コード例 #1
0
def create_dict(g: gt.Graph, n_att_name, e_att_name):
    node_dict = {n_att_name: {'size': g.num_vertices()}}

    # find all the total values
    unique_keys = np.unique([g.vp[n_att_name][n] for n in g.vertices()])
    for k in unique_keys:
        node_dict[n_att_name][k] = set(
            [n for n in g.vertices() if (g.vp[n_att_name][n] == k)])

    edge_dict = {e_att_name: {'size': int(g.num_edges())}}
    # find all the total values
    unique_keys = np.unique([g.ep[e_att_name][e] for e in g.edges()])
    for k in unique_keys:
        edge_dict[e_att_name][k] = set([(e.source(), e.target())
                                        for e in g.edges()
                                        if g.ep[e_att_name][e] == k])
        edge_dict[e_att_name][k].update(
            set([(e.target(), e.source()) for e in g.edges()
                 if g.ep[e_att_name][e] == k]))
        # mirror_edges = []
        # for e in edge_dict[e_att_name][k]:
        #     mirror_edges.append((e[1], e[0]))
        # edge_dict[e_att_name][k].update(mirror_edges)

    return node_dict, edge_dict
コード例 #2
0
    def from_graph(gt_graph: gt.Graph, is_directed, is_weighted):
        g = DWGraph()

        v_ind = gt_graph.vertex_index
        e_ind = gt_graph.edge_index
        old_to_new_v = {}
        old_to_new_e = {}

        s = set()

        for e in gt_graph.edges():
            u, v = e
            s.add(v_ind[u])
            s.add(v_ind[v])

        for v in gt_graph.vertices():
            if v_ind[v] in s:
                old_to_new_v[v_ind[v]] = g.add_vertex()

        for e in gt_graph.edges():
            u, v = e
            old_to_new_e[e_ind[e]] = g.add_edge(old_to_new_v[v_ind[u]],
                                                old_to_new_v[v_ind[v]])

        for p_type, vp_name in gt_graph.vp.properties:
            if p_type != 'v':
                continue
            old_vp = gt_graph.vp[vp_name]
            g.vp[vp_name] = g.new_vp(old_vp.value_type())
            new_vp = g.vp[vp_name]
            for v in gt_graph.vertices():
                if v_ind[v] in s:
                    new_vp[old_to_new_v[v_ind[v]]] = deepcopy(old_vp[v])

        for p_type, ep_name in gt_graph.ep.properties:
            if p_type != 'e':
                continue
            old_ep = gt_graph.ep[ep_name]
            g.ep[ep_name] = g.new_ep(old_ep.value_type())
            new_ep = g.ep[ep_name]
            for e in gt_graph.edges():
                new_ep[old_to_new_e[e_ind[e]]] = deepcopy(old_ep[e])

        g.is_weighted_prop = is_weighted
        g.is_directed_prop = is_directed

        # g.orig_nodes = list(vertices.keys())
        # g.nodes_orig_new_mapping = vertices

        return g
コード例 #3
0
ファイル: smallGraphs.py プロジェクト: optas/graph_roles
def burtFig4(directed=False):
    '''
    Returns the graph presented at Burt's "Role Equivalence" paper, at Figure_x
    '''
    g = Graph(directed=directed)
    g.add_vertex(9)
    g.add_edge(0, 4)
    g.add_edge(1, 4)
    g.add_edge(2, 4)
    g.add_edge(3, 4)
    g.add_edge(4, 5)
    g.add_edge(4, 6)
    # 4-clique
    g.add_edge(5, 6)
    g.add_edge(5, 7)
    g.add_edge(5, 8)
    g.add_edge(6, 7)
    g.add_edge(6, 8)
    g.add_edge(7, 8)
    if directed:
        g.add_edge(6, 5)
        g.add_edge(7, 5)
        g.add_edge(8, 5)
        g.add_edge(7, 6)
        g.add_edge(8, 6)
        g.add_edge(8, 7)

    for ed in g.edges():
        print ed
    return g
コード例 #4
0
def ring(num_vtx=100, k=2, p=0.0):
    g = Graph(directed=False)
    vtx = list(g.add_vertex(num_vtx))

    # connect neighbors
    for i in vtx:
        for j in xrange(1, k + 1):
            dest = g.vertex((g.vertex_index[i] - j) % num_vtx)
            if g.edge(i, dest) is None:
                g.add_edge(i, dest)

    # redirect edges
    # old_edges = list(g.edges())
    old_edges = [(x.source(), x.target()) for x in g.edges()]
    for i in old_edges:
        n = random.random()
        if n < p:  # redirect edge; choose random vertex as new destination
            vtx_tmp = vtx[:]
            vtx_tmp.remove(i[1])
            if i[0] in vtx_tmp:
                vtx_tmp.remove(i[0])
            dest = random.choice(vtx_tmp)
            while g.edge(i[0], dest) is not None:
                vtx_tmp.remove(dest)
                dest = random.choice(vtx_tmp)

            g.remove_edge(g.edge(i[0], i[1]))
            g.add_edge(i[0], dest)

    return g
コード例 #5
0
ファイル: skeleton_data.py プロジェクト: bo-wu/skel_corres
    def _filter_short_branch(self, filter=False, short=30):
        """
        filter out very short branches: do this maybe not right for some models, for models with flat part, it is right
        I will test how this effect the final matching results
        need to delete nodes, switch with the last one then delete last
        """
        if filter == False:
            self.verts = self.verts_init
            self.edges = self.edges_init
        else:
            init_graph = Graph(directed=False)
            init_graph.add_vertex(len(self.verts_init))
            for edge in self.edges_init:
                init_graph.add_edge(init_graph.vertex(edge[0]), init_graph.vertex(edge[1]))

            terminal_node = []
            for v in init_graph.vertices():
                if v.out_degree() == 1:
                    terminal_node.append(v)

            visitor = DepthVisitor()
            short_nodes = []
            for tn in terminal_node:
                search.dfs_search(init_graph, tn, visitor)
                tmp_node = visitor.get_short_branch(min_length=short)
                visitor.reset()
                for n in tmp_node:
                    short_nodes.append(n)

            ## get edges on the short paths
            short_nodes = list(set(short_nodes))
            short_edges = []
            temp_verts = self.verts_init[:]
            v_num = len(self.verts_init)
            if len(short_nodes):
                for v in reversed(sorted(short_nodes)):
                    for ve in init_graph.vertex(v).out_edges():
                        short_edges.append(ve)

                ## delete edges first, then vertex
                short_edges = list(set(short_edges))
                for e in short_edges:
                    init_graph.remove_edge(e)

                print 'deleting vertex',
                for v in reversed(sorted(short_nodes)):
                    print v,
                    temp_verts[int(v)] = temp_verts[v_num-1]
                    init_graph.remove_vertex(v, fast=True)
                    v_num -= 1
                print '\ndeleting related edges' # already done above, just info user
            else:
                print 'no short branches'

            ######## new vertices and edges ########
            self.verts = temp_verts[:v_num]
            self.edges = []
            for e in init_graph.edges():
                self.edges.append([int(e.source()), int(e.target())])
コード例 #6
0
def _to_directed(G: graph_tool.Graph) -> graph_tool.Graph:
    H = graph_tool.Graph(directed=True)
    W = G.edge_properties['weights']
    U = H.new_edge_property('double')
    H.edge_properties['weights'] = U
    for e in G.edges():
        s, t = int(e.source()), int(e.target())
        e1 = H.add_edge(s, t, add_missing=True)
        e2 = H.add_edge(t, s)
        w = W[e]
        U[e1] = w
        U[e2] = w
    return H
コード例 #7
0
def print_graph(g: gt.Graph):
    nodes = g.vertices()

    print('Directed' if g.is_directed() else 'Undirected')

    for node in nodes:
        prop = {}
        for key in g.vp.keys():
            prop[key] = g.vp[key][node]
        print(node, ' : ', prop)
    for e in g.edges():
        prop = {}
        for key in g.ep.keys():
            prop[key] = g.ep[key][e]
        print(e, ' : ', prop)
コード例 #8
0
def collect_edges_from_graph(
    g: gt.Graph, vertex_color_to_slice_map: Dict[int, str]
) -> Tuple[pd.DataFrame, List[Dict[str, Any]]]:

    edge_collections = []
    edge_to_color_map = g.vertex_properties["colors"]
    edge_to_data_index_map = g.vertex_properties["data_indices"]
    for edge in tqdm(g.edges()):
        source_vertex = edge.source()
        target_vertex = edge.target()
        source_vertex_color = edge_to_color_map[source_vertex]
        target_vertex_color = edge_to_color_map[target_vertex]
        source_vertex_data_index = edge_to_data_index_map[source_vertex]
        target_vertex_data_index = edge_to_data_index_map[target_vertex]

        # source vertex should be training data
        if not source_vertex_data_index.startswith("train"):
            raise ValueError

        # target vertex should be evaluation data
        if not target_vertex_data_index.startswith("eval"):
            raise ValueError

        # train vertex should have this color
        if source_vertex_color != DEFAULT_TRAIN_VERTEX_COLOR:
            raise ValueError

        # eval vertex should not have this color
        if target_vertex_color == DEFAULT_TRAIN_VERTEX_COLOR:
            raise ValueError

        edge_collection = {
            "edge": edge,
            "target_slice": vertex_color_to_slice_map[target_vertex_color],
            "source_vertex_data_index": source_vertex_data_index,
            "target_vertex_data_index": target_vertex_data_index,
        }

        for property_name, property_map in g.edge_properties.items():
            if property_name in edge_collection.keys():
                raise ValueError(f"Duplicate key {property_name}")
            edge_collection[property_name] = property_map[edge]

        edge_collections.append(edge_collection)

    return pd.DataFrame(edge_collections), edge_collections
コード例 #9
0
def score_solution(q: gt.Graph, a: gt.Graph, solution):
    # Archive graph A
    # query graph Q
    # Solution = list of tuples, length |G|, e.g. (1,3),(2,8),(3,12)
    solution_score = 0
    sol_dict = {}
    sol_dict_new = {}

    q_original = original_vp(q)
    a_original = original_vp(a)
    q_o = dict_from_property_map(q, q_original)
    a_o = dict_from_property_map(a, a_original)

    q_v_map = vp_map(q, 'nValue')
    a_v_map = vp_map(a, 'nValue')

    q_e_map = ep_map(q, 'eValue')
    a_e_map = ep_map(a, 'eValue')

    # Current impl simply adds 1 for each matching node or edge
    for s in solution:  # s should be a tuple e.g. (1,3)
        q_node, a_node = s
        if q_node in q_o and a_node in a_o:
            solution_score += q_v_map[q_o[q_node]] == a_v_map[a_o[a_node]]
            sol_dict[q_node] = a_node
            sol_dict_new[q_o[q_node]] = a_o[a_node]

    for e_q in q.edges():
        u_q, v_q = e_q
        if u_q in sol_dict_new and v_q in sol_dict_new:
            edges_a = a.edge(sol_dict_new[u_q],
                             sol_dict_new[v_q],
                             all_edges=True)
            for e_a in edges_a:
                if q_e_map[e_q] == a_e_map[e_a]:
                    u_a, v_a = e_a
                    solution_score += 1
                    u1 = q_original[u_q]
                    v1 = q_original[v_q]
                    u2 = a_original[u_a]
                    v2 = a_original[v_a]

                    sol_dict[(u1, v1)] = (u2, v2)
                    break

    return sol_dict, solution_score
コード例 #10
0
ファイル: Constructors.py プロジェクト: ChenghaoMou/NodeRank
    def largest_strongly_connected_component(self, graph):
        from graph_tool import Graph
        import graph_tool.all as gt

        largest_connected_component = Graph(directed=True)
        if not self.is_relationship:
            edge_prop_time = largest_connected_component.new_edge_property(
                "int")
            edge_prop_type = largest_connected_component.new_edge_property(
                "string")

        for edge in tqdm(graph.edges(data=True)):
            e = tuple(edge[:2])
            largest_connected_component.add_edge(e[0], e[1])
            if not self.is_relationship:
                edge_prop_time[e] = edge[-1]["time"]
                edge_prop_type[e] = edge[-1]["type"]

        largest_connected_component_view = gt.label_largest_component(
            largest_connected_component)
        largest_connected_component = gt.GraphView(
            largest_connected_component,
            vfilt=largest_connected_component_view)

        print(
            "Total nodes {0} in largest strongly connected component.".format(
                largest_connected_component.num_vertices()))
        print(
            "Total edges {0} in largest strongly connected component.".format(
                largest_connected_component.num_edges()))

        with open(self.output, "w+") as output_file:
            for edge in tqdm(largest_connected_component.edges()):
                if not self.is_relationship:
                    output_file.write("{0} {1} {2} {3}\n".format(
                        edge.source(), edge.target(), edge_prop_time[edge],
                        edge_prop_type[edge]))
                else:
                    output_file.write("{0} {1}\n".format(
                        edge.source(), edge.target()))
コード例 #11
0
def insert_targets(a: gt.Graph, q: gt.Graph, n_targets, target_solutions,
                   is_clutter):
    print("Inserting targets, n_targets = {}.".format(n_targets))

    mp_q = vp_map(q, 'nValue', 'int')
    mp_a = vp_map(a, 'nValue', 'int')

    for i in range(n_targets):
        print("Target {}...".format(i))
        # Map Q to a corresponding set of random nodes in A
        map_to_a = {}
        new_target = {'nodes': [], 'edges': [], 'isClutter': is_clutter}
        for node in q.vertices():
            while True:
                ind = np.random.choice(list(range(a.num_vertices())))
                if not is_node_in_existing_target(ind, target_solutions):
                    break
            map_to_a[node] = ind
            new_target['nodes'].append(ind)
            # copy node attributes exactly
            mp_a[ind] = mp_q[node]

        # Add the same edges in Q to A
        for edge in q.edges():
            source_a = map_to_a[edge.source()]
            destination_a = map_to_a[edge.target()]

            # edgeData = Q.get_edge_data(edge[0], edge[1]).copy()

            e_a = a.add_edge(source_a, destination_a)
            # print('bf: {}, {}'.format(a.ep['eValue'][e_a], q.ep['eValue'][edge]))
            copy_edge_attributes(a, e_a, q, edge)
            # print('af: {}'.format(a.ep['eValue'][e_a]))
            # for edge_attr, attr_val in edgeData.items():
            #     nx.set_edge_attributes(Q, {(source_a, destination_a): attr_val}, edge_attr)

            new_target['edges'].append(e_a)
        target_solutions.append(new_target)
    print(a)
コード例 #12
0
class lqg(object):
    def __init__(self, dim=3):
        self.dim = dim
        return

    def read_systre_key(self, skey, dim=3):
        self.dim = dim
        dfac = 2 + self.dim
        skey = skey.split()
        self.nedges = len(skey) / dfac
        self.nvertices = 1
        self.edges = []
        self.labels = []
        for i in range(self.nedges):
            edge = map(int, skey[i * dfac:i * dfac + 2])
            for j in edge:
                if j > self.nvertices: self.nvertices = j
            edge = list(numpy.array(edge) - 1)
            label = map(int, skey[i * dfac + 2:i * dfac + dfac])
            self.edges.append(edge)
            self.labels.append(label)
        return

    def write_systre_pgr(self, id="mfpb"):
        pgr = "PERIODIC_GRAPH\nID %s\nEDGES\n" % id
        for e, l in zip(self.edges, self.labels):
            entry = (" %s %s" + self.dim * " %1.0f" +
                     "\n") % tuple(list(numpy.array(e) + 1) + l)
            pgr += entry
        pgr += "END"
        return pgr

    def get_lqg_from_topo(self, topo):
        # be careful not working for nets where an vertex is connected to itself
        self.dim = 3
        self.nvertices = topo.get_natoms()
        self.nedges = 0
        self.edges = []
        self.labels = []
        for i in range(self.nvertices):
            for j, v in enumerate(topo.conn[i]):
                if v > i:
                    self.nedges += 1
                    self.edges.append([i, v])
                    #pdb.set_trace()
                    self.labels.append(list(topo.pconn[i][j]))
        return

    def get_lqg_from_lists(self, edges, labels, nvertices, dim):
        assert len(edges) == len(labels)
        self.edges = edges
        self.labels = labels
        self.dim = dim
        self.nedges = len(edges)
        self.nvertices = nvertices
        return

    def build_lqg(self):
        self.nbasevec = self.nedges - self.nvertices + 1
        self.molg = Graph(directed=True)
        self.molg.ep.label = self.molg.new_edge_property("vector<double>")
        self.molg.ep.number = self.molg.new_edge_property("int")
        for i in range(self.nvertices):
            iv = self.molg.add_vertex()
        for i, e in enumerate(self.edges):
            ie = self.molg.add_edge(self.molg.vertex(e[0]),
                                    self.molg.vertex(e[1]))
            self.molg.ep.label[ie] = self.labels[i]
            self.molg.ep.number[ie] = i
        return

    def get_cyclic_basis(self):
        nbasevec = self.nbasevec
        basis = numpy.zeros([nbasevec, self.nedges], dtype="int")
        self.molg.set_directed(False)
        tree = min_spanning_tree(self.molg)
        i = 0
        for e in self.molg.edges():
            if tree[e] == 0:
                self.molg.set_edge_filter(tree)
                vl, el = shortest_path(self.molg,
                                       self.molg.vertex(int(e.target())),
                                       self.molg.vertex(int(e.source())))
                self.molg.set_edge_filter(None)
                basis[i, self.molg.ep.number[e]] = 1
                neg = False
                for eb in el:
                    idx = self.molg.ep.number[eb]
                    ebt = self.get_edge_with_idx(idx)
                    if ebt.target() == e.target():
                        if neg != True:
                            basis[i, self.molg.ep.number[eb]] = -1
                            neg = True
                        else:
                            basis[i, self.molg.ep.number[eb]] = 1
                            neg = False
                    elif ebt.source() == e.source():
                        if neg != True:
                            basis[i, self.molg.ep.number[eb]] = -1
                            neg = True
                        else:
                            basis[i, self.molg.ep.number[eb]] = 1
                            neg = False
                    elif ebt.source() == e.target():
                        if neg != True:
                            basis[i, self.molg.ep.number[eb]] = 1
                            neg = False
                        else:
                            basis[i, self.molg.ep.number[eb]] = -1
                            neg = True
                    elif ebt.target() == e.source():
                        if neg != True:
                            basis[i, self.molg.ep.number[eb]] = 1
                            neg = False
                        else:
                            basis[i, self.molg.ep.number[eb]] = -1
                            neg = True
                    e = ebt
                i += 1
        self.cyclic_basis = basis
        self.molg.set_directed(True)
        return self.cyclic_basis

    def get_cocycle_basis(self):
        n = self.nedges - (self.nedges - self.nvertices + 1)
        cocycles = numpy.zeros([n, self.nedges])
        self.molg.set_directed(False)
        i = 0
        for v in self.molg.vertices():
            el = v.out_edges()
            for eb in el:
                idx = self.molg.ep.number[eb]
                ebt = self.get_edge_with_idx(idx)
                if ebt.source() == v:
                    cocycles[i, idx] = 1
                else:
                    cocycles[i, idx] = -1
            i += 1
            if i == n: break
            self.cocycle_basis = cocycles
        return self.cocycle_basis

    def get_ncocycles(self, n):
        self.molg.set_directed(False)
        cocycles = numpy.zeros([n, self.nedges])
        i = 0
        for v in self.molg.vertices():
            el = v.out_edges()
            for eb in el:
                idx = self.molg.ep.number[eb]
                ebt = self.get_edge_with_idx(idx)
                if ebt.source() == v:
                    cocycles[i, idx] = 1
                else:
                    cocycles[i, idx] = -1
            i += 1
            if i == n: break
        return cocycles

    def get_B_matrix(self):
        n = self.nedges - (self.nedges - self.nvertices + 1)
        if n > 0:
            self.B = numpy.append(self.cyclic_basis,
                                  self.cocycle_basis,
                                  axis=0)
        else:
            self.B = self.cyclic_basis
        return self.B

    def get_alpha(self):
        vimg = []
        labels = numpy.array(self.labels)
        for i in range(numpy.shape(self.cyclic_basis)[0]):
            img = numpy.sum(self.cyclic_basis[i] * labels.T, axis=1)
            vimg.append(img)
        for i in range(self.nedges - self.nbasevec):
            if self.dim == 2:
                vimg.append([0, 0])
            else:
                vimg.append([0, 0, 0])
        self.alpha = numpy.array(vimg)
        return self.alpha

    def get_image(self, vec):
        labels = numpy.array(self.labels)
        return numpy.sum(vec * labels.T, axis=1)

    def get_fracs(self):
        self.fracs = numpy.dot(numpy.linalg.inv(self.B), self.alpha)
        return self.fracs

    def get_lattice_basis(self):
        idx = self.find_li_vectors(self.alpha)
        latbase = self.alpha[idx]
        Lr = self.cyclic_basis[idx]
        ### we need to orthonormalize the latbase ###
        L = numpy.zeros([self.dim, self.nedges])
        olatbase = numpy.eye(self.dim, self.dim)
        for i in range(self.dim):
            b = numpy.linalg.solve(latbase.T, olatbase[i, :])
            for j in range(self.dim):
                L[i, :] += b[j] * Lr[j, :]
        self.lattice_basis = L
        return self.lattice_basis

    def get_kernel(self):
        k = numpy.zeros(
            [self.nbasevec - self.dim + self.nvertices - 1, self.nedges])
        idx = self.find_li_vectors(self.alpha)
        latbase = self.alpha[idx]
        counter = 0
        ### TODO: switch to other basis to make it more beautiful
        for i in range(self.nbasevec):
            if i not in idx:
                b = numpy.linalg.solve(latbase.T, self.alpha[i])
                bb = numpy.zeros(self.nedges)
                for j in range(self.dim):
                    bb += b[j] * self.cyclic_basis[idx[j]]
                k[counter] = self.cyclic_basis[i] - bb
                #print(self.get_image(k[counter]))
                counter += 1
        if self.nvertices > 1:
            k[self.nbasevec -
              self.dim:, :] = self.cocycle_basis[0:self.nvertices - 1, :]
        self.kernel = k
        return self.kernel

    def get_cell(self):
        k = self.kernel
        L = self.lattice_basis
        S = numpy.dot(k, k.T)
        P = numpy.eye(self.nedges, self.nedges) - numpy.dot(
            k.T, numpy.dot(numpy.linalg.inv(S), k))
        self.cell = numpy.dot(L, numpy.dot(P, L.T))
        return self.cell

    def place_vertices(self, first=numpy.array([0.0, 0.0, 0.0])):
        frac_xyz = numpy.zeros([self.nvertices, 3])
        frac_xyz[0, :] = first
        done = [0]
        counter = 0
        while len(done) != self.nvertices:
            for i, e in enumerate(self.edges):
                if self.labels[i] == [0, 0, 0]:
                    if ((e[0] in done) and (e[1] not in done)):
                        #print(e, self.fracs[i,:])
                        frac_xyz[e[1], :] = (frac_xyz[e[0], :] +
                                             self.fracs[i, :])
                        done.append(e[1])
                    elif ((e[1] in done) and (e[0] not in done)):
                        nc = (frac_xyz[e[1], :] - self.fracs[i, :])
                        frac_xyz[e[0], :] = nc
                        done.append(e[0])
            counter += 1
            if counter > 10: break
            #frac_xyz = frac_xyz%1
        print(len(done))
        if len(done) != self.nvertices:
            print('proceed')
            for i, e in enumerate(self.edges):
                if ((e[0] in done) and (e[1] not in done)):
                    print(e)
                    frac_xyz[e[1], :] = frac_xyz[e[0], :] + self.fracs[i, :]
                    done.append(e[1])
                elif ((e[1] in done) and (e[0] not in done)):
                    print(e, self.labels[i], self.fracs[i, :])
                    #### problem!!!!!
                    frac_xyz[e[0], :] = frac_xyz[e[1], :] - self.fracs[i, :]
                    done.append(e[0])
        ### perhaps a flooring has to be performe
        self.frac_xyz = frac_xyz
        return self.frac_xyz

    def to_mol(self):
        t = topo()
        t.natoms = self.nvertices
        t.set_cell(self.cell)
        t.set_xyz_from_frac(self.frac_xyz)
        t.set_atypes(self.nvertices * ['1'])
        t.set_empty_conn()
        t.set_empty_pconn()
        for i, e in enumerate(self.edges):
            t.conn[e[0]].append(e[1])
            t.conn[e[1]].append(e[0])
            t.pconn[e[0]].append(numpy.array(self.labels[i]))
            t.pconn[e[1]].append(-1 * numpy.array(self.labels[i]))
        #t.wrap_in_box()
        t.set_elems_by_coord_number()
        return t

    def get_edge_with_idx(self, idx):
        for i in self.molg.edges():
            if self.molg.edge_index[i] == idx: return i
            #if self.molg.ep.number[i] == idx: return i

    def find_li_vectors(self, R):
        rank = numpy.linalg.matrix_rank(R)
        idx = []
        ### get first non zero vector of R
        fn = numpy.nonzero(R)[0][0]
        idx.append(fn)
        for i in range(fn + 1, R.shape[0]):
            indep = True
            for j in idx:
                if i != j:
                    inner_product = numpy.dot(
                        R[i, :], R[j, :])  #compute the scalar product
                    norm_i = numpy.linalg.norm(R[i, :])  #compute norms
                    norm_j = numpy.linalg.norm(R[j, :])
                    if abs(inner_product - norm_j * norm_i) < 1e-4:
                        # vector i is linear dependent, iterate i
                        indep = False
                        break
            if indep == True:
                idx.append(i)
                if numpy.linalg.matrix_rank(R[idx]) != len(idx):
                    idx.pop()
                if len(idx) == rank: break
        return idx

    def vertex_positions(self, edges, used, pos={}):
        if self.dim == 2: return 'Not yet implemented'
        if len(pos.keys()) == self.nvertices: return pos
        self.molg.set_directed(True)
        for i, ed in enumerate(edges):
            e = ed
            if i == 0: break
        if int(str(e.source())) not in pos.keys() and int(str(
                e.target())) not in pos.keys():
            pass
        elif int(str(e.source())) not in pos.keys() or int(str(
                e.target())) not in pos.keys():
            from_v = int(str(e.source())) if int(str(
                e.source())) in pos.keys() else int(str(e.target()))
            to_v = int(str(e.target())) if int(str(
                e.target())) not in pos.keys() else int(str(e.source()))

            coeff = 0
            for i, ed in enumerate(self.molg.vertex(from_v).out_edges()):
                if e == ed:
                    coeff = 1
                    break
            if coeff == 0: coeff = -1

            index = self.molg.ep.number[e]

            to_pos = coeff * numpy.array(self.fracs)[index] + pos[from_v]
            newedges = []

            to_pos = numpy.array([i % 1 for i in to_pos])
            pos[to_v] = to_pos
            used.append(e)
            self.molg.set_directed(False)
            ee = self.molg.vertex(to_v).out_edges()
            newedges = [i for i in ee if i not in used and i not in edges]
            print(newedges)
            edges = newedges + edges[1:]
        else:
            used.append(e)
            edges = edges[1:]
        return self.vertex_positions(edges, used, pos)

    def __call__(self):
        self.build_lqg()
        self.get_cyclic_basis()
        self.get_cocycle_basis()
        self.get_B_matrix()
        self.get_alpha()
        self.get_lattice_basis()
        self.get_kernel()
        self.get_cell()
        self.get_fracs()
        self.place_vertices()
コード例 #13
0
def sgm_match(t_graph: gt.Graph, g_graph: gt.Graph, delta, tau, n_idx,
              e_idx) -> gt.Graph:
    # T is a query tree
    # G is a query graph
    # Delta is the score delta that we can accept from perfect match
    # tau is how far off this tree is from the graph, at most.
    # nIdx is an index containing node attributes
    # eIdx is an index containing edge attributes
    # root_match = [n for n, d in list(T.in_degree().items()) if d == 0]

    root_match = [v for v in t_graph.vertices() if v.in_degree() == 0]
    root = root_match[0]
    n_keys = list(n_idx.keys())[0]
    e_keys = list(e_idx.keys())[0]

    #    print 'Building matching graph'

    print('Printing MDST Graph')
    print(root)
    print_graph(t_graph)

    # Step 1: Get all the matches for the nodes
    node_matches = dict()
    for v in t_graph.vertices():
        if t_graph.vp[n_keys][v] in list(n_idx[n_keys].keys()):
            node_matches[v] = n_idx[n_keys][t_graph.vp[n_keys][v]]
        else:
            node_matches[v] = set()

    # Step 2: Get all the edge matches for the node
    edge_matches = dict()
    for e in t_graph.edges():
        if t_graph.ep[e_keys][e] in list(e_idx[e_keys].keys()):
            edge_matches[e] = e_idx[e_keys][t_graph.ep[e_keys][e]]
        else:
            edge_matches[e] = set()
        # Make sure you count just the ones that have matching nodes too.
        edge_matches[e] = set([
            em for em in edge_matches[e] if em[0] in node_matches[e.source()]
            and em[1] in node_matches[e.target()]
        ])

    # Scoring, initially, is going to be super-simple:
    # You get a 1 if you match, and a 0 if you don't.  Everything's created equal.

    # Score everything and put it in a graph.

    for k in list(edge_matches.keys()):
        if len(edge_matches[k]) == 0:
            pass
            # stop_here = 1

    match_graph = gt.Graph(directed=True)
    #    for nT in T.nodes():
    #        for nG in node_matches[nT]:
    #            MatchGraph.add_node(tuple([nT,nG]),score=1,solo_score=1)
    mg_edges = set()
    mg_vertices = set()
    mg_vertices_to_index = {}
    for eT in t_graph.edges():
        for eG in edge_matches[eT]:
            v1 = (eT.source(), eG[0])
            v2 = (eT.target(), eG[1])
            mg_vertices.add(v1)
            mg_vertices.add(v2)
            mg_edges.add((v1, v2))

    # match_graph.add_edge([(eT.source(), eG.source()), (eT.target(), eG.target())])
    zero_id = vp_map(match_graph, 'zero_id')
    one_id = vp_map(match_graph, 'one_id')

    for tup in mg_vertices:
        v = match_graph.add_vertex()
        zero_id[v], one_id[v] = tup
        mg_vertices_to_index[tup] = v

    # it = iter(mg_vertices)
    # for v in match_graph.vertices():
    #     tup = next(it)
    #     zero_id[v], one_id[v] = tup
    #     mg_vertices_to_index[tup] = v

    for t1, t2 in mg_edges:
        match_graph.add_edge(mg_vertices_to_index[t1],
                             mg_vertices_to_index[t2])

    # debug_match_graph(match_graph)

    solo_score_vp = vp_map(match_graph, 'solo_score', 'int')
    score_vp = vp_map(match_graph, 'score_v', 'int')
    score_ep = ep_map(match_graph, 'score_e', 'int')
    path_vp = vp_map(match_graph, 'path', 'object')

    g_graph_original = original_vp(g_graph)
    t_graph_original = original_vp(t_graph)

    for v in match_graph.vertices():
        solo_score_vp[v] = 1
        score_vp[v] = 1

        # Here we insert original nodes
        d = coll.deque()
        d.append((t_graph_original[zero_id[v]], g_graph_original[one_id[v]]))
        path_vp[v] = d

    for e in match_graph.edges():
        score_ep[e] = 1

    # gt_draw.graph_draw(match_graph, vprops={'text': zero_id})

    # Get rid of anybody flying solo
    match_graph = clear_unconnected(match_graph,
                                    root)  # this is clearly not working.

    # Now acquire/organize all hypotheses with scores above Max_Score - tau - delta

    # Figure out how much score you could possibly get at every node in the query.
    max_score_v = vp_map(t_graph, 'max_score_v', 'int')
    max_score_e = ep_map(t_graph, 'max_score_e', 'int')
    score_vp = vp_map(match_graph, 'score_v', 'int')
    score_ep = ep_map(match_graph, 'score_e', 'int')
    path_vp = vp_map(match_graph, 'path', 'object')
    zero_id = vp_map(match_graph, 'zero_id')

    # gt_draw.graph_draw(match_graph, vprops={'text': zero_id})

    for n in t_graph.vertices():
        max_score_v[n] = 1
    for e in t_graph.edges():
        max_score_e[e] = 1

    bfs_edges = list(gt_s.bfs_iterator(t_graph, source=root))
    reversed_bfs_edges = list(reversed(bfs_edges))

    t_index = t_graph.vertex_index

    # debug_match_graph(match_graph)

    for e in reversed_bfs_edges:  # Reverse BFS search - should do leaf nodes first.
        # What's the best score we could get at this node?
        v1, v2 = e

        max_score_v[v1] += max_score_v[v2] + max_score_e[e]

        # Find all the edges equivalent to this one in the match graph
        edge_matches = [
            (eG1, eG2) for eG1, eG2 in match_graph.edges()
            if zero_id[eG1] == t_index[v1] and zero_id[eG2] == t_index[v2]
        ]

        parent_nodes = set([eM1 for eM1, eM2 in edge_matches])

        for p in parent_nodes:
            child_nodes = [eM2 for eM1, eM2 in edge_matches if eM1 == p]
            # First, check if the bottom node has a score
            best_score = 0
            # best_node = None
            c_path = None
            for c in child_nodes:
                c_edge = match_graph.edge(p, c)
                c_score = score_vp[c] + score_ep[c_edge]
                c_path = path_vp[c]

                if c_score > best_score:
                    best_score = c_score
                    # best_child_path = c_path
            score_vp[p] += best_score
            for pathNode in c_path:
                path_vp[p].appendleft(pathNode)

    leave_prop = match_graph.new_vertex_property('bool')

    # CLEAN IT UP.
    for n in match_graph.vertices():
        leave_prop[n] = score_vp[n] >= max_score_v[t_graph.vertex(
            zero_id[n])] - delta

    sub = gt.GraphView(match_graph, leave_prop)
    new_match_graph = create_q_graph(sub, add_back_reference=False)

    # Get rid of anybody flying solo
    match_graph = save_root_children(new_match_graph, root)
    zero_id = vp_map(match_graph, 'zero_id')
    one_id = vp_map(match_graph, 'one_id')
    path_list_vp = vp_map(match_graph, 'path_list', 'object')
    for n in match_graph.vertices():
        d = coll.deque()
        d.append((t_graph_original[zero_id[n]], g_graph_original[one_id[n]]))
        path_list_vp[n] = [d]

    # Get a list of solutions alive in the graph
    for e in reversed_bfs_edges:
        v1, v2 = e
        edge_matches = [
            (eG1, eG2) for eG1, eG2 in match_graph.edges()
            if zero_id[eG1] == t_index[v1] and zero_id[eG2] == t_index[v2]
        ]

        parent_nodes = set([eM1 for eM1, eM2 in edge_matches])

        for p in parent_nodes:
            child_nodes = [eM2 for eM1, eM2 in edge_matches if eM1 == p]
            # First, check if the bottom node has a score
            tmpList = []
            for c in child_nodes:
                for _p in path_list_vp[p]:
                    for _c in path_list_vp[c]:
                        tmpList.append(_p + _c)
            path_list_vp[p] = tmpList

    # debug_match_graph(match_graph)

    # Score the root solutions
    return match_graph
コード例 #14
0
class BoardGraphGraphtool(BoardGraphBase):

    def __init__(self, number_of_vertices, graph_type):
        super().__init__(number_of_vertices, graph_type)
        # Graph tool creates directed multigraph by default.
        self._graph = Graph()
        self._graph.add_vertex(number_of_vertices)
        self._graph.vertex_properties["cell"] = self._graph.new_vertex_property(
            "object", number_of_vertices * [BoardCell()]
        )
        self._graph.edge_properties["direction"
                                   ] = self._graph.new_edge_property("object")
        self._graph.edge_properties["weight"
                                   ] = self._graph.new_edge_property("int")

    def __getitem__(self, position):
        return self._graph.vp.cell[self._graph.vertex(position)]

    def __setitem__(self, position, board_cell):
        self._graph.vp.cell[self._graph.vertex(position)] = board_cell

    def __contains__(self, position):
        return position in range(0, self.vertices_count())

    def vertices_count(self):
        return self._graph.num_vertices()

    def edges_count(self):
        return self._graph.num_edges()

    def has_edge(self, source_vertice, target_vertice, direction):
        for e in self._graph.vertex(source_vertice).out_edges():
            if (
                int(e.target()) == target_vertice and
                self._graph.ep.direction[e] == direction
            ):
                return True
        return False

    def out_edges_count(self, source_vertice, target_vertice):
        return len([
            1 for e in self._graph.vertex(source_vertice).out_edges()
            if int(e.target()) == target_vertice
        ])

    def reconfigure_edges(self, width, height, tessellation):
        """
        Uses tessellation object to create all edges in graph.
        """
        self._graph.clear_edges()
        for source_vertice in self._graph.vertices():
            for direction in tessellation.legal_directions:
                neighbor_vertice = tessellation.neighbor_position(
                    int(source_vertice),
                    direction,
                    board_width=width,
                    board_height=height
                )
                if neighbor_vertice is not None:
                    e = self._graph.add_edge(
                        source_vertice, neighbor_vertice, add_missing=False
                    )
                    self._graph.ep.direction[e] = direction

    # TODO: Faster version?
    # def reconfigure_edges(self, width, height, tessellation):
    #     """
    #     Uses tessellation object to create all edges in graph.
    #     """
    #     self._graph.clear_edges()
    #     edges_to_add = []
    #     directions_to_add = dict()
    #     for source_vertice in self._graph.vertices():
    #         for direction in tessellation.legal_directions:
    #             neighbor_vertice = tessellation.neighbor_position(
    #                 int(source_vertice), direction,
    #                 board_width=width, board_height=height
    #             )
    #             if neighbor_vertice is not None:
    #                 edge = (int(source_vertice), neighbor_vertice,)

    #                 edges_to_add.append(edge)

    #                 if edge not in directions_to_add:
    #                     directions_to_add[edge] = deque()

    #                 directions_to_add[edge].append(direction)

    #     self._graph.add_edge_list(edges_to_add) if edges_to_add else None

    #     for e in edges_to_add:
    #         e_descriptors = self._graph.edge(
    #             s = self._graph.vertex(e[0]),
    #             t = self._graph.vertex(e[1]),
    #             all_edges = True
    #         )

    #         for e_descriptor in e_descriptors:
    #             if len(directions_to_add[e]) > 0:
    #                 self._graph.ep.direction[e_descriptor] = directions_to_add[e][0]
    #                 directions_to_add[e].popleft()

    def calculate_edge_weights(self):
        for e in self._graph.edges():
            self._graph.ep.weight[e] = self.out_edge_weight(int(e.target()))

    def neighbor(self, from_position, direction):
        try:
            for e in self._graph.vertex(from_position).out_edges():
                if self._graph.ep.direction[e] == direction:
                    return int(e.target())
        except ValueError as e:
            raise IndexError(e.args)

        return None

    def wall_neighbors(self, from_position):
        return [
            int(n) for n in self._graph.vertex(from_position).out_neighbours()
            if self[int(n)].is_wall
        ]

    def all_neighbors(self, from_position):
        return [
            int(n) for n in self._graph.vertex(from_position).out_neighbours()
        ]

    def shortest_path(self, start_position, end_position):
        try:
            return [
                int(v)
                for v in shortest_path(
                    g=self._graph,
                    source=self._graph.vertex(start_position),
                    target=self._graph.vertex(end_position),
                )[0]
            ]
        except ValueError:
            return []

    def dijkstra_path(self, start_position, end_position):
        try:
            self.calculate_edge_weights()
            return [
                int(v)
                for v in shortest_path(
                    g=self._graph,
                    source=self._graph.vertex(start_position),
                    target=self._graph.vertex(end_position),
                    weights=self._graph.ep.weight,
                )[0]
            ]
        except ValueError:
            return []

    def position_path_to_direction_path(self, position_path):
        retv = []
        src_vertice_index = 0
        for target_vertice in position_path[1:]:
            source_vertice = position_path[src_vertice_index]
            src_vertice_index += 1

            for out_edge in self._graph.vertex(source_vertice).out_edges():
                if int(out_edge.target()) == target_vertice:
                    retv.append(self._graph.ep.direction[out_edge])

        return {
            'source_position': position_path[0] if position_path else None,
            'path': retv
        }
コード例 #15
0
def add_edge_attributes(g: gt.Graph, att_dist, att_name, p_type: str = 'int'):
    for e in g.edges():
        add_single_edge_attribute(g, e, att_dist, att_name, p_type)
    return g
コード例 #16
0
def calculate_mdst_v2(g: gt.Graph, n_idx, e_idx, used_stuff=set()):
    # Step 1: Figure out the weights.
    n_att_name = list(n_idx.keys())[0]
    e_att_name = list(e_idx.keys())[0]

    # Create an MDSTWeight vector on the nodes and edges.
    v_weight = vp_map(g, 'MDST_v_weight', 'float')
    e_weight = ep_map(g, 'MDST_e_weight', 'float')

    v_attribute_list = list(n_idx[n_att_name].keys())
    e_attribute_list = list(e_idx[e_att_name].keys())

    v_a_map = vp_map(g, n_att_name)
    e_a_map = ep_map(g, e_att_name)

    for n in g.vertices():
        if v_a_map[n] in v_attribute_list:
            v_weight[n] = len(
                n_idx[n_att_name][v_a_map[n]]) / n_idx[n_att_name]['size']
        else:
            v_weight[n] = 0

    for e in g.edges():
        if e in used_stuff:
            e_weight[e] = 1
        else:
            if e_a_map[e] in e_attribute_list:
                e_weight[e] = len(
                    e_idx[e_att_name][e_a_map[e]]) / e_idx[e_att_name]['size']
            else:
                e_weight[e] = 0

    #    for e1,e2 in G.edges():
    #        G.adj[e1][e2]['Nonsense'] = 5

    # Step 2: Calculate the MST.
    # gt.draw.graph_draw(g, vertex_text=g.vp['old'], vertex_font_size=18, output_size=(300, 300), output='G.png')
    t_map = gt_top.min_spanning_tree(g, e_weight, g.vertex(0))

    # T = nx.algorithms.minimum_spanning_tree(G,weight='Nonsense')
    # Step 3: Figure out which root results in us doing the least work.

    t = gt.GraphView(g, efilt=t_map, directed=False)
    # gt.draw.graph_draw(t, vertex_text=t.vp['old'], vertex_font_size=18, output_size=(300, 300), output='T.png')

    best_t = None
    best_score = np.inf
    for root in t.vertices():
        # Generate a new tree

        it = gt_s.bfs_iterator(t, root)
        nodes = []
        edges = []
        for e in it:
            edges.append(e)
            nodes.extend([e.source(), e.target()])
        nodes = np.unique(nodes)
        new_t = create_q_graph(t, q_nodes=nodes, q_edges=edges, directed=True)

        new_t_score = mdst_score_v2(t, root)
        if new_t_score < best_score:
            # print(best_score)
            best_t = new_t
            best_score = new_t_score

    return best_t, best_score
コード例 #17
0
def create_q_graph(a_graph: gt.Graph,
                   q_nodes: Union[None, Iterable[gt.Vertex]] = None,
                   q_edges: Union[None, Iterable[gt.Edge]] = None,
                   add_back_reference=True,
                   directed: Union[bool, None] = None) -> gt.Graph:
    _directed = directed if directed is not None else a_graph.is_directed()
    q = gt.Graph(directed=_directed)
    a_q_v = {}
    a_q_e = {}
    q_a_v = {}
    q_a_e = {}

    if q_nodes is None:
        q_nodes = set(a_graph.vertices())

    for v in q_nodes:
        nv = a_q_v[v] = q.add_vertex()
        q_a_v[nv] = v

    for p_type, vp_name in a_graph.vp.properties:
        if p_type != 'v':
            continue
        old_vp = a_graph.vp[vp_name]
        q.vp[vp_name] = q.new_vp(old_vp.value_type())
        new_vp = q.vp[vp_name]
        for v in a_graph.vertices():
            if a_graph.vertex_index[v] in q_nodes:
                new_vp[a_q_v[v]] = deepcopy(old_vp[v])

    if q_edges is None:
        q_edges = set(a_graph.edges())

    for e in q_edges:
        e_start, e_end = e
        if e_start in q_nodes and e_end in q_nodes:
            ne = q.add_edge(a_q_v[e_start], a_q_v[e_end])
            a_q_e[e] = ne
            q_a_e[ne] = e

    for p_type, ep_name in a_graph.ep.properties:
        if p_type != 'e':
            continue
        old_ep = a_graph.ep[ep_name]
        q.ep[ep_name] = q.new_ep(old_ep.value_type())
        new_ep = q.ep[ep_name]
        for e, ne in a_q_e.items():
            new_ep[ne] = deepcopy(old_ep[e])

    if add_back_reference:
        from_a_node = q.new_vp('int')
        q.vp['fromANode'] = from_a_node
        from_a_edge = q.new_ep('object')
        q.ep['fromAEdge'] = from_a_edge

        for v in q.vertices():
            from_a_node[v] = a_graph.vertex_index[q_a_v[v]]

        for e in q.edges():
            e_a = q_a_e[e]
            vs, ve = e_a
            from_a_edge[e] = (a_graph.vertex_index[vs],
                              a_graph.vertex_index[ve])

    return q
コード例 #18
0
                break
        if not(request in all_requests):
            all_requests.append(request)

    #print("Number of requests are " + str(len(all_requests)))

## Defining the graph properties ##
graph_weight = g.new_edge_property("float")
g.ep.weight = graph_weight

graph_pred_tree = g.new_vertex_property("int")
pred_tree = graph_pred_tree

edges_logger = {}

for e in g.edges():
    flags_of_edges = []
    # Temporary flag to ensure that alternative path is not on the primary path itself
    flags_of_edges.append(1)
    # Flags to see which channels are currently in use
    for i in range(number_frequency_bands):
        flags_of_edges.append(1)
    # Flags to keep record of the extent of the usage of a particular channel in a link
    for i in range(number_frequency_bands):
        flags_of_edges.append(0)
    # Flags to fulfil the single point failure protection between those who share their primary paths
    for i in range(number_frequency_bands):
        flags_of_edges.append(1)
    edges_logger[str(e.source()) + " --> " + str(e.target())] = flags_of_edges
    edges_logger[str(e.target()) + " --> " + str(e.source())] = flags_of_edges
    g.ep.weight[e] = 0
コード例 #19
0
ファイル: graph.py プロジェクト: lkopocinski/paintball
class BaseGraph(object):
    """
    Class representing a graph. We do not use pure graph_tool.Graph for we want
    to be able to easily change this library. Neither we use inheritance
    as graph_tool has inconvenient licence.
    """
    def __init__(self):
        self._g = None
        self._node_dict = {}
        self._syn_to_vertex_map = None
        self._lemma_to_nodes_dict = None
        self._lu_on_vertex_dict = None

    def use_graph_tool(self):
        """
        Returns underlying graph_tool.Graph. It should be avoided at all costs.
        """
        return self._g

    def get_node_for_synset_id(self, syn_id):
        """
        Lazy function to makes the map of synset identifiers to nodes into
        the graph. The building of map is made only on the first funcion call.
        The first and the next calls of this function will return the built map.
        """
        if not self._syn_to_vertex_map:
            self._syn_to_vertex_map = {}
            for node in self.all_nodes():
                if node.synset:
                    synset_id = node.synset.synset_id
                    self._syn_to_vertex_map[synset_id] = node
        return self._syn_to_vertex_map.get(syn_id, None)

    def pickle(self, filename):
        self._g.save(filename)

    def unpickle(self, filename):
        self._g = load_graph(filename)

    def init_graph(self, drctd=False):
        self._g = Graph(directed=drctd)

    def copy_graph_from(self, g):
        self._g = g._g.copy()

    def set_directed(self, drctd):
        self._g.set_directed(drctd)

    def is_directed(self):
        return self._g.is_directed()

    def merge_graphs(self, g1, g2):
        self._g = graph_union(g1._g, g2._g, internal_props=True)

    # Node operations:
    def all_nodes(self):
        for node in self._g.vertices():
            yield BaseNode(self._g, node)

    def create_node_attribute(self, name, kind, value=None):
        if not self.has_node_attribute(name):
            node_attr = self._g.new_vertex_property(kind, value)
            self._g.vertex_properties[name] = node_attr

    def create_node_attributes(self, node_attributes_list):
        for attr in node_attributes_list:
            if not self.has_node_attribute(attr[0]):
                node_attr = self._g.new_vertex_property(attr[1])
                self._g.vertex_properties[attr[0]] = node_attr

    def has_node_attribute(self, name):
        """ Checks if a node attribute already exists """
        return name in self._g.vertex_properties

    def delete_node_attribute(self, name):
        """ Delete node attribute """
        del self._g.vertex_properties[name]

    def add_node(self, name, node_attributes_list=None):
        if node_attributes_list is None:
            node_attributes_list = []

        if name not in self._node_dict:
            new_node = self._g.add_vertex()
            self._node_dict[name] = BaseNode(self._g, new_node)
            for attr in node_attributes_list:
                self._g.vertex_properties[attr[0]][new_node] = attr[1]
        return self._node_dict[name]

    def get_node(self, name):
        return self._node_dict[name]

    def remove_node(self, name):
        self._g.remove_vertex(self._node_dict[name]._node)
        del self._node_dict[name]

    def nodes_filter(self,
                     nodes_to_filter_set,
                     inverted=False,
                     replace=False,
                     soft=False):
        """
        Filters out nodes from set

        Args:
          nodes_to_filter_set (Iterable): Nodes which fill be filtered out.
          inverted (bool): If True, nodes NOT in set will be filtered out.
            Defaults to False.
          replace (bool): Replace current filter instead of combining the two.
            Defaults to False.
          soft (bool): Hide nodes without removing them so they can be restored
            with reset_nodes_filter. Defaults to False.
        """
        predicate = lambda node: node not in nodes_to_filter_set
        self.nodes_filter_conditional(predicate, inverted, replace, soft)

    def nodes_filter_conditional(self,
                                 predicate,
                                 inverted=False,
                                 replace=False,
                                 soft=False):
        """
        Filters node based on a predicate

        Args:
          predicate (Callable): Predicate returning False for nodes that should be
            filtered out.
          inverted (bool): Invert condition. Defaults to False.
          replace (bool): Replace current filter instead of combining the two.
            Defaults to False.
          soft (bool): Hide nodes without removing them so they can be restored
            with reset_nodes_filter. Defaults to False.
        """

        (old_filter, old_inverted) = self._g.get_vertex_filter()
        new_filter = self._g.new_vertex_property("bool")

        for node in self.all_nodes():
            kept = predicate(node) != inverted
            if not replace and old_filter:
                old_kept = bool(old_filter[node._node]) != old_inverted
                kept = kept and old_kept
            new_filter[node._node] = kept

        self._g.set_vertex_filter(new_filter, False)
        if not soft:
            self.apply_nodes_filter()

    def apply_nodes_filter(self):
        """ Removes nodes that are currently filtered out """
        self._g.purge_vertices()

    def reset_nodes_filter(self):
        """ Clears node filter """
        self._g.set_vertex_filter(None)

    # Edge operations:
    def num_edges(self):
        return self._g.num_edges()

    def all_edges(self):
        for e in self._g.edges():
            yield BaseEdge(self._g, e)

    def get_edges_between(self, source, target):
        """
        Return all edges between source and target. Source and target can be either
        BaseNode or integer.
        """
        if isinstance(source, BaseNode):
            source = source._node
        if isinstance(target, BaseNode):
            target = target._node
        for e in self._g.edge(source, target, all_edges=True):
            yield BaseEdge(self._g, e)

    def get_edge(self, source, target, add_missing=False):
        """
        Return some edge between source and target. Source and target can be either
        BaseNode or integer.
        """
        if isinstance(source, BaseNode):
            source = source._node
        if isinstance(target, BaseNode):
            target = target._node
        e = self._g.edge(source, target, add_missing)
        if e is not None:
            return BaseEdge(self._g, e)
        else:
            return None

    def create_edge_attribute(self, name, kind, value=None):
        if not self.has_edge_attribute(name):
            edge_attr = self._g.new_edge_property(kind, value)
            self._g.edge_properties[name] = edge_attr

    def alias_edge_attribute(self, name, alias):
        self._g.edge_properties[alias] = self._g.edge_properties[name]

    def create_edge_attributes(self, edge_attributes_list):
        for attr in edge_attributes_list:
            if not self.has_edge_attribute(attr[0]):
                edge_attr = self._g.new_edge_property(attr[1])
                self._g.edge_properties[attr[0]] = edge_attr

    def has_edge_attribute(self, name):
        """ Checks if an edge attribute already existst """
        return name in self._g.edge_properties

    def delete_edge_attribute(self, name):
        """ Delete edge attribute """
        del self._g.edge_properties[name]

    def add_edge(self, parent, child, edge_attributes_list=None):
        if edge_attributes_list is None:
            edge_attributes_list = []

        new_edge = self._g.add_edge(parent._node, child._node)
        for attr in edge_attributes_list:
            self._g.edge_properties[attr[0]][new_edge] = attr[1]

        return BaseEdge(self._g, new_edge)

    def edges_filter(self, edges_to_filter_set):
        edge_filter = self._g.new_edge_property("bool")

        for e in self.all_edges():
            if e in edges_to_filter_set:
                edge_filter[e._edge] = False
            else:
                edge_filter[e._edge] = True

        self._g.set_edge_filter(edge_filter)
        self._g.purge_edges()

    def ungraph_tool(self, thingy, lemma_on_only_synset_node_dict):
        """
        Converts given data structure so that it no longer have any graph_tool dependencies.
        """
        logger = logging.getLogger(__name__)

        if type(thingy) == dict:
            return {
                self.ungraph_tool(k, lemma_on_only_synset_node_dict):
                self.ungraph_tool(thingy[k], lemma_on_only_synset_node_dict)
                for k in thingy
            }

        nodes_to_translate = set()
        for vset in lemma_on_only_synset_node_dict.values():
            for v in vset:
                nodes_to_translate.add(v)

        if type(thingy) == gt.PropertyMap:
            dct = {}
            if thingy.key_type() == 'v':
                for node in nodes_to_translate:
                    dct[node] = thingy[node.use_graph_tool()]
            elif thingy.key_type() == 'e':
                for edge in self.all_edges():
                    dct[edge] = thingy[edge.use_graph_tool()]
            else:
                logger.error('Unknown property type %s', thingy.key_type())
                raise NotImplemented
            return dct

    def generate_lemma_to_nodes_dict_synsets(self):
        """
        This method generates a utility dictionary, which maps lemmas to
        corresponding node objects. It is expensive in menas of time
        needed to generate the dictionary. It should therefore be executed
        at the beginning of the runtime and later its results should be reused
        as many times as needed without re-executing the function.
        """
        lemma_to_nodes_dict = defaultdict(set)
        for node in self.all_nodes():
            try:
                lu_set = node.synset.lu_set
            except KeyError:
                continue

            for lu in lu_set:
                lemma = lu.lemma.lower()
                lemma_to_nodes_dict[lemma].add(node)

        self._lemma_to_nodes_dict = lemma_to_nodes_dict

    def generate_lemma_to_nodes_dict_lexical_units(self):
        """
        This method generates a utility dictionary, which maps lemmas to
        corresponding node objects. It is expensive in menas of time
        needed to generate the dictionary. It should therefore be executed
        at the beginning of the runtime and later its results should be reused
        as many times as needed without re-executing the function.
        """
        lemma_to_nodes_dict = defaultdict(set)

        for node in self.all_nodes():
            try:
                lemma = node.lu.lemma.lower()
                lemma_to_nodes_dict[lemma].add(node)
            except:
                continue

        self._lemma_to_nodes_dict = lemma_to_nodes_dict

    @property
    def lemma_to_nodes_dict(self):
        return self._lemma_to_nodes_dict

    def _make_lu_on_v_dict(self):
        """
        Makes dictionary lu on vertex
        """
        lu_on_vertex_dict = defaultdict(set)
        for node in self.all_nodes():
            try:
                nl = node.lu
            except Exception:
                continue

            if nl:
                lu_on_vertex_dict[node.lu.lu_id] = node

        self._lu_on_vertex_dict = lu_on_vertex_dict
コード例 #20
0
# In[27]:

g.add_vertex(len(all_nodes))

# In[28]:

edges = list(zip(df['u'].as_matrix(), df['v'].as_matrix()))

# In[29]:

g.add_edge_list(edges)

# In[30]:

# add
edges_iter = list(g.edges())
for e in tqdm(edges_iter):
    u, v = int(e.source()), int(e.target())
    if g.edge(v, u) is None:
        g.add_edge(v, u)

# In[31]:

weight = g.new_edge_property('float')
weight.set_value(EPS)

# In[32]:

for i, r in tqdm(df.iterrows(), total=df.shape[0]):
    u, v, w = int(r['u']), int(r['v']), r['w']
    weight[g.edge(u, v)] = w
コード例 #21
0
def shortest_path_visiting_most_nodes(g: gt.Graph,
                                      adjusted_weight: gt.EdgePropertyMap,
                                      covered_vertices, summed_edge_weight):

    dist_map = gt.topology.shortest_distance(g, weights=adjusted_weight)

    not_visited_source_vertex = np.ones(g.num_vertices(), dtype=np.bool)
    not_visited_source_vertex[list(covered_vertices)] = False
    not_visited_source_vertex = not_visited_source_vertex.reshape(
        g.num_vertices(), 1)

    all_dists = dist_map.get_2d_array(
        range(g.num_vertices())
    ).T  #shortest path does only count the edges. so we have add one if the starting vertex was not visited.

    all_dists[(all_dists > summed_edge_weight) | (all_dists < 0)] = 0

    all_dists = (g.num_vertices() + 1 - all_dists) % (g.num_vertices() + 1)

    shortest_paths = []
    all_currently_covered_vertices = set()
    current_length = -1
    z = 0
    n = g.num_vertices()

    #if the longest shortest path covers only <= 2 new nodes go to fast mode:
    #simply add edges covering two vertices until not possible and then the remaining vertices.
    if (all_dists + not_visited_source_vertex).max() <= 2:
        covered_now = np.zeros(n, dtype=np.bool)
        for e in g.edges():
            if int(e.source()) == int(e.target()):
                continue
            if int(e.source()) not in covered_vertices and int(
                    e.target()) not in covered_vertices and not covered_now[
                        int(e.source())] and not covered_now[int(e.target())]:
                shortest_paths.append([int(e.source()), int(e.target())])
                all_currently_covered_vertices.add(int(e.source()))
                all_currently_covered_vertices.add(int(e.target()))
                covered_now[int(e.source())] = True
                covered_now[int(e.target())] = True
        single_vertices = set(range(n)).difference(
            covered_vertices.union(all_currently_covered_vertices))

        for i in single_vertices:
            shortest_paths.append([i])

        return shortest_paths
    else:
        max_value = (all_dists + not_visited_source_vertex).max()

        had_source = np.zeros(n, dtype=np.bool)

        for source, target in np.array(
                np.where(all_dists +
                         not_visited_source_vertex == max_value)).T:
            if had_source[
                    source] or source in all_currently_covered_vertices or target in all_currently_covered_vertices:
                continue
            shortest_path, _ = gt.topology.shortest_path(
                g, source, target, adjusted_weight)
            shortest_path = [int(v) for v in shortest_path]
            if (all_dists + not_visited_source_vertex).max() != len(
                    set(shortest_path).difference(covered_vertices)):
                exit(10)

            if len(all_currently_covered_vertices.intersection(
                    shortest_path)) != 0:
                continue
            if len(shortest_path) > 1 and len(shortest_path) < current_length:
                #print(len(shortest_paths))
                return shortest_paths

            shortest_paths.append(shortest_path)
            all_currently_covered_vertices = all_currently_covered_vertices.union(
                shortest_path)
            if current_length < 0:
                current_length = len(shortest_path)
            #trim covered vertices from start and end
            #...
            #better: build this step directly into the weight function s.t. |P| is minimized as a third priority?

            if len(shortest_path) <= 2:  # and z >=10:
                break

            had_source[source] = True

    return shortest_paths
コード例 #22
0
ファイル: buffer.py プロジェクト: yssource/obvz
class ob_viz(QWidget):
    def __init__(self, bg_color):
        QWidget.__init__(self)

        self.background_color = bg_color
        self.c = 0

        # K = 0.5
        # how many iterations the realignment is supposed to take
        self.step = 15
        self.rwr_c = 0

        # dumper([qt_coords])
        dumper(['obv viz init'])
        # self.show()

        # with open("/tmp/eaf3.csv", "a") as fo:
        #     wr = csv.writer(fo)
        #     wr.writerow([self.c, "runs4"])
        # dumper([self.c, "runs4"])

        # self.node_names [g_id[i] for i in g.vertices()]

    def init2(self, emacs_var_dict):
        self.emacs_var_dict = emacs_var_dict

        self.link_str = self.emacs_var_dict['links']
        self.g = Graph()
        self.label_ep = self.g.new_edge_property("string")
        self.links = self.link_str.split(";")

        link_tpls = [i.split(" -- ") for i in self.links]
        dumper([str(i) for i in link_tpls])

        self.g_id = self.g.add_edge_list(link_tpls,
                                         hashed=True,
                                         string_vals=True,
                                         eprops=[self.label_ep])

        self.adj = np.array([(int(i.source()), int(i.target()))
                             for i in self.g.edges()])
        self.node_names = [self.g_id[i] for i in self.g.vertices()]

        self.vd = {}
        for i in self.g.vertices():
            self.vd[self.g_id[i]] = int(i)

        # self.pos_vp = sfdp_layout(self.g, K=0.5)
        self.pos_vp = fruchterman_reingold_layout(self.g)
        self.base_pos_ar = self.pos_vp.get_2d_array((0, 1)).T
        self.qt_coords = self.nolz_pos_ar(self.base_pos_ar)

        dumper([str(self.qt_coords)])

        # dumper([link_str])

    def update_graph(self, emacs_var_dict):
        """set new links and nodes"""
        new_link_str = emacs_var_dict['links']
        new_links = new_link_str.split(";")
        new_link_tpls = [i.split(" -- ") for i in new_links]

        links_to_add = list(set(new_links) - set(self.links))
        links_to_del = list(set(self.links) - set(new_links))

        # setting new stuff
        self.links = new_links

        new_nodes = []
        for tpl in new_link_tpls:
            new_nodes.append(tpl[0])
            new_nodes.append(tpl[1])

        new_nodes_unique = list(set(new_nodes))

        nodes_to_del = list(set(self.node_names) - set(new_nodes_unique))
        nodes_to_add = list(set(new_nodes_unique) - set(self.node_names))

        dumper([
            "nodes_to_add: ", nodes_to_add, "nodes_to_del: ", nodes_to_del,
            "links_to_add: ", links_to_add, "links_to_del: ", links_to_del
        ])

        # first add nodes + index them, but not there yet (first links)

        for n in nodes_to_add:
            dumper(['adding node'])
            v = self.g.add_vertex()
            # how to new nodes pos to parents? separate loop afterwards
            self.vd[n] = int(v)
            self.g_id[v] = n

        del_node_ids = [self.vd[i] for i in nodes_to_del]
        self.g.remove_vertex(del_node_ids)

        # have to reindex after deletion
        self.vd = {}
        for i in self.g.vertices():
            self.vd[self.g_id[i]] = int(i)

        dumper(['node deleted'])
        # nodes_to_del_id =

        # dumper(['old nodes deleted, add new links'])

        for l in links_to_add:
            tpl = l.split(" -- ")
            n0, n1 = tpl[0], tpl[1]
            self.g.add_edge(self.vd[n0], self.vd[n1])

        # dumper(['new links added, delete old links'])

        for l in links_to_del:
            tpl = l.split(" -- ")
            n0 = tpl[0]
            n1 = tpl[1]
            dumper([list(self.vd.keys())])
            # only remove edge when neither of nodes removed
            if n0 in self.vd.keys() and n1 in self.vd.keys():
                self.g.remove_edge(self.g.edge(self.vd[n0], self.vd[n1]))

        # dumper(['graph modifications done'])

        # set positions of new nodes to parent nodes
        for n in nodes_to_add:
            v = self.g.vertex(self.vd[n])
            v_prnt = list(v.all_neighbors())[0]
            self.pos_vp[v] = self.pos_vp[v_prnt]

        # dumper(['node positions adjusted'])

        self.adj = np.array([(int(i.source()), int(i.target()))
                             for i in self.g.edges()])
        self.node_names = [self.g_id[i] for i in self.g.vertices()]

        # dumper(['storage objects updated'])

        # dumper(["nbr_edges new: ", str(len([i for i in self.g.edges()]))])
        # dumper(['nodes_to_add'] + nodes_to_add)
        # seems to work
        dumper(['to here'])

        self.recalculate_layout()
        dumper(['to here2'])

    def recalculate_layout(self):
        """calculate new change_array, set rwr_c counter"""
        dumper(['recalculating starting'])
        self.base_pos_ar = self.pos_vp.get_2d_array((0, 1)).T

        # set_dict = {'p': 2, 'max_level': 20, 'adaptive_cooling': False,
        #             'gamma': 1, 'theta': 1, 'cooling_step': 0.3, 'C': 0.6, 'mu_p': 1.2}

        # self.goal_vp = sfdp_layout(self.g, K=0.5, pos=self.pos_vp, **set_dict)
        self.goal_vp = fruchterman_reingold_layout(self.g, pos=self.pos_vp)

        goal_ar = self.goal_vp.get_2d_array([0, 1]).T
        self.chng_ar = (goal_ar - self.base_pos_ar) / self.step

        self.rwr_c = self.step
        dumper(["base_pos_ar: ", self.base_pos_ar])
        dumper(["goal_ar: ", goal_ar])
        dumper(["chng_ar: ", self.chng_ar])
        dumper(['recalculating done'])

    def redraw_layout(self):
        """actually do the drawing, run multiple (step (rwr_c)) times"""
        self.cur_pos_ar = np.round(
            self.base_pos_ar + self.chng_ar * (self.step - self.rwr_c), 3)
        self.qt_coords = self.nolz_pos_ar(self.cur_pos_ar)

        self.rwr_c -= 1
        self.update()
        # dumper(['redrawing'])

    # def draw_arrow(qp, p1x, p1y, p2x, p2y):
    def draw_arrow(self, qp, p1x, p1y, p2x, p2y, node_width):
        """draw arrow from p1 to rad units before p2"""
        # get arrow angle, counterclockwise from center -> east line

        # dumper(['painting time'])
        angle = degrees(atan2((p1y - p2y), (p1x - p2x)))

        # calculate attach point
        arw_goal_x = p2x + node_width * cos(radians(angle))
        arw_goal_y = p2y + node_width * sin(radians(angle))

        # calculate start point: idk how trig works but does
        start_px = p1x - node_width * cos(radians(angle))
        start_py = p1y - node_width * sin(radians(angle))

        # arrow stuff: +/- 30 deg
        ar1 = angle + 25
        ar2 = angle - 25

        arw_len = 10

        # need to focus on vector from p2 to p1
        ar1_x = arw_goal_x + arw_len * cos(radians(ar1))
        ar1_y = arw_goal_y + arw_len * sin(radians(ar1))

        ar2_x = arw_goal_x + arw_len * cos(radians(ar2))
        ar2_y = arw_goal_y + arw_len * sin(radians(ar2))

        # qp.drawLine(p1x, p1y, p2x, p2y)
        # qp.drawLine(p1x, p1y, arw_goal_x, arw_goal_y)
        qp.drawLine(start_px, start_py, arw_goal_x, arw_goal_y)
        qp.drawLine(ar1_x, ar1_y, arw_goal_x, arw_goal_y)
        qp.drawLine(ar2_x, ar2_y, arw_goal_x, arw_goal_y)

    def paintEvent(self, event):
        # dumper(['start painting'])
        node_width = 10
        qp = QPainter(self)
        edges = [(self.qt_coords[i[0]], self.qt_coords[i[1]])
                 for i in self.adj]
        # dumper([str(i) for i in edges])

        qp.setPen(QPen(Qt.green, 2, Qt.SolidLine))

        # [qp.drawLine(e[0][0], e[0][1], e[1][0], e[1][1]) for e in edges]
        [
            self.draw_arrow(qp, e[0][0], e[0][1], e[1][0], e[1][1],
                            (node_width / 2) + 5) for e in edges
        ]

        qp.setPen(QColor(168, 34, 3))
        # qp.setPen(Qt.green)
        qp.setFont(QFont('Decorative', 10))
        [
            qp.drawText(t[0][0] + node_width, t[0][1], t[1])
            for t in zip(self.qt_coords, self.node_names)
        ]
        # dumper(['done painting'])

        qp.setPen(QPen(Qt.black, 3, Qt.SolidLine))
        # qp.setBrush(QBrush(Qt.green, Qt.SolidPattern))

        dumper(['painting nodes'])

        for i in zip(self.qt_coords, self.node_names):
            if self.emacs_var_dict['cur_node'] == i[1]:
                qp.setPen(QPen(Qt.black, 4, Qt.SolidLine))
                qp.drawEllipse(i[0][0] - (node_width / 2),
                               i[0][1] - (node_width / 2), node_width,
                               node_width)
                qp.setPen(QPen(Qt.black, 3, Qt.SolidLine))

            else:
                qp.drawEllipse(i[0][0] - (node_width / 2),
                               i[0][1] - (node_width / 2), node_width,
                               node_width)

        # qp.drawEllipse(self.c, self.c, 7, 7)
        # qp.end()

    def nolz_pos_ar(self, pos_ar_org):
        """normalize pos ar to window limits"""

        # pos_ar_org = goal_ar

        size = self.size()

        limits = [[20, size.width() - 50], [20, size.height() - 20]]

        x_max = max(pos_ar_org[:, 0])
        x_min = min(pos_ar_org[:, 0])
        y_max = max(pos_ar_org[:, 1])
        y_min = min(pos_ar_org[:, 1])

        # need linear maping function again
        pos_ar2 = pos_ar_org

        pos_ar2[:, 0] = (((pos_ar2[:, 0] - x_min) / (x_max - x_min)) *
                         (limits[0][1] - limits[0][0])) + limits[0][0]
        pos_ar2[:, 1] = (((pos_ar2[:, 1] - y_min) / (y_max - y_min)) *
                         (limits[1][1] - limits[1][0])) + limits[1][0]

        return (pos_ar2)
コード例 #23
0
ファイル: graphs.py プロジェクト: kalemaria/polyqIB
class SegmentationGraph(object):
    """
    Class defining the abstract SegmentationGraph object, its attributes and
    implements methods common to all derived graph classes.

    The constructor requires the following parameters of the underlying
    segmentation that will be used to build the graph.

    Args:
        scale_factor_to_nm (float): pixel size in nanometers for scaling the
            graph
        scale_x (int): x axis length in pixels of the segmentation
        scale_y (int): y axis length in pixels of the segmentation
        scale_z (int): z axis length in pixels of the segmentation
    """

    def __init__(self, scale_factor_to_nm, scale_x, scale_y, scale_z):
        """
        Constructor.

        Args:
            scale_factor_to_nm (float): pixel size in nanometers for scaling the
                graph
            scale_x (int): x axis length in pixels of the segmentation
            scale_y (int): y axis length in pixels of the segmentation
            scale_z (int): z axis length in pixels of the segmentation

        Returns:
            None
        """
        self.graph = Graph(directed=False)
        """graph_tool.Graph: a graph object storing the segmentation graph
        topology, geometry and properties.
        """
        self.scale_factor_to_nm = scale_factor_to_nm
        """float: pixel size in nanometers for scaling the coordinates and
        distances in the graph
        """
        self.scale_x = scale_x
        """int: x axis length in pixels of the segmentation"""
        self.scale_y = scale_y
        """int: y axis length in pixels of the segmentation"""
        self.scale_z = scale_z
        """int: z axis length in pixels of the segmentation"""

        # Add "internal property maps" to the graph.
        # vertex property for storing the xyz coordinates in nanometers of the
        # corresponding vertex:
        self.graph.vp.xyz = self.graph.new_vertex_property("vector<float>")
        # edge property for storing the distance in nanometers between the
        # connected vertices:
        self.graph.ep.distance = self.graph.new_edge_property("float")

        self.coordinates_to_vertex_index = {}
        """dist: a dictionary mapping the vertex coordinates in nanometers
        (x, y, z) to the vertex index.
        """
        self.coordinates_pair_connected = {}
        """dict: a dictionary storing pairs of vertex coordinates in nanometers
        that are connected by an edge as a key in a tuple form
        ((x1, y1, z1), (x2, y2, z2)) with value True.
        """

    @staticmethod
    def distance_between_voxels(voxel1, voxel2):
        """
        Calculates and returns the Euclidean distance between two voxels.

        Args:
            voxel1 (tuple): first voxel coordinates in form of a tuple of
                integers of length 3 (x1, y1, z1)
            voxel2 (tuple): second voxel coordinates in form of a tuple of
                integers of length 3 (x2, y2, z2)

        Returns:
            the Euclidean distance between two voxels (float)
        """
        if (isinstance(voxel1, tuple) and (len(voxel1) == 3) and
                isinstance(voxel2, tuple) and (len(voxel2) == 3)):
            sum_of_squared_differences = 0
            for i in range(3):  # for each dimension
                sum_of_squared_differences += (voxel1[i] - voxel2[i]) ** 2
            return math.sqrt(sum_of_squared_differences)
        else:
            error_msg = ('Tuples of integers of length 3 required as first and '
                         'second input.')
            raise pexceptions.PySegInputError(
                expr='distance_between_voxels (SegmentationGraph)',
                msg=error_msg
            )

    def update_coordinates_to_vertex_index(self):
        """
        Updates graph's dictionary coordinates_to_vertex_index.

        The dictionary maps the vertex coordinates (x, y, z) scaled in
        nanometers to the vertex index. It has to be updated after purging the
        graph, because vertices are renumbered, as well as after reading a graph
        from a file (e.g. before density calculation).

        Returns:
            None
        """
        self.coordinates_to_vertex_index = {}
        for vd in self.graph.vertices():
            [x, y, z] = self.graph.vp.xyz[vd]
            self.coordinates_to_vertex_index[
                (x, y, z)] = self.graph.vertex_index[vd]

    def calculate_density(self, mask=None, target_coordinates=None,
                          verbose=False):
        """
        Calculates ribosome density for each membrane graph vertex.

        Calculates shortest geodesic distances (d) for each vertex in the graph
        to each reachable ribosome center mapped on the membrane given by a
        binary mask with coordinates in pixels or an array of coordinates in nm.
        Then, calculates a density measure of ribosomes at each vertex or
        membrane voxel: D = sum {over all reachable ribosomes} (1 / (d + 1)).
        Adds the density as vertex PropertyMap to the graph. Returns an array
        with the same shape as the underlying segmentation with the densities
        plus 1, in order to distinguish membrane voxels with 0 density from the
        background.

        Args:
            mask (numpy.ndarray, optional): a binary mask of the ribosome
                centers as 3D array where indices are coordinates in pixels
                (default None)
            target_coordinates (numpy.ndarray, optional): the ribosome centers
                coordinates in nm as 2D array in format
                [[x1, y1, z1], [x2, y2, z2], ...] (default None)
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            a 3D numpy ndarray with the densities + 1

        Note:
            One of the first two parameters, mask or target_coordinates, has to
            be given.
        """
        import ribosome_density as rd
        # If a mask is given, find the set of voxels of ribosome centers mapped
        # on the membrane, 'target_voxels', and rescale them to nm,
        # 'target_coordinates':
        if mask is not None:
            if mask.shape != (self.scale_x, self.scale_y, self.scale_z):
                error_msg = ("Scales of the input 'mask' have to be equal to "
                             "those set during the generation of the graph.")
                raise pexceptions.PySegInputError(
                    expr='calculate_density (SegmentationGraph)', msg=error_msg
                )
            # output as a list of tuples [(x1,y1,z1), (x2,y2,z2), ...] in pixels
            target_voxels = rd.get_foreground_voxels_from_mask(mask)
            # for rescaling have to convert to an ndarray
            target_ndarray_voxels = rd.tupel_list_to_ndarray_voxels(
                target_voxels
            )
            # rescale to nm, output an ndarray [[x1,y1,z1], [x2,y2,z2], ...]
            target_ndarray_coordinates = (target_ndarray_voxels
                                          * self.scale_factor_to_nm)
            # convert to a list of tuples, which are in nm now
            target_coordinates = rd.ndarray_voxels_to_tupel_list(
                target_ndarray_coordinates
            )
        # If target_coordinates are given (in nm), convert them from a numpy
        # ndarray to a list of tuples:
        elif target_coordinates is not None:
            target_coordinates = rd.ndarray_voxels_to_tupel_list(
                target_coordinates
            )
        # Exit if the target_voxels list is empty:
        if len(target_coordinates) == 0:
            error_msg = ("No target voxels were found! Check your input "
                         "('mask' or 'target_coordinates').")
            raise pexceptions.PySegInputError(
                expr='calculate_density (SegmentationGraph)', msg=error_msg
            )
        print '%s target voxels' % len(target_coordinates)
        if verbose:
            print target_coordinates

        # Pre-filter the target coordinates to those existing in the graph
        # (should already all be in the graph, but just in case):
        target_coordinates_in_graph = []
        for target_xyz in target_coordinates:
            if target_xyz in self.coordinates_to_vertex_index:
                target_coordinates_in_graph.append(target_xyz)
            else:
                error_msg = ('Target (%s, %s, %s) not inside the membrane!'
                             % (target_xyz[0], target_xyz[1], target_xyz[2]))
                raise pexceptions.PySegInputWarning(
                    expr='calculate_density (SegmentationGraph)', msg=error_msg
                )

        print '%s target coordinates in graph' % len(
            target_coordinates_in_graph)
        if verbose:
            print target_coordinates_in_graph

        # Get all indices of the target coordinates:
        target_vertices_indices = []
        for target_xyz in target_coordinates_in_graph:
            v_target_index = self.coordinates_to_vertex_index[target_xyz]
            target_vertices_indices.append(v_target_index)

        # Density calculation
        # Add a new vertex property to the graph, density:
        self.graph.vp.density = self.graph.new_vertex_property("float")
        # Dictionary mapping voxel coordinates (for the volume returned later)
        # to a list of density values falling within that voxel:
        voxel_to_densities = {}

        # For each vertex in the graph:
        for v_membrane in self.graph.vertices():
            # Get its coordinates:
            membrane_xyz = self.graph.vp.xyz[v_membrane]
            if verbose:
                print ('Membrane vertex (%s, %s, %s)'
                       % (membrane_xyz[0], membrane_xyz[1], membrane_xyz[2]))
            # Get a distance map with all pairs of distances between current
            # graph vertex (membrane_xyz) and target vertices (ribosome
            # coordinates):
            dist_map = shortest_distance(self.graph, source=v_membrane,
                                         target=target_vertices_indices,
                                         weights=self.graph.ep.distance)

            # Iterate over all shortest distances from the membrane vertex to
            # the target vertices, while calculating the density:
            # Initializing: membrane coordinates with no reachable ribosomes
            # will have a value of 0, those with reachable ribosomes > 0.
            density = 0
            # If there is only one target voxel, dist_map is a single value -
            # wrap it into a list.
            if len(target_coordinates_in_graph) == 1:
                dist_map = [dist_map]
            for d in dist_map:
                if verbose:
                    print '\tTarget vertex ...'
                # if unreachable, the maximum float64 is stored
                if d == np.finfo(np.float64).max:
                    if verbose:
                        print '\t\tunreachable'
                else:
                    if verbose:
                        print '\t\td = %s' % d
                    density += 1 / (d + 1)

            # Add the density of the membrane vertex as a property of the
            # current vertex in the graph:
            self.graph.vp.density[v_membrane] = density

            # Calculate the corresponding voxel of the vertex and add the
            # density to the list keyed by the voxel in the dictionary:
            # Scaling the coordinates back from nm to voxels. (Without round
            # float coordinates are truncated to the next lowest integer.)
            voxel_x = int(round(membrane_xyz[0] / self.scale_factor_to_nm))
            voxel_y = int(round(membrane_xyz[1] / self.scale_factor_to_nm))
            voxel_z = int(round(membrane_xyz[2] / self.scale_factor_to_nm))
            voxel = (voxel_x, voxel_y, voxel_z)
            if voxel in voxel_to_densities:
                voxel_to_densities[voxel].append(density)
            else:
                voxel_to_densities[voxel] = [density]

            if verbose:
                print '\tdensity = %s' % density
            if (self.graph.vertex_index[v_membrane] + 1) % 1000 == 0:
                now = datetime.now()
                print ('%s membrane vertices processed on: %s-%s-%s %s:%s:%s'
                       % (self.graph.vertex_index[v_membrane] + 1, now.year,
                          now.month, now.day, now.hour, now.minute, now.second))

        # Initialize an array scaled like the original segmentation, which will
        # hold in each membrane voxel the maximal density among the
        # corresponding vertex coordinates in the graph plus 1 and 0 in each
        # background (non-membrane) voxel:
        densities = np.zeros((self.scale_x, self.scale_y, self.scale_z),
                             dtype=np.float16)
        # The densities array membrane voxels are initialized with 1 in order to
        # distinguish membrane voxels from the background.
        for voxel in voxel_to_densities:
            densities[voxel[0], voxel[1], voxel[2]] = 1 + max(
                voxel_to_densities[voxel])
        if verbose:
            print 'densities:\n%s' % densities
        return densities

    def graph_to_points_and_lines_polys(self, vertices=True, edges=True,
                                        verbose=False):
        """
        Generates a VTK PolyData object from the graph with vertices as
        vertex-cells (containing 1 point) and edges as line-cells (containing 2
        points).

        Args:
            vertices (boolean, optional): if True (default) vertices are stored
                a VTK PolyData object as vertex-cells
            edges (boolean, optional): if True (default) edges are stored a VTK
                PolyData object as line-cells
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            - vtk.vtkPolyData with vertex-cells
            - vtk.vtkPolyData with edges as line-cells
        """
        # Initialization
        poly_verts = vtk.vtkPolyData()
        poly_lines = vtk.vtkPolyData()
        points = vtk.vtkPoints()
        vertex_arrays = list()
        edge_arrays = list()
        # Vertex property arrays
        for prop_key in self.graph.vp.keys():
            data_type = self.graph.vp[prop_key].value_type()
            if (data_type != 'string' and data_type != 'python::object' and
                    prop_key != 'xyz'):
                if verbose:
                    print '\nvertex property key: %s' % prop_key
                    print 'value type: %s' % data_type
                if data_type[0:6] != 'vector':  # scalar
                    num_components = 1
                else:  # vector
                    num_components = len(
                        self.graph.vp[prop_key][self.graph.vertex(0)]
                    )
                array = TypesConverter().gt_to_vtk(data_type)
                array.SetName(prop_key)
                if verbose:
                    print 'number of components: %s' % num_components
                array.SetNumberOfComponents(num_components)
                vertex_arrays.append(array)
        # Edge property arrays
        for prop_key in self.graph.ep.keys():
            data_type = self.graph.ep[prop_key].value_type()
            if data_type != 'string' and data_type != 'python::object':
                if verbose:
                    print '\nedge property key: %s' % prop_key
                    print 'value type: %s' % data_type
                if data_type[0:6] != 'vector':  # scalar
                    num_components = 1
                else:  # vector (all edge properties so far are scalars)
                    # num_components = len(
                    #     self.graph.ep[prop_key][self.graph.edge(0, 1)]
                    # )
                    num_components = 3
                    if verbose:
                        print ('Sorry, not implemented yet, assuming a vector '
                               'with 3 components.')
                array = TypesConverter().gt_to_vtk(data_type)
                array.SetName(prop_key)
                if verbose:
                    print 'number of components: %s' % num_components
                array.SetNumberOfComponents(num_components)
                edge_arrays.append(array)
        if verbose:
            print '\nvertex arrays length: %s' % len(vertex_arrays)
            print 'edge arrays length: %s' % len(edge_arrays)

        # Geometry
        lut = np.zeros(shape=self.graph.num_vertices(), dtype=np.int)
        for i, vd in enumerate(self.graph.vertices()):
            [x, y, z] = self.graph.vp.xyz[vd]
            points.InsertPoint(i, x, y, z)
            lut[self.graph.vertex_index[vd]] = i
        if verbose:
            print 'number of points: %s' % points.GetNumberOfPoints()

        # Topology
        # Vertices
        verts = vtk.vtkCellArray()
        if vertices:
            for vd in self.graph.vertices():  # vd = vertex descriptor
                verts.InsertNextCell(1)
                verts.InsertCellPoint(lut[self.graph.vertex_index[vd]])
                for array in vertex_arrays:
                    prop_key = array.GetName()
                    n_comp = array.GetNumberOfComponents()
                    data_type = self.graph.vp[prop_key].value_type()
                    data_type = TypesConverter().gt_to_numpy(data_type)
                    array.InsertNextTuple(self.get_vertex_prop_entry(
                        prop_key, vd, n_comp, data_type))
            if verbose:
                print 'number of vertex cells: %s' % verts.GetNumberOfCells()
        # Edges
        lines = vtk.vtkCellArray()
        if edges:
            for ed in self.graph.edges():  # ed = edge descriptor
                lines.InsertNextCell(2)
                lines.InsertCellPoint(lut[self.graph.vertex_index[ed.source()]])
                lines.InsertCellPoint(lut[self.graph.vertex_index[ed.target()]])
                for array in edge_arrays:
                    prop_key = array.GetName()
                    n_comp = array.GetNumberOfComponents()
                    data_type = self.graph.ep[prop_key].value_type()
                    data_type = TypesConverter().gt_to_numpy(data_type)
                    array.InsertNextTuple(self.get_edge_prop_entry(
                        prop_key, ed, n_comp, data_type))
            if verbose:
                print 'number of line cells: %s' % lines.GetNumberOfCells()

        # vtkPolyData construction
        poly_verts.SetPoints(points)
        poly_lines.SetPoints(points)
        if vertices:
            poly_verts.SetVerts(verts)
        if edges:
            poly_lines.SetLines(lines)
        for array in vertex_arrays:
            poly_verts.GetCellData().AddArray(array)
        for array in edge_arrays:
            poly_lines.GetCellData().AddArray(array)

        return poly_verts, poly_lines

    def get_vertex_prop_entry(self, prop_key, vertex_descriptor, n_comp,
                              data_type):
        """
        Gets a property value of a vertex for inserting into a VTK vtkDataArray
        object.

        This private function is used by the methods
        graph_to_points_and_lines_polys and graph_to_triangle_poly (the latter
        of the derived class surface_graphs.TriangleGraph).

        Args:
            prop_key (str): name of the desired vertex property
            vertex_descriptor (graph_tool.Vertex): vertex descriptor of the
                current vertex
            n_comp (int): number of components of the array (length of the
                output tuple)
            data_type: numpy data type converted from a graph-tool property
                value type by TypesConverter().gt_to_numpy

        Returns:
            a tuple (with length like n_comp) with the property value of the
            vertex converted to a numpy data type
        """
        prop = list()
        if n_comp == 1:
            prop.append(data_type(self.graph.vp[prop_key][vertex_descriptor]))
        else:
            for i in range(n_comp):
                prop.append(data_type(
                            self.graph.vp[prop_key][vertex_descriptor][i]))
        return tuple(prop)

    def get_edge_prop_entry(self, prop_key, edge_descriptor, n_comp, data_type):
        """
        Gets a property value of an edge for inserting into a VTK vtkDataArray
        object.

        This private function is used by the method
        graph_to_points_and_lines_polys.

        Args:
            prop_key (str): name of the desired vertex property
            edge_descriptor (graph_tool.Edge): edge descriptor of the current
                edge
            n_comp (int): number of components of the array (length of the
                output tuple)
            data_type: numpy data type converted from a graph-tool property
                value type by TypesConverter().gt_to_numpy

        Returns:
            a tuple (with length like n_comp) with the property value of the
            edge converted to a numpy data type
        """
        prop = list()
        if n_comp == 1:
            prop.append(data_type(self.graph.ep[prop_key][edge_descriptor]))
        else:
            for i in range(n_comp):
                prop.append(data_type(
                            self.graph.ep[prop_key][edge_descriptor][i]))
        return tuple(prop)

    # * The following SegmentationGraph methods are needed for the normal vector
    # voting algorithm. *

    def calculate_average_edge_length(self, prop_e=None, value=1):
        """
        Calculates the average edge length in the graph.

        If a special edge property is specified, includes only the edges where
        this property equals the given value. If there are no edges in the
        graph, the given property does not exist or there are no edges with the
        given property equaling the given value, None is returned.

        Args:
            prop_e (str, optional): edge property, if specified only edges where
                this property equals the given value will be considered
            value (int, optional): value of the specified edge property an edge
                has to have in order to be considered (default 1)

        Returns:
            the average edge length in the graph (float) or None
        """
        total_edge_length = 0
        average_edge_length = None
        if prop_e is None:
            print "Considering all edges:"
            for ed in self.graph.edges():
                total_edge_length += self.graph.ep.distance[ed]
            if self.graph.num_edges() > 0:
                average_edge_length = total_edge_length / self.graph.num_edges()
            else:
                print "There are no edges in the graph!"
        elif prop_e in self.graph.edge_properties:
            print ("Considering only edges with property %s equaling value %s "
                   % (prop_e, value))
            num_special_edges = 0
            for ed in self.graph.edges():
                if self.graph.edge_properties[prop_e][ed] == value:
                    num_special_edges += 1
                    total_edge_length += self.graph.ep.distance[ed]
            if num_special_edges > 0:
                average_edge_length = total_edge_length / num_special_edges
            else:
                print ("There are no edges with the property %s equaling value "
                       "%s!" % (prop_e, value))
        print "Average length: %s" % average_edge_length
        return average_edge_length

    def find_geodesic_neighbors(self, v, g_max, verbose=False):
        """
        Finds geodesic neighbor vertices of a given vertex v in the graph that
        are within a given maximal geodesic distance g_max from it.

        Also finds the corresponding geodesic distances. All edges are
        considered.

        Args:
            v (graph_tool.Vertex): the source vertex
            g_max: maximal geodesic distance (in nanometers, if the graph was
                scaled)
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            a dictionary mapping a neighbor vertex index to the geodesic
            distance from vertex v
        """
        dist_v = shortest_distance(self.graph, source=v, target=None,
                                   weights=self.graph.ep.distance,
                                   max_dist=g_max)
        dist_v = dist_v.get_array()

        neighbor_id_to_dist = dict()

        idxs = np.where(dist_v <= g_max)[0]
        for idx in idxs:
            dist = dist_v[idx]
            if dist != 0:  # ignore the source vertex itself
                neighbor_id_to_dist[idx] = dist

        if verbose:
            print "%s neighbors" % len(neighbor_id_to_dist)
        return neighbor_id_to_dist

    def get_vertex_property_array(self, property_name):
        """
        Gets a numpy array with all values of a vertex property of the graph,
        printing out the number of values, the minimal and the maximal value.

        Args:
            property_name (str): vertex property name

        Returns:
            an array (numpy.ndarray) with all values of the vertex property
        """
        if (isinstance(property_name, str) and
                property_name in self.graph.vertex_properties):
            values = self.graph.vertex_properties[property_name].get_array()
            print '%s "%s" values' % (len(values), property_name)
            print 'min = %s, max = %s' % (min(values), max(values))
            return values
        else:
            error_msg = ('The input "%s" is not a str object or is not found '
                         'in vertex properties of the graph.' % property_name)
            raise pexceptions.PySegInputError(
                expr='get_vertex_property_array (SegmentationGraph)',
                msg=error_msg)
コード例 #24
0
        alternate_path = child_graph.new_edge_property("int")
        flag_path = child_graph.new_edge_property("int")

        ## Property Assignment
        child_graph.gp.layer_name = graph_name
        child_graph.ep.edge_capacity = layer_capacities
        child_graph.ep.residual_capacity = layer_res_capacity
        child_graph.ep.edge_flow = layer_flow
        child_graph.ep.shared_path = alternate_path
        child_graph.ep.path_flag = flag_path

        ## Setting the name of the graph
        child_graph.gp.layer_name = "Layer_" + str(i)

        ## For finding the total number of shared edges in use ##
        for e in child_graph.edges():
            child_graph.ep.shared_path[e] = 1

        ## Adding layered graphs to a list ##
        all_child_graphs.append(child_graph)


    ######## Variables and instances to be used for finding the primary and the alternate paths ########
    paths = []
    alternative_paths =[]
    s = Stack()

    routes_in_use = {}
    all_requests_n_paths = {}

    substitute_paths = {}
コード例 #25
0
class SegmentationGraph(object):
    """
    Class defining the abstract SegmentationGraph object, its attributes and
    implements methods common to all derived graph classes.

    The constructor requires the following parameters of the underlying
    segmentation that will be used to build the graph.
    """
    def __init__(self):
        """
        Constructor of the abstract SegmentationGraph object.

        Returns:
            None
        """
        self.graph = Graph(directed=False)
        """graph_tool.Graph: a graph object storing the segmentation graph
        topology, geometry and properties (initially empty).
        """

        # Add "internal property maps" to the graph.
        # vertex property for storing the xyz coordinates of the corresponding
        # vertex:
        self.graph.vp.xyz = self.graph.new_vertex_property("vector<float>")
        # edge property for storing the distance between the connected vertices:
        self.graph.ep.distance = self.graph.new_edge_property("float")

        self.coordinates_to_vertex_index = {}
        """dict: a dictionary mapping the vertex coordinates (x, y, z) to the
        vertex index.
        """
        self.coordinates_pair_connected = set()
        """set: a set storing pairs of vertex coordinates that are
        connected by an edge in a tuple form ((x1, y1, z1), (x2, y2, z2)).
        """

    @staticmethod
    def distance_between_voxels(voxel1, voxel2):
        """
        Calculates and returns the Euclidean distance between two voxels.

        Args:
            voxel1 (tuple): first voxel coordinates in form of a tuple of
                floats of length 3 (x1, y1, z1)
            voxel2 (tuple): second voxel coordinates in form of a tuple of
                floats of length 3 (x2, y2, z2)

        Returns:
            the Euclidean distance between two voxels (float)
        """
        if (isinstance(voxel1, tuple) and (len(voxel1) == 3)
                and isinstance(voxel2, tuple) and (len(voxel2) == 3)):
            sum_of_squared_differences = 0
            for i in range(3):  # for each dimension
                sum_of_squared_differences += (voxel1[i] - voxel2[i])**2
            return math.sqrt(sum_of_squared_differences)
        else:
            raise pexceptions.PySegInputError(
                expr='distance_between_voxels (SegmentationGraph)',
                msg=('Tuples of integers of length 3 required as first and '
                     'second input.'))

    def update_coordinates_to_vertex_index(self):
        """
        Updates graph's dictionary coordinates_to_vertex_index.

        The dictionary maps the vertex coordinates (x, y, z) to the vertex
        index. It has to be updated after purging the graph, because vertices
        are renumbered, as well as after reading a graph from a file (e.g.
        before density calculation).

        Returns:
            None
        """
        self.coordinates_to_vertex_index = {}
        for vd in self.graph.vertices():
            [x, y, z] = self.graph.vp.xyz[vd]
            self.coordinates_to_vertex_index[(x, y,
                                              z)] = self.graph.vertex_index[vd]

    def calculate_density(self,
                          size,
                          scale,
                          mask=None,
                          target_coordinates=None,
                          verbose=False):
        """
        Calculates ribosome density for each membrane graph vertex.

        Calculates shortest geodesic distances (d) for each vertex in the graph
        to each reachable ribosome center mapped on the membrane given by a
        binary mask with coordinates in pixels or an array of coordinates in
        given units.
        Then, calculates a density measure of ribosomes at each vertex or
        membrane voxel: D = sum {over all reachable ribosomes} (1 / (d + 1)).
        Adds the density as vertex PropertyMap to the graph. Returns an array
        with the same shape as the underlying segmentation with the densities
        plus 1, in order to distinguish membrane voxels with 0 density from the
        background.

        Args:
            size (tuple): size in voxels (X, Y, Z) of the original segmentation
            scale (tuple): pixel size (X, Y, Z) in given units of the original
                segmentation
            mask (numpy.ndarray, optional): a binary mask of the ribosome
                centers as 3D array where indices are coordinates in pixels
                (default None)
            target_coordinates (numpy.ndarray, optional): the ribosome centers
                coordinates in given units as 2D array in format
                [[x1, y1, z1], [x2, y2, z2], ...] (default None)
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            a 3D numpy ndarray with the densities + 1

        Note:
            One of the two parameters, mask or target_coordinates, has to be
            given.
        """
        from . import ribosome_density as rd
        # If a mask is given, find the set of voxels of ribosome centers mapped
        # on the membrane, 'target_voxels', and rescale them to units,
        # 'target_coordinates':
        if mask is not None:
            if mask.shape != size:
                raise pexceptions.PySegInputError(
                    expr='calculate_density (SegmentationGraph)',
                    msg=("Size of the input 'mask' have to be equal to those "
                         "set during the generation of the graph."))
            # output as a list of tuples [(x1,y1,z1), (x2,y2,z2), ...] in pixels
            target_voxels = rd.get_foreground_voxels_from_mask(mask)
            # for rescaling have to convert to an ndarray
            target_ndarray_voxels = rd.tupel_list_to_ndarray_voxels(
                target_voxels)
            # rescale to units, output an ndarray [[x1,y1,z1], [x2,y2,z2], ...]
            target_ndarray_coordinates = (target_ndarray_voxels *
                                          np.asarray(scale))
            # convert to a list of tuples, which are in units now
            target_coordinates = rd.ndarray_voxels_to_tupel_list(
                target_ndarray_coordinates)
        # If target_coordinates are given (in units), convert them from a numpy
        # ndarray to a list of tuples:
        elif target_coordinates is not None:
            target_coordinates = rd.ndarray_voxels_to_tupel_list(
                target_coordinates)
        # Exit if the target_voxels list is empty:
        if len(target_coordinates) == 0:
            raise pexceptions.PySegInputError(
                expr='calculate_density (SegmentationGraph)',
                msg="No target voxels were found! Check your input ('mask' or "
                "'target_coordinates').")
        print('{} target voxels'.format(len(target_coordinates)))
        if verbose:
            print(target_coordinates)

        # Pre-filter the target coordinates to those existing in the graph
        # (should already all be in the graph, but just in case):
        target_coordinates_in_graph = []
        for target_xyz in target_coordinates:
            if target_xyz in self.coordinates_to_vertex_index:
                target_coordinates_in_graph.append(target_xyz)
            else:
                raise pexceptions.PySegInputWarning(
                    expr='calculate_density (SegmentationGraph)',
                    msg=('Target ({}, {}, {}) not inside the membrane!'.format(
                        target_xyz[0], target_xyz[1], target_xyz[2])))

        print('{} target coordinates in graph'.format(
            len(target_coordinates_in_graph)))
        if verbose:
            print(target_coordinates_in_graph)

        # Get all indices of the target coordinates:
        target_vertices_indices = []
        for target_xyz in target_coordinates_in_graph:
            v_target_index = self.coordinates_to_vertex_index[target_xyz]
            target_vertices_indices.append(v_target_index)

        # Density calculation
        # Add a new vertex property to the graph, density:
        self.graph.vp.density = self.graph.new_vertex_property("float")
        # Dictionary mapping voxel coordinates (for the volume returned later)
        # to a list of density values falling within that voxel:
        voxel_to_densities = {}

        # For each vertex in the graph:
        for v_membrane in self.graph.vertices():
            # Get its coordinates:
            membrane_xyz = self.graph.vp.xyz[v_membrane]
            if verbose:
                print('Membrane vertex ({}, {}, {})'.format(
                    membrane_xyz[0], membrane_xyz[1], membrane_xyz[2]))
            # Get a distance map with all pairs of distances between current
            # graph vertex (membrane_xyz) and target vertices (ribosome
            # coordinates):
            dist_map = shortest_distance(self.graph,
                                         source=v_membrane,
                                         target=target_vertices_indices,
                                         weights=self.graph.ep.distance)

            # Iterate over all shortest distances from the membrane vertex to
            # the target vertices, while calculating the density:
            # Initializing: membrane coordinates with no reachable ribosomes
            # will have a value of 0, those with reachable ribosomes > 0.
            density = 0
            # If there is only one target voxel, dist_map is a single value -
            # wrap it into a list.
            if len(target_coordinates_in_graph) == 1:
                dist_map = [dist_map]
            for d in dist_map:
                if verbose:
                    print('\tTarget vertex ...')
                # if unreachable, the maximum float64 is stored
                if d == np.finfo(np.float64).max:
                    if verbose:
                        print('\t\tunreachable')
                else:
                    if verbose:
                        print('\t\td = {}'.format(d))
                    density += 1 / (d + 1)

            # Add the density of the membrane vertex as a property of the
            # current vertex in the graph:
            self.graph.vp.density[v_membrane] = density

            # Calculate the corresponding voxel of the vertex and add the
            # density to the list keyed by the voxel in the dictionary:
            # Scaling the coordinates back from units to voxels. (Without round
            # float coordinates are truncated to the next lowest integer.)
            voxel_x = int(round(membrane_xyz[0] / scale[0]))
            voxel_y = int(round(membrane_xyz[1] / scale[1]))
            voxel_z = int(round(membrane_xyz[2] / scale[2]))
            voxel = (voxel_x, voxel_y, voxel_z)
            if voxel in voxel_to_densities:
                voxel_to_densities[voxel].append(density)
            else:
                voxel_to_densities[voxel] = [density]

            if verbose:
                print('\tdensity = {}'.format(density))
            if (self.graph.vertex_index[v_membrane] + 1) % 1000 == 0:
                now = datetime.now()
                print('{} membrane vertices processed on: {}-{}-{} {}:{}:{}'.
                      format(self.graph.vertex_index[v_membrane] + 1, now.year,
                             now.month, now.day, now.hour, now.minute,
                             now.second))

        # Initialize an array scaled like the original segmentation, which will
        # hold in each membrane voxel the maximal density among the
        # corresponding vertex coordinates in the graph plus 1 and 0 in each
        # background (non-membrane) voxel:
        densities = np.zeros(size, dtype=np.float16)
        # The densities array membrane voxels are initialized with 1 in order to
        # distinguish membrane voxels from the background.
        for voxel in voxel_to_densities:
            densities[voxel[0], voxel[1],
                      voxel[2]] = 1 + max(voxel_to_densities[voxel])
        if verbose:
            print('densities:\n{}'.format(densities))
        return densities

    def graph_to_points_and_lines_polys(self,
                                        vertices=True,
                                        edges=True,
                                        verbose=False):
        """
        Generates a VTK PolyData object from the graph with vertices as
        vertex-cells (containing 1 point) and edges as line-cells (containing 2
        points).

        Args:
            vertices (boolean, optional): if True (default) vertices are stored
                a VTK PolyData object as vertex-cells
            edges (boolean, optional): if True (default) edges are stored a VTK
                PolyData object as line-cells
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            - vtk.vtkPolyData with vertex-cells
            - vtk.vtkPolyData with edges as line-cells
        """
        # Initialization
        poly_verts = vtk.vtkPolyData()
        poly_lines = vtk.vtkPolyData()
        points = vtk.vtkPoints()
        vertex_arrays = list()
        edge_arrays = list()
        # Vertex property arrays
        for prop_key in list(self.graph.vp.keys()):
            data_type = self.graph.vp[prop_key].value_type()
            if (data_type != 'string' and data_type != 'python::object'
                    and prop_key != 'xyz'):
                if verbose:
                    print('\nvertex property key: {}'.format(prop_key))
                    print('value type: {}'.format(data_type))
                if data_type[0:6] != 'vector':  # scalar
                    num_components = 1
                else:  # vector
                    num_components = len(
                        self.graph.vp[prop_key][self.graph.vertex(0)])
                array = TypesConverter().gt_to_vtk(data_type)
                array.SetName(prop_key)
                if verbose:
                    print('number of components: {}'.format(num_components))
                array.SetNumberOfComponents(num_components)
                vertex_arrays.append(array)
        # Edge property arrays
        for prop_key in list(self.graph.ep.keys()):
            data_type = self.graph.ep[prop_key].value_type()
            if data_type != 'string' and data_type != 'python::object':
                if verbose:
                    print('\nedge property key: {}'.format(prop_key))
                    print('value type: {}'.format(data_type))
                if data_type[0:6] != 'vector':  # scalar
                    num_components = 1
                else:  # vector (all edge properties so far are scalars)
                    # num_components = len(
                    #     self.graph.ep[prop_key][self.graph.edge(0, 1)])
                    num_components = 3
                    if verbose:
                        print('Sorry, not implemented yet, assuming a vector '
                              'with 3 components.')
                array = TypesConverter().gt_to_vtk(data_type)
                array.SetName(prop_key)
                if verbose:
                    print('number of components: {}'.format(num_components))
                array.SetNumberOfComponents(num_components)
                edge_arrays.append(array)
        if verbose:
            print('\nvertex arrays length: {}'.format(len(vertex_arrays)))
            print('edge arrays length: {}'.format(len(edge_arrays)))

        # Geometry
        lut = np.zeros(shape=self.graph.num_vertices(), dtype=np.int)
        for i, vd in enumerate(self.graph.vertices()):
            [x, y, z] = self.graph.vp.xyz[vd]
            points.InsertPoint(i, x, y, z)
            lut[self.graph.vertex_index[vd]] = i
        if verbose:
            print('number of points: {}'.format(points.GetNumberOfPoints()))

        # Topology
        # Vertices
        verts = vtk.vtkCellArray()
        if vertices:
            for vd in self.graph.vertices():  # vd = vertex descriptor
                verts.InsertNextCell(1)
                verts.InsertCellPoint(lut[self.graph.vertex_index[vd]])
                for array in vertex_arrays:
                    prop_key = array.GetName()
                    n_comp = array.GetNumberOfComponents()
                    data_type = self.graph.vp[prop_key].value_type()
                    data_type = TypesConverter().gt_to_numpy(data_type)
                    array.InsertNextTuple(
                        self.get_vertex_prop_entry(prop_key, vd, n_comp,
                                                   data_type))
            if verbose:
                print('number of vertex cells: {}'.format(
                    verts.GetNumberOfCells()))
        # Edges
        lines = vtk.vtkCellArray()
        if edges:
            for ed in self.graph.edges():  # ed = edge descriptor
                lines.InsertNextCell(2)
                lines.InsertCellPoint(
                    lut[self.graph.vertex_index[ed.source()]])
                lines.InsertCellPoint(
                    lut[self.graph.vertex_index[ed.target()]])
                for array in edge_arrays:
                    prop_key = array.GetName()
                    n_comp = array.GetNumberOfComponents()
                    data_type = self.graph.ep[prop_key].value_type()
                    data_type = TypesConverter().gt_to_numpy(data_type)
                    array.InsertNextTuple(
                        self.get_edge_prop_entry(prop_key, ed, n_comp,
                                                 data_type))
            if verbose:
                print('number of line cells: {}'.format(
                    lines.GetNumberOfCells()))

        # vtkPolyData construction
        poly_verts.SetPoints(points)
        poly_lines.SetPoints(points)
        if vertices:
            poly_verts.SetVerts(verts)
        if edges:
            poly_lines.SetLines(lines)
        for array in vertex_arrays:
            poly_verts.GetCellData().AddArray(array)
        for array in edge_arrays:
            poly_lines.GetCellData().AddArray(array)

        return poly_verts, poly_lines

    def get_vertex_prop_entry(self, prop_key, vertex_descriptor, n_comp,
                              data_type):
        """
        Gets a property value of a vertex for inserting into a VTK vtkDataArray
        object.

        This function is used by the methods graph_to_points_and_lines_polys and
        graph_to_triangle_poly (the latter of the derived classes PointGraph and
        TriangleGraph (in surface_graphs).

        Args:
            prop_key (str): name of the desired vertex property
            vertex_descriptor (graph_tool.Vertex): vertex descriptor of the
                current vertex
            n_comp (int): number of components of the array (length of the
                output tuple)
            data_type: numpy data type converted from a graph-tool property
                value type by TypesConverter().gt_to_numpy

        Returns:
            a tuple (with length like n_comp) with the property value of the
            vertex converted to a numpy data type
        """
        prop = list()
        if n_comp == 1:
            prop.append(data_type(self.graph.vp[prop_key][vertex_descriptor]))
        else:
            for i in range(n_comp):
                prop.append(
                    data_type(self.graph.vp[prop_key][vertex_descriptor][i]))
        return tuple(prop)

    def get_edge_prop_entry(self, prop_key, edge_descriptor, n_comp,
                            data_type):
        """
        Gets a property value of an edge for inserting into a VTK vtkDataArray
        object.

        This private function is used by the method
        graph_to_points_and_lines_polys.

        Args:
            prop_key (str): name of the desired vertex property
            edge_descriptor (graph_tool.Edge): edge descriptor of the current
                edge
            n_comp (int): number of components of the array (length of the
                output tuple)
            data_type: numpy data type converted from a graph-tool property
                value type by TypesConverter().gt_to_numpy

        Returns:
            a tuple (with length like n_comp) with the property value of the
            edge converted to a numpy data type
        """
        prop = list()
        if n_comp == 1:
            prop.append(data_type(self.graph.ep[prop_key][edge_descriptor]))
        else:
            for i in range(n_comp):
                prop.append(
                    data_type(self.graph.ep[prop_key][edge_descriptor][i]))
        return tuple(prop)

    # * The following SegmentationGraph methods are needed for the normal vector
    # voting algorithm. *

    def calculate_average_edge_length(self,
                                      prop_e=None,
                                      value=1,
                                      verbose=False):
        """
        Calculates the average edge length in the graph.

        If a special edge property is specified, includes only the edges where
        this property equals the given value. If there are no edges in the
        graph, the given property does not exist or there are no edges with the
        given property equaling the given value, None is returned.

        Args:
            prop_e (str, optional): edge property, if specified only edges where
                this property equals the given value will be considered
            value (int, optional): value of the specified edge property an edge
                has to have in order to be considered (default 1)
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            the average edge length in the graph (float) or None
        """
        total_edge_length = 0
        average_edge_length = None
        if prop_e is None:
            if verbose:
                print("Considering all edges:")
            if self.graph.num_edges() > 0:
                if verbose:
                    print("{} edges".format(self.graph.num_edges()))
                average_edge_length = np.mean(self.graph.ep.distance.a)
            else:
                print("There are no edges in the graph!")
        elif prop_e in self.graph.edge_properties:
            if verbose:
                print("Considering only edges with property {} equaling value "
                      "{}!".format(prop_e, value))
            num_special_edges = 0
            for ed in self.graph.edges():
                if self.graph.edge_properties[prop_e][ed] == value:
                    num_special_edges += 1
                    total_edge_length += self.graph.ep.distance[ed]
            if num_special_edges > 0:
                if verbose:
                    print("{} such edges".format(num_special_edges))
                average_edge_length = total_edge_length / num_special_edges
            else:
                print("There are no edges with the property {} equaling value "
                      "{}!".format(prop_e, value))
        if verbose:
            print("Average length: {}".format(average_edge_length))
        return average_edge_length

    def find_geodesic_neighbors(self,
                                v,
                                g_max,
                                full_dist_map=None,
                                only_surface=False,
                                verbose=False):
        """
        Finds geodesic neighbor vertices of a given vertex v in the graph that
        are within a given maximal geodesic distance g_max from it.

        Also finds the corresponding geodesic distances. All edges are
        considered. The distances are calculated with Dijkstra's algorithm.

        Args:
            v (graph_tool.Vertex): the source vertex
            g_max: maximal geodesic distance (in the units of the graph)
            full_dist_map (graph_tool.PropertyMap, optional): the full distance
                map for the whole graph; if None, a local distance map is
                calculated for each vertex (default)
            only_surface (boolean, optional): if True (default False), only
                neighbors classified as surface patch (class 1) are considered
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out

        Returns:
            a dictionary mapping a neighbor vertex index to the geodesic
            distance from vertex v
        """
        if full_dist_map is not None:
            dist_v = full_dist_map[v].get_array()
        else:
            dist_v = shortest_distance(self.graph,
                                       source=v,
                                       target=None,
                                       weights=self.graph.ep.distance,
                                       max_dist=g_max)
            dist_v = dist_v.get_array()
        # numpy array of distances from v to all vertices, in vertex index order

        vertex = self.graph.vertex
        orientation_class = self.graph.vp.orientation_class
        neighbor_id_to_dist = dict()

        idxs = np.where(dist_v <= g_max)[0]  # others are INF
        for idx in idxs:
            dist = dist_v[idx]
            if dist != 0:  # ignore the source vertex itself
                v_i = vertex(idx)
                if (not only_surface) or orientation_class[v_i] == 1:
                    neighbor_id_to_dist[idx] = dist

        if verbose:
            print("{} neighbors".format(len(neighbor_id_to_dist)))
        return neighbor_id_to_dist

    def find_geodesic_neighbors_exact(self,
                                      o,
                                      g_max,
                                      only_surface=False,
                                      verbose=False,
                                      debug=False):
        """
        Finds geodesic neighbor vertices of the origin vertex o in the graph
        that are within a given maximal geodesic distance g_max from it.

        Also finds the corresponding geodesic distances. All edges and faces are
        considered. The distances are calculated with Sun's and Abidi's
        algorithm, a simplification of Kimmels' and Sethian's fast marching
        algorithm.

        Args:
            o (graph_tool.Vertex): the source vertex
            g_max: maximal geodesic distance (in the units of the graph)
            only_surface (boolean, optional): if True (default False), only
                neighbors classified as surface patch (class 1) are considered
            verbose (boolean, optional): if True (default False), some extra
                information will be printed out
            debug (boolean, optional): if True (default False), some more extra
                information will be printed out

        Returns:
            a dictionary mapping a neighbor vertex index to the geodesic
            distance from vertex o
        """
        # Shortcuts
        xyz = self.graph.vp.xyz
        vertex = self.graph.vertex
        orientation_class = self.graph.vp.orientation_class
        distance_between_voxels = self.distance_between_voxels
        calculate_geodesic_distance = self._calculate_geodesic_distance
        insert_geo_dist_vertex_id = self._insert_geo_dist_vertex_id
        # Initialization
        geo_dist_heap = []  # heap has the smallest geodesic distance first
        # dictionaries to keep track which geodesic distance belongs to which
        # vertex or vertices and vice versa
        geo_dist_to_vertex_ids = {}
        vertex_id_to_geo_dist = {}
        neighbor_id_to_dist = {}  # output dictionary
        # Tag the center point (o) as Alive:
        self.graph.vp.tag = self.graph.new_vertex_property("string")
        tag = self.graph.vp.tag  # shortcut
        tag[o] = "Alive"
        if debug:
            print("Vertex o={}: Alive".format(int(o)))
        vertex_id_to_geo_dist[int(o)] = 0  # need it for geo. dist. calculation
        xyz_o = tuple(xyz[o])
        for n in o.all_neighbours():
            # Tag all neighboring points of the center point (n) as Close
            tag[n] = "Close"
            # Geodesic distance in this case = Euclidean between o and n
            xyz_n = tuple(xyz[n])
            on = distance_between_voxels(xyz_o, xyz_n)
            if debug:
                print("Vertex n={}: Close with distance {}".format(int(n), on))
            heappush(geo_dist_heap, on)
            insert_geo_dist_vertex_id(geo_dist_to_vertex_ids, on, int(n))
            vertex_id_to_geo_dist[int(n)] = on

        # Repeat while the smallest distance is <= g_max
        while len(geo_dist_heap) >= 1 and geo_dist_heap[0] <= g_max:
            if debug:
                print("\n{} distances in heap, first={}".format(
                    len(geo_dist_heap), geo_dist_heap[0]))
            # 1. Change the tag of the point in Close with the smallest
            # geodesic distance (a) from Close to Alive
            smallest_geo_dist = heappop(geo_dist_heap)
            closest_vertices_ids = geo_dist_to_vertex_ids[smallest_geo_dist]
            a = vertex(closest_vertices_ids[0])
            if len(closest_vertices_ids) > 1:  # move the first one (a) to the
                # back, so it's not taken again next time
                closest_vertices_ids.pop(0)
                closest_vertices_ids.append(int(a))
            tag[a] = "Alive"
            # only proceed if a is a surface patch:
            if only_surface and orientation_class[a] != 1:
                continue
            neighbor_id_to_dist[int(a)] = smallest_geo_dist  # add a to output
            if debug:
                print("Vertex a={}: Alive".format(int(a)))
            neighbors_a = set(a.all_neighbours())  # actually don't have
            # duplicates, but like this can use fast sets' intersection method
            for c in neighbors_a:
                # 2. Tag all neighboring points (c) of this point as Close,
                # but skip those which are Alive already
                if tag[c] == "Alive":
                    if debug:
                        print("Skipping Alive neighbor {}".format(int(c)))
                    continue
                tag[c] = "Close"
                if debug:
                    print("Vertex c={}: Close".format(int(c)))
                # 3. Recompute the geodesic distance of these neighboring
                # points, using only values of points that are Alive, and renew
                # it only if the recomputed result is smaller
                # Find Alive point b, belonging to the same triangle as a and c:
                # iterate over an intersection of the neighbors of a and c
                neighbors_c = set(c.all_neighbours())
                common_neighbors_a_c = neighbors_a.intersection(neighbors_c)
                for b in common_neighbors_a_c:
                    # check if b is tagged Alive
                    if tag[b] == "Alive":
                        if debug:
                            print("\tUsing vertex b={}".format(int(b)))
                        new_geo_dist_c = calculate_geodesic_distance(
                            a,
                            b,
                            xyz[c].a,
                            vertex_id_to_geo_dist,
                            verbose=verbose)
                        if int(c) not in vertex_id_to_geo_dist:  # add c
                            if debug:
                                print("\tadding new distance {}".format(
                                    new_geo_dist_c))
                            vertex_id_to_geo_dist[int(c)] = new_geo_dist_c
                            heappush(geo_dist_heap, new_geo_dist_c)
                            insert_geo_dist_vertex_id(geo_dist_to_vertex_ids,
                                                      new_geo_dist_c, int(c))
                        else:
                            old_geo_dist_c = vertex_id_to_geo_dist[int(c)]
                            if new_geo_dist_c < old_geo_dist_c:  # update c
                                if debug:
                                    print(
                                        "\tupdating distance {} to {}".format(
                                            old_geo_dist_c, new_geo_dist_c))
                                vertex_id_to_geo_dist[int(c)] = new_geo_dist_c
                                if old_geo_dist_c in geo_dist_heap:
                                    # check because it is sometimes not there
                                    geo_dist_heap.remove(old_geo_dist_c)
                                heappush(geo_dist_heap, new_geo_dist_c)
                                old_geo_dist_vertex_ids = geo_dist_to_vertex_ids[
                                    old_geo_dist_c]
                                if len(old_geo_dist_vertex_ids) == 1:
                                    del geo_dist_to_vertex_ids[old_geo_dist_c]
                                else:
                                    old_geo_dist_vertex_ids.remove(int(c))
                                insert_geo_dist_vertex_id(
                                    geo_dist_to_vertex_ids, new_geo_dist_c,
                                    int(c))
                            elif debug:
                                print("\tkeeping the old distance={}, because "
                                      "it's <= the new={}".format(
                                          old_geo_dist_c, new_geo_dist_c))
                        # if debug:
                        #     print(geo_dist_heap)
                        #     print(geo_dist_to_vertex_ids)
                        #     print(vertex_id_to_geo_dist)
                        #     print(neighbor_id_to_dist)
                        break  # one Alive b is expected, stop iteration
                else:
                    if debug:
                        print("\tNo common neighbors of a and c are Alive")

        del self.graph.vertex_properties["tag"]
        if debug:
            print("Vertex o={} has {} geodesic neighbors".format(
                int(o), len(neighbor_id_to_dist)))
        if verbose:
            print("{} neighbors".format(len(neighbor_id_to_dist)))
        return neighbor_id_to_dist

    def _calculate_geodesic_distance(self,
                                     a,
                                     b,
                                     xyz_c,
                                     vertex_id_to_geo_dist,
                                     verbose=False):
        geo_dist_a = vertex_id_to_geo_dist[int(a)]
        geo_dist_b = vertex_id_to_geo_dist[int(b)]
        xyz_a = self.graph.vp.xyz[a].a
        xyz_b = self.graph.vp.xyz[b].a
        ab = euclidean_distance(xyz_a, xyz_b)
        ac = euclidean_distance(xyz_a, xyz_c)
        bc = euclidean_distance(xyz_b, xyz_c)
        # maybe faster to use linalg.euclidean_distance directly on np.ndarrays
        alpha = nice_acos((ab**2 + ac**2 - bc**2) / (2 * ab * ac))
        beta = nice_acos((ab**2 + bc**2 - ac**2) / (2 * ab * bc))
        if alpha < (math.pi / 2) and beta < (math.pi / 2):
            if verbose:
                print("\ttriangle abc is acute")
            theta = nice_acos((geo_dist_a**2 + ab**2 - geo_dist_b**2) /
                              (2 * ab * geo_dist_a))
            geo_dist_c = math.sqrt(ac**2 + geo_dist_a**2 - 2 * ac *
                                   geo_dist_a * math.cos(alpha + theta))
        else:
            if verbose:
                print("\ttriangle abc is obtuse")
            geo_dist_c = min(geo_dist_a + ac, geo_dist_b + bc)
        return geo_dist_c

    @staticmethod
    def _insert_geo_dist_vertex_id(geo_dist_to_vertices, geo_dist, vertex_ind):
        if geo_dist in geo_dist_to_vertices:
            geo_dist_to_vertices[geo_dist].append(vertex_ind)
        else:
            geo_dist_to_vertices[geo_dist] = [vertex_ind]

    def get_vertex_property_array(self, property_name):
        """
        Gets a numpy array with all values of a vertex property of the graph,
        printing out the number of values, the minimal and the maximal value.

        Args:
            property_name (str): vertex property name

        Returns:
            an array (numpy.ndarray) with all values of the vertex property
        """
        if (isinstance(property_name, str)
                and property_name in self.graph.vertex_properties):
            values = np.array(
                self.graph.vertex_properties[property_name].get_array())
            print('{} "{}" values'.format(len(values), property_name))
            print('min = {}, max = {}, mean = {}'.format(
                min(values), max(values), np.mean(values)))
            return values
        else:
            raise pexceptions.PySegInputError(
                expr='get_vertex_property_array (SegmentationGraph)',
                msg=('The input "{}" is not a str object or is not found in '
                     'vertex properties of the graph.'.format(property_name)))
print('fraciton of nodes in largest cc: {}'.format(f))


prop_question_id = g.new_vertex_property('int')
prop_question_id.a = np.array(list(id2q_map.values()))

# focus on largest CC
g.set_vertex_filter(vfilt)

# re-index the graph
# SO qustion: https://stackoverflow.com/questions/46264296/graph-tool-re-index-vertex-ids-to-be-consecutive-integers
n2i = {n: i for i, n in enumerate(g.vertices())}
i2n = dict(zip(n2i.values(), n2i.keys()))

new_g = Graph()
new_g.add_edge_list([(n2i[e.source()], n2i[e.target()]) for e in g.edges()])


# update question ids
new_prop_question_id = new_g.new_vertex_property('int')
new_prop_question_id.a = [prop_question_id[i2n[i]] for i in range(new_g.num_vertices())]
new_g.vertex_properties['question_id'] = new_prop_question_id


print('saving largest CC in graph')
new_g.save('{}/question_graph.gt'.format(data_dir))


print('saving connected_question_ids')
pkl.dump(list(new_prop_question_id.a),
         open('{}/connected_question_ids.pkl'.format(data_dir), 'wb'))