def fast_min(state, beta, n_sweep, fast_tol, seed=None): if seed: gt.seed_rng(seed) dS = 1 while np.abs(dS) > fast_tol: dS, _, _ = state.multiflip_mcmc_sweep(beta=beta, niter=n_sweep) return state
def __init__(self, n, seed_number=None, directed=False): self.n = n self.seed_number = seed_number self.directed = directed if seed_number: gt.seed_rng(self.seed_number) seed(self.seed_number)
def _generate_graph(self): np.random.seed(self.seed) gt.seed_rng(self.seed) if 'block_membership' in self.params and self.params['block_membership'] != None: self.graph, self.bm = self.generator(**self.params) else: self.graph = self.generator(**self.params) self.n_nodes = self.graph.num_vertices()
def draw_gviz(node_dict, size_multiple=50, random_seed=42, **kwargs): """ Draw clonal network using graph-tool More information: graphtool edge / vertex parameters and examples: https://graph-tool.skewed.de/static/doc/draw.html#graph_tool.draw.graph_draw http://ryancompton.net/2014/10/05/graph-tools-visualization-is-pretty-good/ Args: node_dict (dict): nested dictionary of node properties Generate this using df_generate_node_dict() size_multiple (int): scaling factor for node size (for convenience) **kwargs: keyword arguments passed to gt.graph-draw() e.g. output='file.pdf', layout='neato', output_size=(300,300) """ import graph_tool.all as gt g = gt.Graph() vsizes = g.new_vertex_property("int") vcolors = g.new_vertex_property('string') vshapes = g.new_vertex_property('string') vpenwidth = g.new_vertex_property("float") # stroke for node_id, node_props in node_dict.items(): g.add_vertex() vshapes[g.vertex(node_id)] = node_props['shape'] vcolors[g.vertex(node_id)] = node_props['color'] vsizes[g.vertex(node_id)] = node_props['size'] * size_multiple vpenwidth[g.vertex(node_id)] = node_props['stroke'] # add edge to ancestor if node_props['ancestor'] is not None: g.add_edge(node_props['ancestor'], node_id) # seeds enable graph reproduction seed(random_seed) gt.seed_rng(random_seed) gt.graph_draw( g, vertex_size=vsizes, vertex_fill_color=vcolors, vertex_shape=vshapes, vertex_pen_width=vpenwidth, vertex_color='k', # stroke color bg_color=[1, 1, 1, 1], # white edge_end_marker='none', **kwargs)
def fit(self): """ Fits the hSBM to the undirected, layered multigraph, where the graph in the doc-word layer is bipartite. This uses the independent layer multilayer network where we have a degree-corrected SBM. """ # We need to impose constraints on vertices and edges to keep track which layer are they in. state_args = {} # Vertices with different label values will not be clustered in the same group state_args["pclabel"] = self.g.vp["kind"] # Split the network in discrete layers based on edgetype. 0 is for word-doc graph and 1 is for hyperlink graph. state_args["ec"] = self.g.ep["edgeType"] # Independent layers version of the model (instead of 'edge covariates') state_args["layers"] = True # Edge multiplicities based on occurrences. state_args["eweight"] = self.g.ep.edgeCount self.g.save("foo.gt.gz") # Specify parameters for community detection inference gt.seed_rng(self.random_seed) mdl = np.inf # Fit n_init random initializations to avoid local optimum of MDL. for _ in range(self.n_init): # Enables the use of LayeredBlockState. Use a degree-corrected layered SBM. state_temp = gt.minimize_nested_blockmodel_dl(self.g, state_args=dict(base_type=gt.LayeredBlockState, **state_args)) mdl_temp = state_temp.entropy() if mdl_temp < mdl: # We have found a new optimum mdl = mdl_temp state = state_temp.copy() self.state = state self.mdl = state.entropy() n_levels = len(self.state.levels) # Figure out group levels if n_levels == 2: # Bipartite network self.groups = { 0: self.get_groupStats(l=0) } self.n_levels = len(self.groups) # Omit trivial levels: l=L-1 (single group), l=L-2 (bipartite) else: self.groups = { level: self.get_groupStats(l=level) for level in range(n_levels - 2) } self.n_levels = len(self.groups)
def set_seed(seed: int) -> None: """Set random seed for reproducibility. Take care of python random library and numpy. Args: seed (int): the value choosen as seed for the random generators """ global SEED SEED = seed random.seed(SEED) np.random.seed(SEED) da.random.seed(SEED) try: import graph_tool.all as gt gt.seed_rng(SEED) except ImportError: pass
def test1(): gt.seed_rng(42) seed(42) NUMBER_OF_NODES = 20 points = random((NUMBER_OF_NODES, 2)) points[0] = [0, 0] points[1] = [1, 1] g, pos = gt.triangulation(points, type="delaunay") g.set_directed(True) edges = list(g.edges()) # reciprocate edges for e in edges: g.add_edge(e.target(), e.source()) # The capacity will be defined as the inverse euclidean distance cap = g.new_edge_property("double") for e in g.edges(): cap[e] = min(1.0 / norm(pos[e.target()].a - pos[e.source()].a), 10) g.edge_properties["cap"] = cap g.vertex_properties["pos"] = pos g.save("flow-example.xml.gz") gt.graph_draw(g, pos=pos, edge_pen_width=gt.prop_to_size(cap, mi=0, ma=3, power=1), output="flow-example.pdf")
def generate_graph(): """ brew tap homebrew/science brew install graph-tool """ from graph_tool.all import price_network, sfdp_layout, graph_draw from graph_tool.all import dfs_search, DFSVisitor, seed_rng from numpy.random import seed class AnnotationVisitor(DFSVisitor): def __init__(self, pred, dist): self.pred = pred self.dist = dist self.roots = {} def tree_edge(self, e): depth = self.dist[e.source()] if depth == 1: genre = int(e.source()) if genre not in self.roots: self.roots[genre] = len(self.roots) else: genre = self.pred[e.source()] self.pred[e.target()] = genre self.dist[e.target()] = depth + 1 # For run-to-run stability, provide a constant seed: seed(SEED) seed_rng(SEED) print 'Generating graph...' g = price_network(2000) print 'Performing layout...' pos = sfdp_layout(g) print 'Adding depths...' dist = g.new_vertex_property("int") pred = g.new_vertex_property("int64_t") g.set_directed(False) visitor = AnnotationVisitor(pred, dist) dfs_search(g, g.vertex(0), visitor) print 'Iterating over verts...' flattened = [] maxp = [-9999, -9999] minp = [+9999, +9999] maxd = 0 for v in g.vertices(): root_id = pred.a[v] if root_id not in visitor.roots: continue x, y, z = pos[v].a[0], pos[v].a[1], visitor.roots[root_id] minp[0] = min(minp[0], x) minp[1] = min(minp[1], y) maxp[0] = max(maxp[0], x) maxp[1] = max(maxp[1], y) maxd = max(maxd, dist.a[v]) flattened += [x, y, z] print 'max depth is', maxd print 'nroots is', len(visitor.roots) print 'ncolors is', len(COLORS) extent = (maxp[0] - minp[0], maxp[1] - minp[1]) padding = extent[0] * PADDING_FRACTION minp[0] -= padding minp[1] -= padding maxp[0] += padding maxp[1] += padding scale = [ 1.0 / (maxp[0] - minp[0]), 1.0 / (maxp[1] - minp[1])] scale = min(scale[0], scale[1]) midp = [ 0.5 * (maxp[0] + minp[0]), 0.5 * (maxp[1] + minp[1])] flatarray = [] for v in g.vertices(): root_id = pred.a[v] if root_id not in visitor.roots: continue x, y, root = pos[v].a[0], pos[v].a[1], visitor.roots[root_id] x = (0.5 + (x - midp[0]) * scale) y = (0.5 + (y - midp[1]) * scale) prom = int(dist.a[v]) flatarray += [x, y, root, prom] return flatarray
# * node (gene) degree in the eADAGE graph # * edge weight in the eADAGE graph # * [betweenness centrality](https://en.wikipedia.org/wiki/Betweenness_centrality) of generic vs. non-generic genes # * [PageRank](https://en.wikipedia.org/wiki/PageRank) (sometimes called PageRank centrality) of generic vs. non-generic genes, specifically the [undirected version](https://en.wikipedia.org/wiki/PageRank#PageRank_of_an_undirected_graph). # In[1]: import os import numpy as np import pandas as pd import graph_tool.all as gt import matplotlib.pyplot as plt import seaborn as sns gt.seed_rng(1) np.random.seed(1) # In[2]: # relevant file paths data_dir = './data' processed_graph = os.path.join(data_dir, 'eadage_generic_graph_unsigned.gt') # In[3]: G = gt.load_graph(processed_graph) # make sure vertex/edge properties exist print(G) print(list(G.vp.keys())) print(list(G.ep.keys()))
def generate_graph(): """ brew tap homebrew/science brew install graph-tool """ from graph_tool.all import price_network, sfdp_layout, graph_draw from graph_tool.all import dfs_search, DFSVisitor, seed_rng from numpy.random import seed class AnnotationVisitor(DFSVisitor): def __init__(self, pred, dist): self.pred = pred self.dist = dist self.roots = {} def tree_edge(self, e): depth = self.dist[e.source()] if depth == 1: genre = int(e.source()) if genre not in self.roots: self.roots[genre] = len(self.roots) else: genre = self.pred[e.source()] self.pred[e.target()] = genre self.dist[e.target()] = depth + 1 # For run-to-run stability, provide a constant seed: seed(SEED) seed_rng(SEED) print 'Generating graph...' g = price_network(2000) print 'Performing layout...' pos = sfdp_layout(g) print 'Adding depths...' dist = g.new_vertex_property("int") pred = g.new_vertex_property("int64_t") g.set_directed(False) visitor = AnnotationVisitor(pred, dist) dfs_search(g, g.vertex(0), visitor) print 'Iterating over verts...' flattened = [] maxp = [-9999, -9999] minp = [+9999, +9999] maxd = 0 for v in g.vertices(): root_id = pred.a[v] if root_id not in visitor.roots: continue x, y, z = pos[v].a[0], pos[v].a[1], visitor.roots[root_id] minp[0] = min(minp[0], x) minp[1] = min(minp[1], y) maxp[0] = max(maxp[0], x) maxp[1] = max(maxp[1], y) maxd = max(maxd, dist.a[v]) flattened += [x, y, z] print 'max depth is', maxd print 'nroots is', len(visitor.roots) print 'ncolors is', len(COLORS) extent = (maxp[0] - minp[0], maxp[1] - minp[1]) padding = extent[0] * PADDING_FRACTION minp[0] -= padding minp[1] -= padding maxp[0] += padding maxp[1] += padding scale = [1.0 / (maxp[0] - minp[0]), 1.0 / (maxp[1] - minp[1])] scale = min(scale[0], scale[1]) midp = [0.5 * (maxp[0] + minp[0]), 0.5 * (maxp[1] + minp[1])] flatarray = [] for v in g.vertices(): root_id = pred.a[v] if root_id not in visitor.roots: continue x, y, root = pos[v].a[0], pos[v].a[1], visitor.roots[root_id] x = (0.5 + (x - midp[0]) * scale) y = (0.5 + (y - midp[1]) * scale) prom = int(dist.a[v]) flatarray += [x, y, root, prom] return flatarray
rcParams["ps.usedistiller"] = "xpdf" rcParams["pdf.compression"] = 9 rcParams["ps.useafm"] = True rcParams["path.simplify"] = True rcParams["text.latex.preamble"] = [ #r"\usepackage{times}", #r"\usepackage{euler}", r"\usepackage{amssymb}", r"\usepackage{amsmath}" ] import scipy import scipy.stats import numpy as np from pylab import * from numpy import * import graph_tool.all as gt import graph_tool.draw import random as prandom figure() try: gt.openmp_set_num_threads(1) except RuntimeError: pass prandom.seed(42) np.random.seed(42) gt.seed_rng(42)
def planted_model( adata: AnnData, n_sweep: int = 10, beta: float = np.inf, tolerance=1e-6, max_iterations: int = 1000000, epsilon: float = 0, equilibrate: bool = False, wait: int = 1000, nbreaks: int = 2, collect_marginals: bool = False, niter_collect: int = 10000, deg_corr: bool = True, n_init: int = 1, beta_range: Tuple[float] = (1., 100.), steps_anneal: int = 5, resume: bool = False, *, restrict_to: Optional[Tuple[str, Sequence[str]]] = None, random_seed: Optional[int] = None, key_added: str = 'ppbm', adjacency: Optional[sparse.spmatrix] = None, neighbors_key: Optional[str] = 'neighbors', directed: bool = False, use_weights: bool = False, copy: bool = False, minimize_args: Optional[Dict] = {}, equilibrate_args: Optional[Dict] = {}, ) -> Optional[AnnData]: """\ Cluster cells into subgroups [Peixoto14]_. Cluster cells using the Stochastic Block Model [Peixoto14]_, performing Bayesian inference on node groups. This function, in particular, uses the Planted Block Model, which is particularly suitable in case of assortative graphs and it returns the optimal number of communities This requires having ran :func:`~scanpy.pp.neighbors` or :func:`~scanpy.external.pp.bbknn` first. Parameters ---------- adata The annotated data matrix. n_sweep Number of MCMC sweeps to get the initial guess beta Inverse temperature for the initial MCMC sweep tolerance Difference in description length to stop MCMC sweep iterations max_iterations Maximal number of iterations to be performed by the equilibrate step. epsilon Relative changes in entropy smaller than epsilon will not be considered as record-breaking. equilibrate Whether or not perform the mcmc_equilibrate step. Equilibration should always be performed. Note, also, that without equilibration it won't be possible to collect marginals. collect_marginals Whether or not collect node probability of belonging to a specific partition. niter_collect Number of iterations to force when collecting marginals. This will increase the precision when calculating probabilites wait Number of iterations to wait for a record-breaking event. Higher values result in longer computations. Set it to small values when performing quick tests. nbreaks Number of iteration intervals (of size `wait`) without record-breaking events necessary to stop the algorithm. deg_corr Whether to use degree correction in the minimization step. In many real world networks this is the case, although this doesn't seem the case for KNN graphs used in scanpy. n_init Number of initial minimizations to be performed. The one with smaller entropy is chosen beta_range Inverse temperature at the beginning and the end of the equilibration steps_anneal Number of steps in which the simulated annealing is performed resume Start from a previously created model, if any, without initializing a novel model key_added `adata.obs` key under which to add the cluster labels. adjacency Sparse adjacency matrix of the graph, defaults to `adata.uns['neighbors']['connectivities']` in case of scanpy<=1.4.6 or `adata.obsp[neighbors_key][connectivity_key]` for scanpy>1.4.6 neighbors_key The key passed to `sc.pp.neighbors` directed Whether to treat the graph as directed or undirected. use_weights If `True`, edge weights from the graph are used in the computation (placing more emphasis on stronger edges). Note that this increases computation times copy Whether to copy `adata` or modify it inplace. random_seed Random number to be used as seed for graph-tool Returns ------- `adata.obs[key_added]` Array of dim (number of samples) that stores the subgroup id (`'0'`, `'1'`, ...) for each cell. `adata.uns['sbm']['params']` A dict with the values for the parameters `resolution`, `random_state`, and `n_iterations`. `adata.uns['sbm']['stats']` A dict with the values returned by mcmc_sweep `adata.uns['sbm']['cell_affinity']` A `np.ndarray` with cell probability of belonging to a specific group `adata.uns['sbm']['state']` The BlockModel state object """ # first things first check_gt_version() if resume: equilibrate = True if resume and (key_added not in adata.uns or 'state' not in adata.uns[key_added]): # let the model proceed as default logg.warning('Resuming has been specified but a state was not found\n' 'Will continue with default minimization step') resume = False if random_seed: np.random.seed(random_seed) gt.seed_rng(random_seed) if collect_marginals: logg.warning('Collecting marginals has a large impact on running time') if not equilibrate: raise ValueError( "You can't collect marginals without MCMC equilibrate " "step. Either set `equlibrate` to `True` or " "`collect_marginals` to `False`") start = logg.info('minimizing the Planted Partition Block Model') adata = adata.copy() if copy else adata # are we clustering a user-provided graph or the default AnnData one? if adjacency is None: if neighbors_key not in adata.uns: raise ValueError('You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.') elif 'connectivities_key' in adata.uns[neighbors_key]: # scanpy>1.4.6 has matrix in another slot conn_key = adata.uns[neighbors_key]['connectivities_key'] adjacency = adata.obsp[conn_key] else: # scanpy<=1.4.6 has sparse matrix here adjacency = adata.uns[neighbors_key]['connectivities'] if restrict_to is not None: restrict_key, restrict_categories = restrict_to adjacency, restrict_indices = restrict_adjacency( adata, restrict_key, restrict_categories, adjacency, ) # convert it to igraph g = get_graph_tool_from_adjacency(adjacency, directed=directed) recs = [] rec_types = [] if use_weights: # this is not ideal to me, possibly we may need to transform # weights. More tests needed. recs = [g.ep.weight] rec_types = ['real-normal'] if resume: # create the state and make sure sampling is performed state = adata.uns[key_added]['state'].copy() g = state.g else: if n_init < 1: n_init = 1 # initialize the block states states = [gt.PPBlockState(g) for x in range(n_init)] # perform a mcmc sweep on each # no list comprehension as I need to collect stats _dS = np.zeros(n_init) _nattempts = np.zeros(n_init) _nmoves = np.zeros(n_init) for x in range(n_init): t_ds = 1 while np.abs(t_ds) > tolerance: # perform sweep until a tolerance is reached t_ds, t_natt, t_nm = states[x].multiflip_mcmc_sweep( beta=beta, niter=n_sweep) _dS[x] += t_ds _nattempts[x] += t_natt _nmoves[x] += t_nm _amin = np.argmin([s.entropy() for s in states]) state = states[_amin] dS = _dS[_amin] nattempts = _nattempts[_amin] nmoves = _nmoves[_amin] logg.info(' done', time=start) # equilibrate the Markov chain if equilibrate: logg.info('running MCMC equilibration step') equilibrate_args['wait'] = wait equilibrate_args['nbreaks'] = nbreaks equilibrate_args['max_niter'] = max_iterations equilibrate_args['mcmc_args'] = {'niter': 10} dS, nattempts, nmoves = gt.mcmc_anneal( state, mcmc_equilibrate_args=equilibrate_args, niter=steps_anneal, beta_range=beta_range) if collect_marginals and equilibrate: # we here only retain level_0 counts, until I can't figure out # how to propagate correctly counts to higher levels # I wonder if this should be placed after group definition or not logg.info(' collecting marginals') group_marginals = np.zeros(g.num_vertices() + 1) def _collect_marginals(s): group_marginals[s.get_B()] += 1 gt.mcmc_equilibrate(state, wait=wait, nbreaks=nbreaks, epsilon=epsilon, max_niter=max_iterations, multiflip=True, force_niter=niter_collect, mcmc_args=dict(niter=10), callback=_collect_marginals) logg.info(' done', time=start) # everything is in place, we need to fill all slots # first build an array with groups = pd.Series(state.get_blocks().get_array()).astype('category') new_cat_names = dict([(cx, u'%s' % cn) for cn, cx in enumerate(groups.cat.categories)]) groups.cat.rename_categories(new_cat_names, inplace=True) if restrict_to is not None: groups.index = adata.obs[restrict_key].index else: groups.index = adata.obs_names # add column names adata.obs.loc[:, key_added] = groups # add some unstructured info adata.uns[key_added] = {} adata.uns[key_added]['stats'] = dict(dS=dS, nattempts=nattempts, nmoves=nmoves, modularity=gt.modularity( g, state.get_blocks())) adata.uns[key_added]['state'] = state # now add marginal probabilities. if collect_marginals: # cell marginals will be a list of arrays with probabilities # of belonging to a specific group adata.uns[key_added]['group_marginals'] = group_marginals # calculate log-likelihood of cell moves over the remaining levels # adata.uns[key_added]['cell_affinity'] = {'1':get_cell_loglikelihood(state, as_prob=True, rescale=True)} # last step is recording some parameters used in this analysis adata.uns[key_added]['params'] = dict(epsilon=epsilon, wait=wait, nbreaks=nbreaks, equilibrate=equilibrate, collect_marginals=collect_marginals, random_seed=random_seed) logg.info( ' finished', time=start, deep=( f'found {state.get_B()} clusters and added\n' f' {key_added!r}, the cluster labels (adata.obs, categorical)'), ) return adata if copy else None
def nested_model( adata: AnnData, max_iterations: int = 1000000, epsilon: float = 0, equilibrate: bool = False, wait: int = 1000, nbreaks: int = 2, collect_marginals: bool = False, niter_collect: int = 10000, hierarchy_length: int = 10, deg_corr: bool = True, multiflip: bool = True, fast_model: bool = False, fast_tol: float = 1e-6, n_sweep: int = 10, beta: float = np.inf, n_init: int = 1, beta_range: Tuple[float] = (1., 1000.), steps_anneal: int = 3, resume: bool = False, *, restrict_to: Optional[Tuple[str, Sequence[str]]] = None, random_seed: Optional[int] = None, key_added: str = 'nsbm', adjacency: Optional[sparse.spmatrix] = None, neighbors_key: Optional[str] = 'neighbors', directed: bool = False, use_weights: bool = False, prune: bool = False, return_low: bool = False, copy: bool = False, minimize_args: Optional[Dict] = {}, equilibrate_args: Optional[Dict] = {}, ) -> Optional[AnnData]: """\ Cluster cells into subgroups [Peixoto14]_. Cluster cells using the nested Stochastic Block Model [Peixoto14]_, a hierarchical version of Stochastic Block Model [Holland83]_, performing Bayesian inference on node groups. NSBM should circumvent classical limitations of SBM in detecting small groups in large graphs replacing the noninformative priors used by a hierarchy of priors and hyperpriors. This requires having ran :func:`~scanpy.pp.neighbors` or :func:`~scanpy.external.pp.bbknn` first. Parameters ---------- adata The annotated data matrix. max_iterations Maximal number of iterations to be performed by the equilibrate step. epsilon Relative changes in entropy smaller than epsilon will not be considered as record-breaking. equilibrate Whether or not perform the mcmc_equilibrate step. Equilibration should always be performed. Note, also, that without equilibration it won't be possible to collect marginals. collect_marginals Whether or not collect node probability of belonging to a specific partition. niter_collect Number of iterations to force when collecting marginals. This will increase the precision when calculating probabilites wait Number of iterations to wait for a record-breaking event. Higher values result in longer computations. Set it to small values when performing quick tests. nbreaks Number of iteration intervals (of size `wait`) without record-breaking events necessary to stop the algorithm. hierarchy_length Initial length of the hierarchy. When large values are passed, the top-most levels will be uninformative as they will likely contain the very same groups. Increase this valus if a very large number of cells is analyzed (>100.000). deg_corr Whether to use degree correction in the minimization step. In many real world networks this is the case, although this doesn't seem the case for KNN graphs used in scanpy. multiflip Whether to perform MCMC sweep with multiple simultaneous moves to sample network partitions. It may result in slightly longer runtimes, but under the hood it allows for a more efficient space exploration. fast_model Whether to skip initial minization step and let the MCMC find a solution. This approach tend to be faster and consume less memory, but may be less accurate. fast_tol Tolerance for fast model convergence. n_sweep Number of iterations to be performed in the fast model MCMC greedy approach beta Inverse temperature for MCMC greedy approach n_init Number of initial minimizations to be performed. The one with smaller entropy is chosen beta_range Inverse temperature at the beginning and the end of the equilibration steps_anneal Number of steps in which the simulated annealing is performed resume Start from a previously created model, if any, without initializing a novel model key_added `adata.obs` key under which to add the cluster labels. adjacency Sparse adjacency matrix of the graph, defaults to `adata.uns['neighbors']['connectivities']` in case of scanpy<=1.4.6 or `adata.obsp[neighbors_key][connectivity_key]` for scanpy>1.4.6 neighbors_key The key passed to `sc.pp.neighbors` directed Whether to treat the graph as directed or undirected. use_weights If `True`, edge weights from the graph are used in the computation (placing more emphasis on stronger edges). Note that this increases computation times prune Some high levels in hierarchy may contain the same information in terms of cell assignments, even if they apparently have different group names. When this option is set to `True`, the function only returns informative levels. Note, however, that cell affinities are still reported for all levels. Pruning does not rename group levels return_low Whether or not return nsbm_level_0 in adata.obs. This level usually contains so many groups that it cannot be plot anyway, but it may be useful for particular analysis. By default it is not returned copy Whether to copy `adata` or modify it inplace. random_seed Random number to be used as seed for graph-tool Returns ------- `adata.obs[key_added]` Array of dim (number of samples) that stores the subgroup id (`'0'`, `'1'`, ...) for each cell. `adata.uns['nsbm']['params']` A dict with the values for the parameters `resolution`, `random_state`, and `n_iterations`. `adata.uns['nsbm']['stats']` A dict with the values returned by mcmc_sweep `adata.uns['nsbm']['cell_affinity']` A `np.ndarray` with cell probability of belonging to a specific group `adata.uns['nsbm']['state']` The NestedBlockModel state object """ if resume: # if the fast_model is chosen perform equilibration anyway # also if a model has previously created equilibrate = True if resume and ('nsbm' not in adata.uns or 'state' not in adata.uns['nsbm']): # let the model proceed as default logg.warning('Resuming has been specified but a state was not found\n' 'Will continue with default minimization step') resume = False if random_seed: np.random.seed(random_seed) gt.seed_rng(random_seed) if collect_marginals: logg.warning('Collecting marginals has a large impact on running time') if not equilibrate: raise ValueError( "You can't collect marginals without MCMC equilibrate " "step. Either set `equlibrate` to `True` or " "`collect_marginals` to `False`") start = logg.info('minimizing the nested Stochastic Block Model') adata = adata.copy() if copy else adata # are we clustering a user-provided graph or the default AnnData one? if adjacency is None: if neighbors_key not in adata.uns: raise ValueError('You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.') elif 'connectivities_key' in adata.uns[neighbors_key]: # scanpy>1.4.6 has matrix in another slot conn_key = adata.uns[neighbors_key]['connectivities_key'] adjacency = adata.obsp[conn_key] else: # scanpy<=1.4.6 has sparse matrix here adjacency = adata.uns[neighbors_key]['connectivities'] if restrict_to is not None: restrict_key, restrict_categories = restrict_to adjacency, restrict_indices = restrict_adjacency( adata, restrict_key, restrict_categories, adjacency, ) # convert it to igraph g = get_graph_tool_from_adjacency(adjacency, directed=directed) recs = [] rec_types = [] if use_weights: # this is not ideal to me, possibly we may need to transform # weights. More tests needed. recs = [g.ep.weight] rec_types = ['real-normal'] if n_init < 1: n_init = 1 if fast_model: # do not minimize, start with a dummy state and perform only equilibrate states = [ gt.NestedBlockState(g=g, state_args=dict(deg_corr=deg_corr, recs=recs, rec_types=rec_types)) for n in range(n_init) ] for x in range(n_init): dS = 1 while np.abs(dS) > fast_tol: # perform sweep until a tolerance is reached dS, _, _ = states[x].multiflip_mcmc_sweep(beta=beta, niter=n_sweep) _amin = np.argmin([s.entropy() for s in states]) state = states[_amin] # dS = 1 # while np.abs(dS) > fast_tol: # dS, nattempts, nmoves = state.multiflip_mcmc_sweep(niter=10, beta=np.inf) bs = state.get_bs() logg.info(' done', time=start) elif resume: # create the state and make sure sampling is performed state = adata.uns['nsbm']['state'].copy(sampling=True) bs = state.get_bs() # get the graph from state g = state.g else: states = [ gt.minimize_nested_blockmodel_dl( g, deg_corr=deg_corr, state_args=dict(recs=recs, rec_types=rec_types), **minimize_args) for n in range(n_init) ] state = states[np.argmin([s.entropy() for s in states])] # state = gt.minimize_nested_blockmodel_dl(g, deg_corr=deg_corr, # state_args=dict(recs=recs, # rec_types=rec_types), # **minimize_args) logg.info(' done', time=start) bs = state.get_bs() if len(bs) <= hierarchy_length: # increase hierarchy length up to the specified value # according to Tiago Peixoto 10 is reasonably large as number of # groups decays exponentially bs += [np.zeros(1)] * (hierarchy_length - len(bs)) else: logg.warning( f'A hierarchy length of {hierarchy_length} has been specified\n' f'but the minimized model contains {len(bs)} levels') pass # create a new state with inferred blocks state = gt.NestedBlockState(g, bs, state_args=dict(recs=recs, rec_types=rec_types), sampling=True) # equilibrate the Markov chain if equilibrate: logg.info('running MCMC equilibration step') # equlibration done by simulated annealing equilibrate_args['wait'] = wait equilibrate_args['nbreaks'] = nbreaks equilibrate_args['max_niter'] = max_iterations equilibrate_args['multiflip'] = multiflip equilibrate_args['mcmc_args'] = {'niter': 10} dS, nattempts, nmoves = gt.mcmc_anneal( state, mcmc_equilibrate_args=equilibrate_args, niter=steps_anneal, beta_range=beta_range) if collect_marginals and equilibrate: # we here only retain level_0 counts, until I can't figure out # how to propagate correctly counts to higher levels # I wonder if this should be placed after group definition or not logg.info(' collecting marginals') group_marginals = [ np.zeros(g.num_vertices() + 1) for s in state.get_levels() ] def _collect_marginals(s): levels = s.get_levels() for l, sl in enumerate(levels): group_marginals[l][sl.get_nonempty_B()] += 1 gt.mcmc_equilibrate(state, wait=wait, nbreaks=nbreaks, epsilon=epsilon, max_niter=max_iterations, multiflip=True, force_niter=niter_collect, mcmc_args=dict(niter=10), callback=_collect_marginals) logg.info(' done', time=start) # everything is in place, we need to fill all slots # first build an array with groups = np.zeros((g.num_vertices(), len(bs)), dtype=int) for x in range(len(bs)): # for each level, project labels to the vertex level # so that every cell has a name. Note that at this level # the labels are not necessarily consecutive groups[:, x] = state.project_partition(x, 0).get_array() groups = pd.DataFrame(groups).astype('category') # rename categories from 0 to n for c in groups.columns: new_cat_names = dict([ (cx, u'%s' % cn) for cn, cx in enumerate(groups.loc[:, c].cat.categories) ]) groups.loc[:, c].cat.rename_categories(new_cat_names, inplace=True) if restrict_to is not None: groups.index = adata.obs[restrict_key].index else: groups.index = adata.obs_names # add column names groups.columns = [ "%s_level_%d" % (key_added, level) for level in range(len(bs)) ] # remove any column with the same key keep_columns = [ x for x in adata.obs.columns if not x.startswith('%s_level_' % key_added) ] adata.obs = adata.obs.loc[:, keep_columns] # concatenate obs with new data, skipping level_0 which is usually # crap. In the future it may be useful to reintegrate it # we need it in this function anyway, to match groups with node marginals if return_low: adata.obs = pd.concat([adata.obs, groups], axis=1) else: adata.obs = pd.concat([adata.obs, groups.iloc[:, 1:]], axis=1) # add some unstructured info adata.uns['nsbm'] = {} adata.uns['nsbm']['stats'] = dict(level_entropy=np.array( [state.level_entropy(x) for x in range(len(state.levels))]), modularity=np.array([ gt.modularity( g, state.project_partition(x, 0)) for x in range(len((state.levels))) ])) if equilibrate: adata.uns['nsbm']['stats']['dS'] = dS adata.uns['nsbm']['stats']['nattempts'] = nattempts adata.uns['nsbm']['stats']['nmoves'] = nmoves adata.uns['nsbm']['state'] = state # now add marginal probabilities. if collect_marginals: # refrain group marginals. We collected data in vector as long as # the number of cells, cut them into appropriate length data adata.uns['nsbm']['group_marginals'] = {} for nl, level_marginals in enumerate(group_marginals): idx = np.where(level_marginals > 0)[0] + 1 adata.uns['nsbm']['group_marginals'][nl] = np.array( level_marginals[:np.max(idx)]) # prune uninformative levels, if any if prune: to_remove = prune_groups(groups) logg.info(f' Removing levels f{to_remove}') adata.obs.drop(to_remove, axis='columns', inplace=True) # calculate log-likelihood of cell moves over the remaining levels # we have to calculate events at level 0 and propagate to upper levels logg.info(' calculating cell affinity to groups') levels = [ int(x.split('_')[-1]) for x in adata.obs.columns if x.startswith(f'{key_added}_level') ] adata.uns['nsbm']['cell_affinity'] = dict.fromkeys( [str(x) for x in levels]) p0 = get_cell_loglikelihood(state, level=0, as_prob=True) adata.uns['nsbm']['cell_affinity'][0] = p0 l0 = "%s_level_0" % key_added for nl, level in enumerate(groups.columns[1:]): cross_tab = pd.crosstab(groups.loc[:, l0], groups.loc[:, level]) cl = np.zeros((p0.shape[0], cross_tab.shape[1]), dtype=p0.dtype) for x in range(cl.shape[1]): # sum counts of level_0 groups corresponding to # this group at current level cl[:, x] = p0[:, np.where(cross_tab.iloc[:, x] > 0)[0]].sum(axis=1) adata.uns['nsbm']['cell_affinity'][str(nl + 1)] = cl / np.sum( cl, axis=1)[:, None] # last step is recording some parameters used in this analysis adata.uns['nsbm']['params'] = dict( epsilon=epsilon, wait=wait, nbreaks=nbreaks, equilibrate=equilibrate, fast_model=fast_model, collect_marginals=collect_marginals, hierarchy_length=hierarchy_length, random_seed=random_seed, prune=prune, ) logg.info( ' finished', time=start, deep= (f'found {state.get_levels()[1].get_nonempty_B()} clusters at level_1, and added\n' f' {key_added!r}, the cluster labels (adata.obs, categorical)'), ) return adata if copy else None
#!/usr/bin/env python import sys,os import time import pylab as plt from sbmtm import sbmtm import graph_tool.all as gt import numpy as np from matplotlib import pyplot as plt gt.openmp_set_num_threads(int(sys.argv[1])) #set num threads gt.seed_rng(42) #same results print("Welcome to Topic Modelling") print("using ",gt.openmp_get_num_threads(), " threads") if __name__ == '__main__': start = time.time() print("initialised") gt.seed_rng(42) print("seed set") model = sbmtm() print("model created") model.load_graph(filename = '/home/filippo/files/graph.xml.gz') print("graph loaded") print(model.g) model.fit(n_init=1, parallel=True, verbose=True) #model.fit_overlap(n_init=1, verbose=True, parallel=True) #model.plot() model.save_data() model.dump_model() os.system("mv *.csv *.png *.txt *.pkl /home/filippo/files/.")
# -------------------- print(datetime.now()) # Visually separate analyses print('-'*40) if __name__ == '__main__': # Networks for analysis netfiles = ['citenet0'] #netfiles = ['autnet0'] #netfiles = ['autnet1'] #netfiles = ['autnet1', 'autnet0', 'citenet0'] # Comparison networks #compnet_files = ['phnet.graphml'] compnet_files = ['phnet.graphml', 'ptnet.graphml'] # Set up logging logging.basicConfig(level=logging.INFO, format = '%(message)s') logger = logging.getLogger() logger.addHandler(logging.FileHandler('output/' + str(date.today()) + '.log', 'w')) print = logger.info print('-'*40) for netfile in netfiles: seed(24680) gt.seed_rng(24680) run_analysis(netfile, compnet_files) print(datetime.now())
def draw_graph( adata: AnnData, layout: _Layout = 'sfdp', # init_pos: Union[str, bool, None] = None, # root: Optional[int] = None, use_tree: bool = False, random_seed: Optional[int] = None, adjacency: Optional[spmatrix] = None, key_added_ext: Optional[str] = None, key: Optional[str] = 'schist', copy: bool = False, **kwds, ): """\ Extends scanpy.tools.draw_graph function using some layouts available in graph-tool library. Three layouts are available here: - SFDP spring-block layout. - ARF spring-block layout. - Fruchterman-Reingold spring-block layout. Fruchterman-Reingold is already available in scanpy, but here can be used to render the nested model tree. In order to use these plotting function, the NestedBlockState needs to be saved when building the model, so `save_state=True` needs to be set. Parameters ---------- adata Annotated data matrix. A NestedBlockState object needs to be saved layout A layout among 'sfdp', 'fr' or 'arf'. Other graph-tool layouts haven't been implemented. use_tree When this is set, the tree of the nested model is used to generate layout, otherwise the layout only accounts for the neighborhood graph. random_seed Random number to be used as seed for graph-tool adjacency Sparse adjacency matrix of the graph, defaults to `adata.uns['neighbors']['connectivities']`. key_added_ext By default, append `layout`. key The slot in `AnnData.uns` containing the state. Default is 'nsbm' copy Return a copy instead of writing to adata. **kwds Parameters of chosen igraph layout. See e.g. `fruchterman-reingold`_ [Fruchterman91]_. One of the most important ones is `maxiter`. .. _fruchterman-reingold: http://igraph.org/python/doc/igraph.Graph-class.html#layout_fruchterman_reingold Returns ------- Depending on `copy`, returns or updates `adata` with the following field. **X_draw_graph_layout** : `adata.obsm` Coordinates of graph layout. E.g. for layout='fa' (the default), the field is called 'X_draw_graph_fa' """ if random_seed: np.random.seed(random_seed) gt.seed_rng(random_seed) n_cells = adata.shape[0] start = logg.info(f'drawing single-cell graph using layout {layout!r}') if layout not in _LAYOUTS: raise ValueError(f'Provide a valid layout, one of {_LAYOUTS}.') adata = adata.copy() if copy else adata if adjacency is None and 'neighbors' not in adata.uns: raise ValueError('You need to run `pp.neighbors` first ' 'to compute a neighborhood graph.') if not key in adata.uns: raise ValueError( 'You need to run `nested_model` before trying to run this function ' ) if use_tree and 'state' not in adata.uns[key]: raise ValueError( 'When `use_tree` is set to `True`, a state should be saved' 'running `nested_model(adata, save_state=True)`.') if adjacency is None: adjacency = adata.uns['neighbors']['connectivities'] g = get_graph_tool_from_adjacency(adjacency) weights = g.ep['weight'] if use_tree: state = state_from_blocks(adata) g, _, _ = gt.get_hierarchy_tree(state, empty_branches=False) weights = None # actual drawing positions = np.zeros((n_cells, 2)) if layout == 'fr': positions = gt.fruchterman_reingold_layout(g, weight=weights) positions = np.array([x for x in positions][:n_cells]) elif layout == 'sfdp': positions = gt.sfdp_layout(g) positions = np.array([x for x in positions][:n_cells]) elif layout == 'arf': positions = gt.arf_layout(g) positions = np.array([x for x in positions][:n_cells]) adata.uns['draw_graph'] = {} adata.uns['draw_graph']['params'] = dict(layout=layout, random_seed=random_seed) key_added = f'X_draw_graph_{layout}' adata.obsm[key_added] = positions logg.info( ' finished', time=start, deep=('added\n' f' {key_added!r}, graph_drawing coordinates (adata.obsm)'), ) return adata if copy else None
def run_analysis(netfile, compnet_files): ''' Run the analysis. :param netfile: Filename of the network to analyze :param compnet_files: List of filenames of the comparison networks, viz., the high-energy physics networks. ''' # Timestamp # -------------------- print(datetime.now()) # Load the network # -------------------- net, outfile_pre, core_pmap, core_vertices = load_net(netfile + '.graphml', core = True, filter = True) output_folder = 'output/' outfile_pre = output_folder + outfile_pre # Plotting print('Plotting') layout = layout_and_plot(net, core_pmap, outfile_pre) # Store the layout in the net net.vp['layout'] = layout # Show only the core vertices net.set_vertex_filter(core_pmap) layout_and_plot(net, core_pmap, outfile_pre, filename_mod = '.core.net', reverse_colors = True) net.set_vertex_filter(None) # Vertex statistics # -------------------- # ECDF for out-degree distribution degree_dist(net, core_vertices, outfile = outfile_pre, show_plot = False, save_plot = True) # ECDF for eigenvector centrality ## Currently this is causing a segmentation fault # ev_centrality_dist(net, core_vertices, outfile = outfile_pre, # show_plot = False, save_plot = True) # Modularity # -------------------- # Calculate modularity, using the core vertices as the partition modularity = gtcomm.modularity(net, core_pmap) print('Observed modularity: ' + str(modularity)) obs_ins = insularity(net, core_pmap) print('Observed insularity: ' + str(obs_ins)) # Calculate the number of core vertices n_core = len(core_vertices) # Construct a sampling distribution for the modularity statistic # And use it to calculate a p-value for the modularity print('Random sample modularity') modularity_sample_dist(net, n_core, modularity, outfile = outfile_pre + '.mod', show_plot = False, save_plot = True) print('Random sample insularities') modularity_sample_dist(net, n_core, obs_ins, mod_func = insularity, outfile = outfile_pre + '.ins', show_plot = False, save_plot = True) # Information-theoretic partitioning print('Information-theoretic partitioning') # Calculate the partition gt.seed_rng(5678) np.random.seed(5678) part_block = gt.minimize_blockmodel_dl(net, B_min = 2, B_max = 2, verbose = True, overlap = False) # Extract the block memberships as a pmap net.vp['partition'] = part_block.get_blocks() # Calculate the modularity block_modularity = gtcomm.modularity(net, net.vp['partition']) print('Partion modularity: ' + str(block_modularity)) print('Partition insularities') block_insularities = partition_insularity(net, net.vp['partition']) for community in block_insularities: print('Community ' + str(community) + ': ' + str(block_insularities[community])) print('Plotting') size_pmap = gt.prop_to_size(core_pmap, mi = 10, ma = 20) layout_and_plot(net, net.vp['partition'], outfile_pre, size_pmap = size_pmap, filename_mod = '.partition') # Modularity optimization optimal_sample_dist(net, modularity, obs_ins, outfile = outfile_pre, show_plot = False, save_plot = True) # Save results # -------------------- # The above covers all of the analysis to be written into the output files, # so we'll go ahead and save things now. print('Saving') # Save in graph-tool's binary format net.save(outfile_pre + '.out' + '.gt') # Replace vector-type properties with strings #net.list_properties() properties = net.vertex_properties for property_key in properties.keys(): property = properties[property_key] if 'vector' in property.value_type(): properties[property_key] = property.copy(value_type = 'string') # Save as graphml net.save(outfile_pre + '.out' + '.graphml') # Comparison networks # -------------------- for compnet_file in compnet_files: # Load the comparison network compnet, compnet_outfile = load_net(compnet_file) # Set it to the same directedness as the network of interest compnet.set_directed(net.is_directed()) # Size of compnet n_compnet = compnet.num_vertices() # Num vertices in compnet to use in each random partition k_compnet = round(n_core / net.num_vertices() * n_compnet) # Sample distribution based on random partition print('Random sample modularities') print('Observed modularity: ' + str(modularity)) modularity_sample_dist(compnet, k_compnet, modularity, outfile = outfile_pre + '.mod.' + compnet_outfile, show_plot = False, save_plot = True) print('Random sample insularities') print('Observed insularity: ' + str(obs_ins)) modularity_sample_dist(compnet, k_compnet, obs_ins, mod_func = insularity, outfile = outfile_pre + '.ins.' + compnet_outfile, show_plot = False, save_plot = True) # Sample distribution based on optimizing modularity # optimal_sample_dist(compnet, modularity, n_samples = 300, # outfile = outfile_pre + '.mod.' + compnet_outfile, # show_plot = False) # Timestamp # -------------------- print(datetime.now()) # Visually separate analyses print('-'*40)
def find_communities(nnodes, edges, alg, params=None): def membership2cs(membership): cs = {} for i, m in enumerate(membership): cs.setdefault(m, []).append(i) return cs.values() def connected_subgraphs(G: nx.Graph): for comp in nx.connected_components(G): sub = nx.induced_subgraph(G, comp) sub = nx.convert_node_labels_to_integers(sub, label_attribute='old') yield sub def apply_subgraphs(algorithm, **params): cs = [] for sub in connected_subgraphs(G): if len(sub.nodes) <= 3: coms = [sub.nodes] # let it be a cluster else: coms = algorithm(sub, **params) if hasattr(coms, 'communities'): coms = coms.communities for com in coms: cs.append([sub.nodes[i]['old'] for i in set(com)]) return cs def karate_apply(algorithm, graph, **params): model = algorithm(**params) model.fit(graph) return membership2cs(model.get_memberships().values()) if alg == 'big_clam': c = -1 if params['c'] == 'auto' else int(params['c']) cs = BigClam('../../snap').run(edges, c=c, xc=int(params['xc'])) elif alg in ('gmm', 'kclique', 'lprop', 'lprop_async', 'fluid', 'girvan_newman', 'angel', 'congo', 'danmf', 'egonet_splitter', 'lfm', 'multicom', 'nmnf', 'nnsed', 'node_perception', 'slpa', 'GEMSEC', 'EdMot', 'demon'): G = nx.Graph() G.add_edges_from(edges) if alg == 'gmm': cs = community.greedy_modularity_communities(G) elif alg == 'kclique': params = {k: float(v) for k, v in params.items()} cs = community.k_clique_communities(G, **params) elif alg == 'lprop': cs = community.label_propagation_communities(G) elif alg == 'lprop_async': cs = community.asyn_lpa_communities(G, seed=0) elif alg == 'fluid': params = {k: int(v) for k, v in params.items()} params['seed'] = 0 cs = apply_subgraphs(community.asyn_fluidc, **params) elif alg == 'girvan_newman': comp = community.girvan_newman(G) for cs in itertools.islice(comp, int(params['k'])): pass elif alg == 'angel': params = {k: float(v) for k, v in params.items()} cs = cdlib.angel(G, **params).communities elif alg == 'congo': # too slow ncoms = int(params['number_communities']) cs = [] for sub in connected_subgraphs(G): if len(sub.nodes) <= max(3, ncoms): cs.append(sub.nodes) # let it be a cluster else: coms = cdlib.congo(sub, number_communities=ncoms, height=int(params['height'])) for com in coms.communities: cs.append([sub.nodes[i]['old'] for i in set(com)]) elif alg == 'danmf': # no overlapping cs = apply_subgraphs(cdlib.danmf) elif alg == 'egonet_splitter': params['resolution'] = float(params['resolution']) cs = apply_subgraphs(cdlib.egonet_splitter, **params) elif alg == 'lfm': coms = cdlib.lfm(G, float(params['alpha'])) cs = coms.communities elif alg == 'multicom': cs = cdlib.multicom(G, seed_node=0).communities elif alg == 'nmnf': params = {k: int(v) for k, v in params.items()} cs = apply_subgraphs(cdlib.nmnf, **params) elif alg == 'nnsed': cs = apply_subgraphs(cdlib.nnsed) elif alg == 'node_perception': # not usable params = {k: float(v) for k, v in params.items()} cs = cdlib.node_perception(G, **params).communities elif alg == 'slpa': params["t"] = int(params["t"]) params["r"] = float(params["r"]) cs = cdlib.slpa(G, **params).communities elif alg == 'demon': params = {k: float(v) for k, v in params.items()} cs = cdlib.demon(G, **params).communities elif alg == 'GEMSEC': # gamma = float(params.pop('gamma')) params = {k: int(v) for k, v in params.items()} # params['gamma'] = gamma params['seed'] = 0 _wrap = partial(karate_apply, karateclub.GEMSEC) cs = apply_subgraphs(_wrap, **params) elif alg == 'EdMot': params = {k: int(v) for k, v in params.items()} _wrap = partial(karate_apply, karateclub.EdMot) cs = apply_subgraphs(_wrap, **params) elif alg in ('infomap', 'community_leading_eigenvector', 'leig', 'multilevel', 'optmod', 'edge_betweenness', 'spinglass', 'walktrap', 'leiden', 'hlc'): G = igraph.Graph() G.add_vertices(nnodes) G.add_edges(edges) if alg == 'infomap': vcl = G.community_infomap(trials=int(params['trials'])) cs = membership2cs(vcl.membership) elif alg == 'leig': clusters = None if params['clusters'] == 'auto' else int( params['clusters']) vcl = G.community_leading_eigenvector(clusters=clusters) cs = membership2cs(vcl.membership) elif alg == 'multilevel': vcl = G.community_multilevel() cs = membership2cs(vcl.membership) elif alg == 'optmod': # too long membership, modularity = G.community_optimal_modularity() cs = membership2cs(vcl.membership) elif alg == 'edge_betweenness': clusters = None if params['clusters'] == 'auto' else int( params['clusters']) dendrogram = G.community_edge_betweenness(clusters, directed=False) try: clusters = dendrogram.as_clustering() except: return [] cs = membership2cs(clusters.membership) elif alg == 'spinglass': # only for connected graph vcl = G.community_spinglass(parupdate=True, update_rule=params['update_rule'], start_temp=float(params['start_temp']), stop_temp=float(params['stop_temp'])) cs = membership2cs(vcl.membership) elif alg == 'walktrap': dendrogram = G.community_walktrap(steps=int(params['steps'])) try: clusters = dendrogram.as_clustering() except: return [] cs = membership2cs(clusters.membership) elif alg == 'leiden': vcl = G.community_leiden( objective_function=params['objective_function'], resolution_parameter=float(params['resolution_parameter']), n_iterations=int(params['n_iterations'])) cs = membership2cs(vcl.membership) elif alg == 'hlc': algorithm = HLC(G, min_size=int(params['min_size'])) cs = algorithm.run(None) elif alg in ("sbm", "sbm_nested"): np.random.seed(42) gt.seed_rng(42) G = gt.Graph(directed=False) G.add_edge_list(edges) deg_corr = bool(params['deg_corr']) B_min = None if params['B_min'] == 'auto' else int(params['B_min']) B_max = None if params['B_max'] == 'auto' else int(params['B_max']) if alg == "sbm": state = gt.minimize_blockmodel_dl(G, deg_corr=deg_corr, B_min=B_min, B_max=B_max) membership = state.get_blocks() cs = membership2cs(membership) if alg == "sbm_nested": state = gt.minimize_nested_blockmodel_dl(G, deg_corr=deg_corr, B_min=B_min, B_max=B_max) levels = state.get_bs() level_max = int(params['level']) membership = {} for nid in range(nnodes): cid = nid level_i = len(levels) for level in levels: cid = level[cid] if level_i == level_max: membership.setdefault(cid, []).append(nid) break level_i -= 1 cs = membership.values() else: return None return list(cs)
rcParams["figure.subplot.bottom"] = 0.2 rcParams["image.cmap"] = "hot" rcParams["text.usetex"] = True rcParams["ps.usedistiller"] = "xpdf" rcParams["pdf.compression"] = 9 rcParams["ps.useafm"] = True rcParams["path.simplify"] = True rcParams["text.latex.preamble"] = [#"\usepackage{times}", #"\usepackage{euler}", r"\usepackage{amssymb}", r"\usepackage{amsmath}"] import scipy import scipy.stats import numpy as np from pylab import * from numpy import * import graph_tool.all as gt figure() try: gt.openmp_set_num_threads(1) except RuntimeError: pass np.random.seed(42) gt.seed_rng(42)