.png', 
               dpi = 150, sizeInches = [2*8, 1*6])
コード例 #38
0
def IFE_e(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param

        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf) / (expRet - Rf)

        #        print X
        # So the desired porfolio is:
        wdesired = w * X
        desired_Portfolios.append(wdesired)

        gl.plot([0, 1.3 * abs(X * stdRet)],
                [bias, bias + 1.3 * abs(slope * stdRet * X)],
                labels=["Desired Portfolios", "Risk (std)", "Return (%)"],
                legend=["%s, X: %0.3f" % ((year_test + window), X[0])],
                nf=nf_flag,
                loc=2)
        nf_flag = 0
        gl.scatter([abs(X * stdRet)], [ObjectiveR], nf=0)

        dates = self.get_dates()
        all_dates.append(dates[-1])


#        print wdesired

    gl.savefig(folder_images + 'desiredPortfolios.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    # Now we calculate the turnovers
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)

    for i in range(Nport - 1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i + 1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1] / prev_abs_alloc[-1])
        print Turnovers

    gl.set_subplots(1, 3)

    gl.bar(all_dates[1:],
           Turnovers,
           color="g",
           labels=["Portfolio turnovers", "Year", "Value"])

    gl.add_text([all_dates[1:][3], max(Turnovers) * 0.80],
                "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1],
           prev_abs_alloc,
           color="r",
           labels=["Absolute allocations", "Year", "Value"])

    gl.bar(all_dates[1:],
           percentaje_changed,
           color="b",
           labels=["Percentage turnover", "Year", "Value"])

    gl.add_text(
        [all_dates[1:][3], max(percentaje_changed) * 0.80],
        "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images + 'turnovers.png',
               dpi=150,
               sizeInches=[2 * 8, 1 * 6])
コード例 #39
0
def IFE_h(self, Rf=0, mktcap=[], year_start=1996, year_finish=2016, window=10):
    ## Black litterman question !!
    # The optimal portolio, lets say is the one given by Markovitz
    # mktcap is a dicktionary with the market capitalizaion of the equities
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))

    ## Get the actual stuff !!

    ExpRet = self.get_MeanReturns()
    Sigma = self.get_covMatrix()
    woptimal = self.TangentPortfolio()
    self.set_allocation(woptimal)
    R, S = self.get_metrics()
    delta = (R - self.Rf) / np.power(S, 2)  # Optimal risk adversion

    ## Get the weights by the market capitalization
    if (len(mktcap) > 0):
        weq = []
        for sym in self.symbol_names:
            weq.append(mktcap[sym])

        weq = ul.fnp(weq) / np.sum(weq)
        weq = weq.T.tolist()[0]
#        print weq
    else:

        weq = woptimal  # Initial prior
    ############### PUT FECKING BL prior instead ##########
    # Calculate initial portfolio from the market capitalization
    # Risk aversion of the market. We say it is the one of the portfolio
    # The optimal portfolio is the market.


#    weq = np.ones((1,self.Nsym))/self.Nsym
#    weq = weq.tolist()[0]
# Coefficient of uncertainty in the prior estimate of the mean
    tau = 10

    ### Prior of our Views !!!
    P1 = np.zeros((2, self.Nsym))
    P1[0, 0] = -1
    P1[0, 1] = 1
    P1[1, 1] = -1
    P1[1, 2] = 1
    P1 = ul.fnp(P1)

    # If we invert P1 and Q1 at the same time we get the same
    Q1 = [0.0002, 0.0001]
    Q1 = ul.fnp(Q1)

    Omega1 = np.dot(np.dot(P1, Sigma), P1.T) * np.eye(Q1.shape[0])

    postPi, weqpost = self.BlackLitterman(
        weq,
        Sigma,
        delta,  # Prior portfolio variables
        tau,  # Uncertainty coefficient of the porfolio priors
        P1,
        Q1,
        Omega1)  # Prior views variables

    # Reference returns of the portfolio of the market
    # They can just be calculated using the portfolio

    # A priory the expected return Posteriori does not have to be bigger
    # Just more accuarate to reality if our views are right :)
    refPi = delta * np.dot(Sigma, weq)

    Ereturn = np.dot(refPi, weq)
    EreturnPost = np.dot(postPi, weqpost)

    ## Plot the returns !!!
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    gl.set_subplots(2, 3)
    gl.bar(self.pf.symbols.keys(), ExpRet, labels=["Optimal initial returns"])
    gl.bar(self.pf.symbols.keys(), refPi, labels=["Prior Returns"])
    gl.bar(self.pf.symbols.keys(), postPi, labels=["Posterior Returns"])

    #    gl.savefig(folder_images +'returnsBL.png',
    #               dpi = 150, sizeInches = [2*8, 2*6])

    ## Plot the weights !!!
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    #    gl.set_subplots(1,3)

    gl.bar(self.pf.symbols.keys(), woptimal, labels=["Optimal intial weights"])
    gl.bar(self.pf.symbols.keys(), weq, labels=["Prior Weights"])
    gl.bar(self.pf.symbols.keys(), weqpost, labels=["Posterior Weights"])

    #    gl.savefig(folder_images +'weightsBL.png',
    #               dpi = 150, sizeInches = [2*8, 2*6])

    gl.savefig(folder_images + 'weightsreturnsBL.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    pass
コード例 #40
0
def IFE_f2(self,
           ObjectiveRlist=[0.003],
           Rf=0.0,
           year_start=1996,
           year_finish=2016,
           window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio.
    # Do this for several years as well.

    self.set_Rf(Rf)

    All_returns = []
    All_vars = []

    windowslist = range(1, 13)
    ObjectiveR = 0.03
    for window in windowslist:
        PortfolioReturns = []
        all_dates = []
        for year_test in range(year_start,
                               year_finish - window + 1 - 1):  # +1 !!
            # Set the dates
            self.pf.set_interval(dt.datetime(year_test, 1, 1),
                                 dt.datetime(year_test + window, 1, 1))

            # Obtain the market line !!
            w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
            self.set_allocation(w)
            # Obtain the expected return and std when using all our money !
            expRet, stdRet = self.get_metrics(investRf="no")
            param = bMl.obtain_equation_line(Rf, expRet, stdRet)
            bias, slope = param
            X = (ObjectiveR - Rf) / (expRet - Rf)
            wdesired = w * X

            self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                                 dt.datetime(year_test + window + 1, 1, 1))
            self.set_allocation(wdesired)  # Set the allocation
            expRet, stdRet = self.get_metrics(
            )  # Get the expected return for that year
            PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
            PortfolioReturns.append(PortfolioRet)

            dates = self.get_dates()
            all_dates.append(dates[0])

        All_returns.append(np.mean(PortfolioReturns))
        All_vars.append(np.std(PortfolioReturns) / np.sqrt(np.sqrt(12 * 12)))


#    All_returns = np.array(All_returns).reshape(len(ObjectiveRlist),10)
#    print All_returns
    All_means = All_returns
    print All_returns
    #    All_means = np.mean(All_returns, axis = 1)
    print ul.fnp(All_returns).shape
    print All_means
    #    print All_means - ObjectiveRlist
    #    All_means = np.divide((All_means - ObjectiveRlist),ObjectiveRlist)
    #    print All_means
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(windowslist,
           All_means,
           labels=["Obtained returns", "Time (years)", "Return (%)"],
           legend=["Index Return"],
           alpha=0.8,
           nf=1)

    gl.plot(windowslist,
            All_vars,
            labels=["Obtained returns", "Time (years)", "Return (%)"],
            legend=["Index Return"],
            alpha=0.8,
            nf=0)

    gl.savefig(folder_images + 'best_Objective.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
コード例 #41
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_h (self, Rf = 0, mktcap = [], year_start = 1996, year_finish = 2016, window = 10):
    ## Black litterman question !!
    # The optimal portolio, lets say is the one given by Markovitz
    # mktcap is a dicktionary with the market capitalizaion of the equities
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    
    ## Get the actual stuff !!

    ExpRet = self.get_MeanReturns()
    Sigma = self.get_covMatrix()
    woptimal = self.TangentPortfolio()
    self.set_allocation(woptimal)
    R,S = self.get_metrics()
    delta = (R - self.Rf)/np.power(S,2)  # Optimal risk adversion
    
    
    ## Get the weights by the market capitalization
    if (len(mktcap) > 0):
        weq = []
        for sym in self.symbol_names:
            weq.append(mktcap[sym])
        
        weq = ul.fnp(weq) /np.sum(weq)
        weq = weq.T.tolist()[0]
#        print weq
    else:
        
        weq = woptimal  # Initial prior
    ############### PUT FECKING BL prior instead ##########
    # Calculate initial portfolio from the market capitalization
    # Risk aversion of the market. We say it is the one of the portfolio
    # The optimal portfolio is the market.
#    weq = np.ones((1,self.Nsym))/self.Nsym
#    weq = weq.tolist()[0]
    # Coefficient of uncertainty in the prior estimate of the mean
    tau = 10
    
    ### Prior of our Views !!!
    P1 = np.zeros((2,self.Nsym))
    P1[0,0] = -1; P1[0,1] =  1
    P1[1,1] = -1; P1[1,2] =  1
    P1 = ul.fnp(P1)
    
    # If we invert P1 and Q1 at the same time we get the same
    Q1 = [0.0002, 0.0001]
    Q1 = ul.fnp(Q1)
    
    Omega1 = np.dot(np.dot(P1,Sigma),P1.T) * np.eye(Q1.shape[0])
    
    postPi,weqpost = self.BlackLitterman(weq, Sigma, delta, # Prior portfolio variables
                   tau,              # Uncertainty coefficient of the porfolio priors
                   P1, Q1, Omega1)   # Prior views variables
    
    # Reference returns of the portfolio of the market
    # They can just be calculated using the portfolio
      
    # A priory the expected return Posteriori does not have to be bigger
    # Just more accuarate to reality if our views are right :)
    refPi = delta * np.dot(Sigma, weq)  
      
    Ereturn = np.dot(refPi,weq)
    EreturnPost = np.dot(postPi,weqpost)
    

    ## Plot the returns !!! 
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    gl.set_subplots(2,3)
    gl.bar(self.pf.symbols.keys(),ExpRet,
           labels = ["Optimal initial returns"])    
    gl.bar(self.pf.symbols.keys(),refPi,
             labels = ["Prior Returns"])
    gl.bar(self.pf.symbols.keys(),postPi,
             labels = ["Posterior Returns"])

#    gl.savefig(folder_images +'returnsBL.png', 
#               dpi = 150, sizeInches = [2*8, 2*6])
               
    ## Plot the weights !!! 
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
#    gl.set_subplots(1,3)
    
    gl.bar(self.pf.symbols.keys(),woptimal,
           labels = ["Optimal intial weights"])
    gl.bar(self.pf.symbols.keys(),weq,
             labels = ["Prior Weights"])
    gl.bar(self.pf.symbols.keys(),weqpost,
             labels = ["Posterior Weights"])
             
#    gl.savefig(folder_images +'weightsBL.png', 
#               dpi = 150, sizeInches = [2*8, 2*6])
               
    gl.savefig(folder_images +'weightsreturnsBL.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
               
    pass
コード例 #42
0
tgrid = tgrid.reshape(tgrid.size,1)
N = tgrid.size

# Create the signal 
X = mean_function(tgrid, f1 = 1, f2 = 5, a1 = 0.4, a2 = 0.1, 
                      phi2 = 2*np.pi/7, m = 0.1 )


if (plot_mean_signal and plot_flag):
    ## Plot the orginal function
    gl.scatter(tgrid,X, lw = 1, alpha = 0.9, color = "k", nf = 1, 
               labels = ["The true determinist signal mu(t)", "t", "mu(t)" ])
    gl.plot(tgrid,X, lw = 2, color = "k", ls = "--",  legend = ["True signal"])
    gl.set_fontSizes( title = 20, xlabel = 20, ylabel = 20, 
                  legend = 20, xticks = 20, yticks = 20)
    gl.savefig(folder_images +'GP_mean.png', 
               dpi = 100, sizeInches = [2*8, 2*2])
###########################################################################
############### Generate the structural noise #############################
###########################################################################

""" Now we generate the stocastic process that we add to X(t), 
    generating noisy signal Y(t) = X(t) + e(t)
    
    Where we will assume e(t) is Gaussian with mean 0 e(t) \sim N(0,\sigma_t)
    So we have a Gaussian process, since each set of samples forms a jointly
    gaussian distribution. The relation between the noises will be given by the
    covariance matrix C. This will tell how big the noises are and how they relate
    to each other.
    
    We will use a basic kernel for now
コード例 #43
0
ファイル: 1.main_projections.py プロジェクト: manuwhs/Trapyng
        r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
        gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--",color = "k", lw = 2,
                 legend = ["Corr: .2f"],AxesStyle = "Normal2")
        
        gl.plot([mean[0] - vecs[0,0]*w, mean[0] + vecs[0,0]*w], 
                [mean[1] - vecs[0,1]*w, mean[1] + vecs[0,1]*w], ax = ax1, ls = "--",color = "k")
        gl.plot([mean[0] - vecs[1,0]*h, mean[0] + vecs[1,0]*h], 
                [mean[1] - vecs[1,1]*h, mean[1] + vecs[1,1]*h], ax = ax1, ls = "--",color = "k")
        

        ax1.axis('equal')
        gl.set_zoom(ax = ax1, X =r_ellipse[:,0], Y = r_ellipse[:,1],
                    ylimPad = [0.2,0.2],xlimPad = [0.2,0.2])

        
    gl.savefig(folder_images +'RotatedProjection.png', 
               dpi = 100, sizeInches = [14, 7])
    
    

############################################################
################# PLOT DATA ###############################
###########################################################

## Now we are gonna plot the projections and the final thing

    gl.set_subplots(1,3)

    ### First projections 
    ax1 = gl.scatter(Y[0,:],Y[1,:], alpha = 0.5, lw = 4, AxesStyle = "Normal",
               labels = ["","U1","U2"],
               legend = ["%i points"%Nsam], nf = 1)
コード例 #44
0
ファイル: 1.main_EM_1A.py プロジェクト: manuwhs/Trapyng
    ax2 = gl.subplot2grid((5,1), (2,0), rowspan=1, colspan=1, sharex = ax1) 
    gl.stem(dates, volume, ax  = ax2, dataTransform = dataTransform,
                   AxesStyle = "Normal - No xaxis - Ny:4",
                   labels = ["","",symbolIDs[0] +"("+ str(periods[0])+ "M)"], legend = [ "Volume"])

    ax3 = gl.subplot2grid((5,1), (3,0), rowspan=2, colspan=1, sharex = ax1) 
    gl.stem(dates, ret1, ax = ax3, dataTransform = dataTransform,
                   AxesStyle = "Normal",
                   labels = ["","",symbolIDs[0] +"("+ str(periods[0])+ "M)"], legend = ["Return"])
#    
    gl.set_fontSizes(ax = [ax1,ax2,ax3], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 10, yticks = 10)
    
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.01, hspace=0.01)

    gl.savefig(folder_images +'PriceAndReturns1Symbol_EM.png', 
               dpi = 100, sizeInches = [22, 12])
    
##########################################################################
################# PREPROCESS DATA ######################################
##########################################################################

## Set GAP return as NAN

if (remove_gap_return):
    """ We usually would like to remove the return of gaps if we are dealing
        with intraday data since they are ouliers for this distribution,
        they belong to a distribution with more time
    """
    # If we had all the data properly this would do.
    if(0):
        gap_ret = np.where(dates.time == opentime)[0]
コード例 #45
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_f (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio. 
    # Do this for several years as well.
    self.set_Rf(Rf)
    
    nf_flag = 1
    
    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1 - 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf)/(expRet - Rf)
        wdesired = w*X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
       
#        print ret 
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)
        
        All_stds.append(self.yearly_covMatrix(stdRet))
        
        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)
        
#        dates = self.get_dates()
        all_dates.append(year_test + window + 1)
        
        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1,13), np.cumsum(self.get_PortfolioReturn()),
                nf = nf_flag, 
                labels = ["Evolution of returns by month", "Months passed", "Cumulative Return"],
                legend = [str(year_test + window +1)])
        nf_flag = 0
#        print ret

    gl.savefig(folder_images +'returnsEvolMonth.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
    
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:], IndexReturns, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 1)
    gl.bar(all_dates[:], PortfolioReturns, 
           labels = ["Returns of year", "Year","Value"],
            legend = ["Porfolio Return"],
            alpha = 0.8,
            nf = 0)
            
    gl.scatter(all_dates[:], self.yearly_Return(ObjectiveR) * np.ones((len(all_dates[:]),1)), 
            legend = ["Objective Return"],
            nf = 0)

    gl.scatter(all_dates[:], All_stds, 
            legend = ["Std of the portfolio return"],
            nf = 0)
            
    gl.savefig(folder_images +'returnsEvolYears.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went 
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2,3)
    for year_test in range(year_start,year_start + 6): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        optimal, portfolios = self.efficient_frontier(kind = "Tangent")
        self.plot_allocations(portfolios, labels = ["Evolution of the efficient frontier"],
                              legend = ["Frontier " + str(year_test + window) + " before"], color = "k", nf = 1)
 
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(self.TangentPortfolio(Rf = Rf))
        self.plot_allocations(portfolios, legend = ["Frontier " + str(year_test + window) + " after"], color = "r",nf = 0)
        
    gl.savefig(folder_images +'effEvol.png', 
               dpi = 80, sizeInches = [4*8, 3*6])
コード例 #46
0
def generate_images_iterations_ll(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list,folder_images_gif):
#    os.remove(folder_images_gif) # Remove previous images if existing
    """
    WARNING: MEANT FOR ONLY 3 Distributions due to the color RGB
    """
    import shutil
    ul.create_folder_if_needed(folder_images_gif)
    shutil.rmtree(folder_images_gif)
    ul.create_folder_if_needed(folder_images_gif)
    ######## Plot the original data #####

    Xdata = np.concatenate(Xs,axis = 1).T
    colors = ["r","b","g"]
    K_G,K_W,K_vMF = Ks
    
    ### FOR EACH ITERATION 
    for i in range(len(theta_list)):  # theta_list
        indx = i
        gl.init_figure()
        ax1 = gl.subplot2grid((1,2), (0,0), rowspan=1, colspan=1)
        
        ## Get the relative ll of the Gaussian denoising cluster.
        ll = myDManager.pdf_log_K(Xdata,theta_list[indx])
        N,K = ll.shape
#        print ll.shape
        for j in range(N):  # For every sample
        #TODO: Can this not be done without a for ?
            # Normalize the probability of the sample being generated by the clusters
            Marginal_xi_probability = gf.sum_logs(ll[j,:])
            ll[j,:] = ll[j,:]- Marginal_xi_probability
        
            ax1 = gl.scatter(Xdata[j,0],Xdata[j,1], labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"], 
                              color = (np.exp(ll[j,1]), np.exp(ll[j,0]), np.exp(ll[j,2])) ,  ###  np.exp(ll[j,2])
                              alpha = 1, nf = 0)
            
        # Only doable if the clusters dont die
        for k_c in myDManager.clusterk_to_Dname.keys():
            k = myDManager.clusterk_to_thetak[k_c]
            distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
            
            if (distribution_name == "Gaussian"):
                ## Plot the ecolution of the mu
                #### Plot the Covariance of the clusters !
                mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477)
                r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
                gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3,
                        AxesStyle = "Normal2",
                       legend = ["Kg(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            
            elif(distribution_name == "Watson"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]);  mu = theta_list[-1][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                
                probs = np.array(probs)
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kw(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            elif(distribution_name == "vonMisesFisher"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]); mu = theta_list[indx][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                    
                probs = np.array(probs)
                probs = probs.reshape((probs.size,1)).T
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
    #            print X1_w.shape, X2_w.shape
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            
        gl.set_zoom(xlim = [-6,6], ylim = [-6,6], ax = ax1)     
        ax2 = gl.subplot2grid((1,2), (0,1), rowspan=1, colspan=1)
        if (indx == 0):
            gl.add_text(positionXY = [0.1,.5], text = r' Initilization Incomplete LogLike: %.2f'%(logl[0]),fontsize = 15)
            pass
        elif (indx >= 1):
           
            gl.plot(range(1,np.array(logl).flatten()[1:].size +1),np.array(logl).flatten()[1:(indx+1)], ax = ax2, 
                    legend = ["Iteration %i, Incom LL: %.2f"%(indx, logl[indx])], labels = ["Convergence of LL with generated data","Iterations","LL"], lw = 2)
            gl.scatter(1, logl[1], lw = 2)
            pt = 0.05
            gl.set_zoom(xlim = [0,len(logl)], ylim = [logl[1] - (logl[-1]-logl[1])*pt,logl[-1] + (logl[-1]-logl[1])*pt], ax = ax2)
            
        gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01)
        
        gl.savefig(folder_images_gif +'gif_'+ str(indx) + '.png', 
               dpi = 100, sizeInches = [16, 8], close = "yes",bbox_inches = None)
        
        gl.close("all")
コード例 #47
0
            color="k",
            lw=5,
            alpha=0.7,
            labels=["Sine chart", "Time (s)", "Voltage(V)"],
            legend=["Rolling measurement"])

    gl.stem(X2,
            Y2,
            nf=1,
            color="k",
            lw=2,
            alpha=0.7,
            labels=["Discrete window", "Sample (k)", "Amplitud"],
            legend=["Window values"])

    gl.savefig(folder_images + 'subplot1.png', dpi=dpi, sizeInches=sizeInches)
# Subplot Type 2
if (type_graph == 2):
    ax1 = gl.subplot2grid((1, 4), (0, 0), rowspan=1, colspan=3)
    gl.plot(X,
            Y,
            nf=0,
            color="k",
            lw=5,
            alpha=0.7,
            labels=["Sine chart", "Time (s)", "Voltage(V)"],
            legend=["Rolling measurement"])
    #
    ax2 = gl.subplot2grid((1, 4), (0, 3), rowspan=1, colspan=1)
    gl.plot(X2,
            Y2,
コード例 #48
0
        symbolID = symbolIDs_pf[i]
        myTimeData = myPortfolio.get_symbols([symbolID])[0].get_timeData(period)
        returns = myTimeData.get_timeSeriesReturn(["Close"])
        dates = myTimeData.get_dates()
        AxesStyle = " - No xaxis"
        if (i == len(symbolIDs_pf) -1):
            AxesStyle = ""
        if (i == 0):
            title = "Bar Chart. " + str(symbolIDs) + r" . Price ($\$$)"
            title2 = "Return"
        else:
            title = ""
            title2 = ""
        ylabel =   symbolID + " (" + ul.period_dic[myTimeData.period] + ")"
        ax = gl.tradingBarChart(myTimeData,  legend = ["Close price"], color = "k", 
                    nf = 1, sharex = axeshare, labels = [title,"",ylabel], 
                    AxesStyle = "Normal" + AxesStyle)
#                    dataTransform = dataTransform)
        ax = gl.stem(dates, returns,  legend = ["Return"], color = "k", 
                    nf = 1, sharex = axeshare, labels = [title2,"",""], 
                    AxesStyle = "Normal" + AxesStyle + " - No yaxis")
#                    dataTransform = dataTransform)
                    
        axeshare = ax
        
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.10, hspace=0)
    image_name = "differentSymbols.png"
    gl.savefig(folder_images + image_name, 
               dpi = 100, sizeInches = [30, 12])
           
           
コード例 #49
0
    title = "Comparing MAs. " + str(
        symbols[0]) + "(" + ul5.period_dic[timeData.period] + ")"
    gl.plot(dates, [price, SMA1, MWA1, EMA1],
            nf=1,
            labels=[title, "", r"Price ($\$$)"],
            legend=[
                r"$P_{CLOSE}$",
                "SMA(%i)" % nMA1,
                "WMA(%i)" % nMA1,
                "EMA(%i)" % nMA1
            ],
            AxesStyle="Normal")
    #        ls = "-", marker = ["*",5,None], fill= 1,AxesStyle = "Normal", alpha = 0.3)

    # TODO: Why is this one not shown ?
    gl.savefig(folder_images + 'comparingMAs.png', dpi=100, sizeInches=[10, 6])

if (comparing_lags):
    # Some basic indicators.
    price = timeData.get_timeSeries(["Close"])
    dates = timeData.get_dates()

    nSMAs = [7, 20, 50]
    nEMAs = [7, 20, 50]
    # For lag and noise
    SMAs = []
    for nMA_i in nSMAs:
        SMAs.append(timeData.SMA(seriesNames=["Close"], n=nMA_i))
    EMAs = []
    for nMA_i in nEMAs:
        EMAs.append(timeData.EMA(seriesNames=["Close"], n=nMA_i))
コード例 #50
0
ファイル: 3. Email_main.py プロジェクト: manuwhs/Trapyng
edate = dt.datetime.strptime("25-11-2016", "%d-%m-%Y")
######## CREATE THE OBJECT AND LOAD THE DATA ##########
# Tell which company and which period we want
timeData = CTD.CTimeData(symbols[0],periods[0])
TD = DBl.load_TD_from_csv(storage_folder, symbols[1],periods[0])
timeData.set_csv(storage_folder)  # Load the data into the model
timeData.set_TD(TD)
############## Obtain time series ###########################
price = timeData.get_timeSeries(["Close", "Average"]);
############# Plot time Series and save it to disk #########
gl.plot([],price)

datafolder = "../maildata/"

picdir = datafolder + "pene.png"
gl.savefig(picdir)

###########################################################################
############## BASIC PLOTING FUNC #########################################
###########################################################################

user = "******"
pwd = "Goldenegg"

#user = "******"
#pwd = "manumon7g.@"

recipient = "*****@*****.**"
#recipient = "*****@*****.**"

subject = "[Trapyng] Update %s" % ("penesd")
コード例 #51
0
ファイル: CAPM_IFE.py プロジェクト: manuwhs/Trapyng
def IFE_e (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
    
        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf)/(expRet - Rf)
        
#        print X
        # So the desired porfolio is:
        wdesired = w*X
        desired_Portfolios.append(wdesired)
        
        gl.plot([0,1.3*abs(X*stdRet)],[bias, bias + 1.3*abs(slope*stdRet*X)],
            labels = ["Desired Portfolios", "Risk (std)", "Return (%)"],
            legend = ["%s, X: %0.3f" %((year_test + window ), X[0])],
            nf = nf_flag, loc = 2)
        nf_flag = 0
        gl.scatter([abs(X*stdRet)],[ObjectiveR],
            nf = 0)


        dates = self.get_dates()
        all_dates.append(dates[-1])
#        print wdesired

    gl.savefig(folder_images +'desiredPortfolios.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    # Now we calculate the turnovers 
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)
    
    for i in range(Nport-1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i+1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1]/prev_abs_alloc[-1])
        print Turnovers
    
    gl.set_subplots(1,3)
    
    gl.bar(all_dates[1:], Turnovers, color = "g",
           labels = ["Portfolio turnovers", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(Turnovers)*0.80], 
                 "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1], prev_abs_alloc, color = "r",
           labels = ["Absolute allocations", "Year","Value"])
    
    gl.bar(all_dates[1:], percentaje_changed,  color = "b",
           labels = ["Percentage turnover", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(percentaje_changed)*0.80], 
                 "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images +'turnovers.png', 
               dpi = 150, sizeInches = [2*8, 1*6])
コード例 #52
0
def create_Bayesian_analysis_charts(model,
                                    X_data_tr,
                                    Y_data_tr,
                                    X_data_val,
                                    Y_data_val,
                                    tr_loss,
                                    val_loss,
                                    KL_loss,
                                    final_loss_tr,
                                    final_loss_val,
                                    xgrid_real_func,
                                    ygrid_real_func,
                                    folder_images,
                                    epoch_i=None):

    # Configurations of the plots

    alpha_points = 0.2
    color_points_train = "dark navy blue"
    color_points_val = "amber"
    color_train_loss = "cobalt blue"
    color_val_loss = "blood"
    color_truth = "k"
    color_mean = "b"
    color_most_likey = "y"

    ############################# Data computation #######################
    if (type(X_data_tr) == type([])):
        pass
    else:
        if (X_data_tr.shape[1] == 1):  # Regression Example
            x_grid, all_y_grid, most_likely_ygrid = compute_regression_1D_data(
                model, X_data_tr, X_data_val, Nsamples=100)
        elif (X_data_tr.shape[1] == 2):  # Classification Example
            xx, yy, all_y_grid, most_likely_ygrid = compute_classification_2D_data(
                model, X_data_tr, X_data_val, Nsamples=100)
        else:  # RNN
            x_grid, all_y_grid, most_likely_ygrid = compute_RNN_1D_data(
                model, X_data_tr, X_data_val, Nsamples=100)

    ################################ Divide in plots ##############################
    gl.init_figure()
    ax1 = gl.subplot2grid((6, 3), (0, 0), rowspan=3, colspan=1)
    ax2 = gl.subplot2grid((6, 3), (3, 0),
                          rowspan=3,
                          colspan=1,
                          sharex=ax1,
                          sharey=ax1)

    ax3 = gl.subplot2grid((6, 3), (0, 1), rowspan=2, colspan=1)
    ax4 = gl.subplot2grid((6, 3), (2, 1), rowspan=2, colspan=1, sharex=ax3)
    ax5 = gl.subplot2grid((6, 3), (4, 1), rowspan=2, colspan=1, sharex=ax3)

    ax6 = gl.subplot2grid((6, 3), (0, 2), rowspan=3, colspan=1)
    ax7 = gl.subplot2grid((6, 3), (3, 2), rowspan=3, colspan=1, sharex=ax6)

    if (type(X_data_tr) == type([])):
        Xtrain = [
            torch.tensor(X_data_tr[i],
                         device=model.cf_a.device,
                         dtype=model.cf_a.dtype) for i in range(len(X_data_tr))
        ]
        Ytrain = torch.tensor(Y_data_tr,
                              device=model.cf_a.device,
                              dtype=torch.int64)

        Xval = [
            torch.tensor(X_data_val[i],
                         device=model.cf_a.device,
                         dtype=model.cf_a.dtype)
            for i in range(len(X_data_val))
        ]
        Yval = torch.tensor(Y_data_val,
                            device=model.cf_a.device,
                            dtype=torch.int64)

        confusion = model.get_confusion_matrix(Xtrain, Ytrain)
        plot_confusion_matrix(confusion, model.languages, ax1)
        confusion = model.get_confusion_matrix(Xval, Yval)
        plot_confusion_matrix(confusion, model.languages, ax2)

    else:
        if (X_data_tr.shape[1] == 1):  # Regression Example
            plot_data_regression_1d_2axes(
                X_data_tr, Y_data_tr, xgrid_real_func, ygrid_real_func,
                X_data_val, Y_data_val, x_grid, all_y_grid, most_likely_ygrid,
                alpha_points, color_points_train, color_points_val,
                color_most_likey, color_mean, color_truth, ax1, ax2)
        elif (X_data_tr.shape[1] == 2):  # Classification Example
            plot_data_classification_2d_2axes(
                X_data_tr, Y_data_tr, xgrid_real_func, ygrid_real_func,
                X_data_val, Y_data_val, xx, yy, all_y_grid, most_likely_ygrid,
                alpha_points, color_points_train, color_points_val,
                color_most_likey, color_mean, color_truth, ax1, ax2)
        else:  # RNN example
            plot_data_RNN_1d_2axes(X_data_tr, Y_data_tr, xgrid_real_func,
                                   ygrid_real_func, X_data_val, Y_data_val,
                                   x_grid, all_y_grid, most_likely_ygrid,
                                   alpha_points, color_points_train,
                                   color_points_val, color_most_likey,
                                   color_mean, color_truth, ax1, ax2)


#    gl.fill_between (x_grid, [mean_samples_grid + 2*std_samples_grid, mean_samples_grid - 2*std_samples_grid]
#                              , ax  = ax2, alpha = 0.10, color = "b", legend = ["Mean realizaions"])
## ax2: The uncertainty of the prediction !!
#    gl.plot (x_grid, std_samples_grid, ax = ax2, labels = ["Std (%i)"%(Nsamples),"X","f(X)"], legend = [" std predictions"], fill = 1, alpha = 0.3)

############## ax3 ax4 ax5: Loss Evolution !! ######################
## ax3: Evolutoin of the data loss
    gl.plot([],
            tr_loss,
            ax=ax3,
            lw=3,
            labels=["Losses", "", "Data loss"],
            legend=["train"],
            color=color_train_loss)
    gl.plot([],
            val_loss,
            ax=ax3,
            lw=3,
            legend=["validation"],
            color=color_val_loss,
            AxesStyle="Normal - No xaxis")

    ## ax4: The evolution of the KL loss
    gl.plot([],
            KL_loss,
            ax=ax4,
            lw=3,
            labels=["", "", "KL loss"],
            legend=["Bayesian Weights"],
            AxesStyle="Normal - No xaxis",
            color="k")

    ## ax5: Evolutoin of the total loss
    gl.plot([],
            final_loss_tr,
            ax=ax5,
            lw=3,
            labels=["", "epoch", "Total Loss (Bayes)"],
            legend=["train"],
            color=color_train_loss)
    gl.plot([],
            final_loss_val,
            ax=ax5,
            lw=3,
            legend=["validation"],
            color=color_val_loss)

    ############## ax6 ax7: Variational Weights !! ######################
    create_plot_variational_weights(model, ax6, ax7)
    ## Plot in chart 7 the acceptable mu = 2sigma  -> sigma = |mu|/2sigma
    mu_grid = np.linspace(-3, 3, 100)
    y_grid = np.abs(mu_grid) / 2

    gl.fill_between(mu_grid,
                    10 * np.ones(mu_grid.size),
                    y_grid,
                    alpha=0.2,
                    color="r",
                    ax=ax7,
                    legend=["95% non-significant"])

    gl.set_zoom(ax=ax6, ylim=[-0.1, 10])
    gl.set_zoom(ax=ax7,
                xlim=[-2.5, 2.5],
                ylim=[
                    -0.05,
                    np.exp(model.cf_a.input_layer_prior["log_sigma2"]) *
                    (1 + 0.15)
                ])

    #    gl.set_zoom (ax = ax7, xlim = [-2.5, 2.5], ylim = [-0.1,2])

    # Set final properties and save figure
    gl.set_fontSizes(ax=[ax1, ax2, ax3, ax4, ax5, ax6, ax7],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=10,
                     xticks=12,
                     yticks=12)

    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.10)

    if (type(epoch_i) == type(None)):
        gl.savefig(folder_images + "../" + 'Final_values_regression_1D_' +
                   str(model.cf_a.eta_KL) + '.png',
                   dpi=100,
                   sizeInches=[20, 10])
    else:
        gl.savefig(folder_images + '%i.png' % epoch_i,
                   dpi=100,
                   sizeInches=[20, 10],
                   close=True,
                   bbox_inches="tight")
コード例 #53
0
            labels = ["Momentum Indicators MOM and ROC","","Price"],
            legend = ["Price", " Momentum", "ROC"])
            
    gl.plot(dates, MOM , nf = 1, na = 0,
            legend = ["MOM(%i)"%nMOM])
    
    # Normalize ROC to MOM
    ROC = ROC * np.max(np.abs(np.nan_to_num(MOM)))/  np.max(np.abs(np.nan_to_num(ROC)))
    gl.plot(dates, ROC, nf = 0, na = 0,
            legend = ["ROC(%i)"%nROC])
    # The nect plot is just so that the vision starts in the first date
    gl.plot(dates, np.zeros((dates.size,1)) , nf = 0, na = 0)
 
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.20, hspace=0)

    gl.savefig(folder_images +'OscillatorsMOM.png', 
               dpi = 100, sizeInches = [2*8, 2*2])
               
               
    
    price = timeData.get_timeSeries(["Close"]);
    dates = timeData.get_dates()
    df = timeData.get_timeData()
    
    # Momentum and Rate of convergence obtained from the real price.
    nMOMs = [10, 20, 30]
    MOM1 = timeData.MOM(n = 1)
    
    
    EMAMOMs = [indl.get_EMA(MOM1, nMOMi) for nMOMi in nMOMs]
    
    # Normalize ROC to MOM
コード例 #54
0
def create_image_weights_epoch(model, video_fotograms_folder2, epoch_i):
    """
    Creates the image of the training and validation accuracy
    """
    N_Bayesian_layers = len(model.VBmodels)
    N_Normal_layers = len(model.LinearModels)

    # Compute the number of squares we will need:
    # 1 x linear layers, 2 x LSTMS

    gl.init_figure()
    cmap = cm.get_cmap('coolwarm', 30)

    all_axes = []
    for i in range(N_Bayesian_layers):
        layer = model.VBmodels[i]

        #        if (layer.type_layer == "linear"):
        if ("linear" in type(layer).__name__.lower()):
            ax = gl.subplot2grid((1, N_Bayesian_layers + N_Normal_layers),
                                 (0, i),
                                 rowspan=1,
                                 colspan=1)
            weights = layer.weight.detach().cpu().numpy()
            biases = layer.bias.detach().cpu().numpy().reshape(-1, 1)
            neurons = np.concatenate((weights, biases), axis=1)
            cax = ax.imshow(neurons,
                            interpolation="nearest",
                            cmap=cmap,
                            vmin=-2,
                            vmax=2)

            all_axes.append(ax)
        else:
            ax = gl.subplot2grid((1, N_Bayesian_layers + N_Normal_layers),
                                 (0, i),
                                 rowspan=1,
                                 colspan=1)
            weights_ih = layer.weight_ih.detach().cpu().numpy()
            biases_ih = layer.bias_ih.detach().cpu().numpy().reshape(-1, 1)
            weights_hh = layer.weight_hh.detach().cpu().numpy()
            biases_hh = layer.bias_hh.detach().cpu().numpy().reshape(-1, 1)

            weights = np.concatenate((weights_ih, weights_hh), axis=1)
            biases = np.concatenate((biases_ih, biases_hh), axis=1)
            neurons = np.concatenate((weights, biases), axis=1)
            cax = ax.imshow(neurons,
                            interpolation="nearest",
                            cmap=cmap,
                            vmin=-2,
                            vmax=2)
            all_axes.append(ax)

    for i in range(N_Normal_layers):
        layer = model.LinearModels[i]
        if ("linear" in type(layer).__name__.lower()):
            ax = gl.subplot2grid((1, N_Bayesian_layers + N_Normal_layers),
                                 (0, N_Bayesian_layers + i),
                                 rowspan=1,
                                 colspan=1)
            weights = layer.weight.detach().cpu().numpy()
            biases = layer.bias.detach().cpu().numpy().reshape(-1, 1)
            neurons = np.concatenate((weights, biases), axis=1)
            cax = ax.imshow(neurons,
                            interpolation="nearest",
                            cmap=cmap,
                            vmin=-2,
                            vmax=2)
            all_axes.append(ax)
        else:
            ax = gl.subplot2grid((1, N_Bayesian_layers + N_Normal_layers),
                                 (0, N_Bayesian_layers + i),
                                 rowspan=1,
                                 colspan=1)
            weights_ih = layer.weight_ih.detach().cpu().numpy()
            biases_ih = layer.bias_ih.detach().cpu().numpy().reshape(-1, 1)
            weights_hh = layer.weight_hh.detach().cpu().numpy()
            biases_hh = layer.bias_hh.detach().cpu().numpy().reshape(-1, 1)

            weights = np.concatenate((weights_ih, weights_hh), axis=1)
            biases = np.concatenate((biases_ih, biases_hh), axis=1)
            neurons = np.concatenate((weights, biases), axis=1)
            cax = ax.imshow(neurons,
                            interpolation="nearest",
                            cmap=cmap,
                            vmin=-2,
                            vmax=2)
            all_axes.append(ax)


#    plt.xticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='vertical')
#    plt.yticks(range(data_df_train.shape[1]), data_df_train.columns, rotation='horizontal')
    plt.colorbar(cax)
    #    plt.colorbar(cax2)
    #        ax1.set_xticks(data_df_train.columns) # , rotation='vertical'
    #    ax1.grid(True)
    plt.title('Weights ')

    #    labels=[str(x) for x in range(Nshow )]
    #    ax1.set_xticklabels(labels,fontsize=20)
    #    ax1.set_yticklabels(labels,fontsize=20)
    # Add colorbar, make sure to specify tick locations to match desired ticklabels
    plt.show()

    gl.set_fontSizes(ax=[all_axes],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)

    # Set final properties and save figure
    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.30)

    gl.savefig(video_fotograms_folder2 + '%i.png' % epoch_i,
               dpi=100,
               sizeInches=[14, 10],
               close=True,
               bbox_inches=None)
コード例 #55
0
## Get the surface for the loss


####### PLOT THE EVOLUTION OF RMSE AND PARAMETERS ############
gl.init_figure()
ax1 = gl.scatter(X_data_tr, Y_data_tr, lw = 3,legend = ["tr points"], labels = ["Data", "X","Y"])
ax2 = gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"])

gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                  legend = 20, xticks = 12, yticks = 12)

x_grid = np.linspace(np.min([X_data_tr]) -1, np.max([X_data_val]) +1, 100)
y_grid = x_grid * W_values + b_values

gl.plot (x_grid, y_grid, legend = ["training line"])
gl.savefig(folder_images +'Training_Example_Data.png', 
           dpi = 100, sizeInches = [14, 4])

####### PLOT THE EVOLUTION OF RMSE AND PARAMETERS ############
gl.set_subplots(2,1)
ax1 = gl.plot([], tr_loss, nf = 1, lw = 3, labels = ["RMSE loss and parameters. Learning rate: %.3f"%train_config.lr, "","RMSE"], legend = ["train"])
gl.plot([], val_loss, lw = 3, legend = ["validation"])

ax2 = gl.plot([], W_list, nf = 1, lw = 3, sharex = ax1, labels = ["", "","Parameters"], legend = ["W"],
              color ="b")
gl.plot([], b_list, lw = 3, labels = ["", "epochs","Parameters"], legend = ["b"],color ="g")

gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                  legend = 20, xticks = 12, yticks = 12)
    
gl.savefig(folder_images +'Training_Example_Parameters.png', 
           dpi = 100, sizeInches = [14, 7])
コード例 #56
0
gl.set_fontSizes(ax=[ax1, ax2, ax3],
                 title=20,
                 xlabel=20,
                 ylabel=20,
                 legend=10,
                 xticks=15,
                 yticks=15)
gl.subplots_adjust(left=.09,
                   bottom=.10,
                   right=.90,
                   top=.95,
                   wspace=.30,
                   hspace=0.10)
gl.savefig(folder_images + images_prefix + "Trimming_accuracies.png",
           dpi=100,
           sizeInches=[18, 6],
           close=False,
           bbox_inches="tight")

#elif (Experiments_generate_results_data):
#    DataSet_statistics = fill_evaluation_data(model,device, dataset_iterable,num_batches, Evaluate_Model_Results, bayesian_ensemble = bayesian_ensemble)
#    EM = 100*np.mean(DataSet_statistics["em"])
#    F1 = 100*np.mean(DataSet_statistics["f1"])

#metrics, data_loss = general_validation_runner(model)
#print ("Loss validation:",data_loss)
#print ("metrics: ", metrics)
"""
##################################################################################
################# ANALYZE THE SYSTEM INTERNALS FOR A QUERY EXAMPLE ###################
####################################################################################
コード例 #57
0
    gl.scatter(Yjoint[0,:],Yjoint[1,:], alpha = 0.5, ax = ax2, lw = 4, AxesStyle = "Normal",
               labels = ["","X1", "X2"])
    
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.01, hspace=0.01)

    xx, yy, zz = bMA.get_gaussian2D_pdf( xbins=40j, ybins=40j, mu = mu, cov = cov, 
                      std_K = std_K, x_grid = None)
    ax2.contour(xx, yy, zz, linewidths = 3, linestyles = "solid", alpha = 0.8,
                colors = None, zorder = 100)
    
    ax1.set_xlim(-6, 4)
    ax1.set_ylim(-4, 7)
    
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01)
    
    gl.savefig(folder_images +'Gaussian_2DX_transform.png', 
               dpi = 100, sizeInches = [18, 9])

    ###############################################################################
    ############################ PLOT Decomposition #####################################
    ###############################################################################
#
    A = np.array([[0.9,2],[0.8,0.7]])
    mu_b = [-1.5,2]
    U, s, R = np.linalg.svd(A)
    S = np.diag(s)
    
    Sigma = A.dot(A.T)
    s, R = np.linalg.eig(Sigma)
    S = np.diag(s)
    Sigma_rec = R.dot(S).dot(R.T)
#    
コード例 #58
0
                       wspace=.05,
                       hspace=0.2)

    gl.set_fontSizes(ax=[
        ax1,
        ax2,
    ],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=15,
                     xticks=18,
                     yticks=12)

    gl.savefig(folder_images + 'Classifiers_performance.png',
               dpi=100,
               sizeInches=[3 * 8, 3 * 2])

if (plot_results):

    key_classifier = "QDA"  # QDA  # GNB RF
    classifier = cl_d[key_classifier]
    # Compute how well we have done in each sample using cross entropy
    Ypredict_test_proba = classifier.predict_proba(
        Xtest)[:, 1]  # probability of 1
    Ypredict_train_proba = classifier.predict_proba(Xtrain)[:, 1]
    Ypredict_test = classifier.predict(Xtest)
    Ypredict_train = classifier.predict(Xtrain)

    test_cross_entropy = Ytest * np.log(Ypredict_test_proba) + (
        1 - Ytest) * np.log(1 - Ypredict_test_proba)
コード例 #59
0
ファイル: P2_Part1.py プロジェクト: manuwhs/Trapyng
    else:
#        nu = np.array([-0.5*m*g/np.sqrt(-1 +4*l*l/(h*h)) , -m*g ])
        nu_values = scipy.optimize.fsolve(get_error, nu)
#        nu_values = nu
    nu_values[0] = -np.abs(nu_values[0])
    ax1 = print_chain(nu_values)

    print (" For N=%i: nu_guess = "%N,nu,", nu_final: ", nu_values)
    
    print("Costate vector: ",get_costate_value(nu_values,0) )
    
gl.set_fontSizes(ax = [ax1], title = 20, xlabel = 20, ylabel = 20, 
                  legend = 15, xticks = 12, yticks = 12)
gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.30, hspace=0.10)

gl.savefig("P2_2.png",  dpi = 100, sizeInches = [12, 7], close = False, bbox_inches = "tight")


"""
################################   QUESTION 5 ##############################
"""

print (" ----------------- QUESTION 5 ----------------")

def get_half_angle(i, nu_z):
    theta_i = np.arctan((m*g*(N/2-0.5-i) )/nu_z)
    return theta_i

def get_half_final_position (nu_z, x0):
    for i in range(int(N/2)):
        theta_i =get_half_angle(i, nu_z)