コード例 #1
0
    def __init__(self, is_site):
        #TODO load classifier

        sess = None

        if is_site:
            sess, _ = load_graph('models/real_model.pb')
        else:
            sess, _ = load_graph('models/sim_model.pb')

        self.sess = sess
        self.sess_graph = self.sess.graph
        # Definite input and output Tensors for sess
        self.image_tensor = self.sess_graph.get_tensor_by_name(
            'image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        self.detection_boxes = self.sess_graph.get_tensor_by_name(
            'detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        self.detection_scores = self.sess_graph.get_tensor_by_name(
            'detection_scores:0')
        self.detection_classes = self.sess_graph.get_tensor_by_name(
            'detection_classes:0')
        self.num_classes = 3

        self.category_index = {
            1: {
                'id': 1,
                'name': u'red'
            },
            2: {
                'id': 2,
                'name': u'yellow'
            },
            3: {
                'id': 3,
                'name': u'green'
            }
        }

        self.image_count = 0
        self.last_pred = TrafficLight.UNKNOWN
        self.pub_tl_clssifier_monitor = None
        self.bridge = None

        if SHOW_MONITOR_IMAGE:
            self.pub_tl_clssifier_monitor = rospy.Publisher(
                '/clssifier_monitor_image', Image_msg, queue_size=2)
            self.bridge = CvBridge()
コード例 #2
0
    def __init__(self, sim):
        K.set_image_dim_ordering('tf')

        self.ready = False

        if sim:
            model_name = 'squeezeNet_sim'
        else:
            model_name = 'squeezeNet_real'

        self.graph, ops = load_graph(
            'light_classification/trained_model/{}.frozen.pb'.format(
                model_name))
        self.sess = tf.Session(graph=self.graph)

        self.learning_phase_tensor = self.graph.get_tensor_by_name(
            'fire9_dropout/keras_learning_phase:0')
        self.op_tensor = self.graph.get_tensor_by_name('softmax/Softmax:0')
        self.input_tensor = self.graph.get_tensor_by_name('input_1:0')

        self.ready = True

        self.pred_dict = {
            0: TrafficLight.UNKNOWN,
            1: TrafficLight.RED,
            2: TrafficLight.GREEN
        }
コード例 #3
0
def find_same_level_regions(region):
    # Load graph
    graph = load_graph()
    if not graph:
        logger.error(
            "Can't trace multiple regions: Region call graph not available.\n\
                      Run cere profile.\n\
                      Tracing region {0}".format(region))
        return

    # Find region node id
    region_node = get_region_id(region, graph)

    #Find roots
    roots = [n for n, d in graph.in_degree().items() if d == 0]

    #Compute for every nodes, the max distance from himself to each root
    max_path_len = {}
    for root in roots:
        for n, d in graph.nodes(data=True):
            if n not in max_path_len: max_path_len[n] = 0
            #Get every paths from the current root to the node
            paths = list(nx.all_simple_paths(graph, root, n))
            #Keep the max length path
            for path in paths:
                if len(path) - 1 > max_path_len[n]:
                    max_path_len[n] = len(path) - 1

    #Keep region which have the same depth than the requested region
    for n, p in max_path_len.iteritems():
        if p == max_path_len[region_node]:
            yield graph.node[n]['_name']
コード例 #4
0
    def __init__(self):
        #TODO load classifier

        sess, _ = load_graph('models/sim_model.pb')

        self.sess = sess
        self.sess_graph = self.sess.graph
        # Definite input and output Tensors for sess
        self.image_tensor = self.sess_graph.get_tensor_by_name(
            'image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        self.detection_boxes = self.sess_graph.get_tensor_by_name(
            'detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        self.detection_scores = self.sess_graph.get_tensor_by_name(
            'detection_scores:0')
        self.detection_classes = self.sess_graph.get_tensor_by_name(
            'detection_classes:0')
        self.num_classes = 3

        self.label_map = label_map_util.load_labelmap("./labelmap.pbtxt")
        self.categories = label_map_util.convert_label_map_to_categories(
            self.label_map,
            max_num_classes=self.num_classes,
            use_display_name=True)
        self.category_index = label_map_util.create_category_index(
            self.categories)

        self.pub_tl_clssifier_monitor = None
        self.bridge = None
        if SHOW_MONITOR_IMAGE:
            self.pub_tl_clssifier_monitor = rospy.Publisher(
                '/clssifier_monitor_image', Image_msg, queue_size=2)
            self.bridge = CvBridge()
コード例 #5
0
def solve(gym_environment, cis):
    # python has dynamic typing, the line below can help IDEs with autocompletion
    assert isinstance(cis, ChallengeInterfaceSolution)
    # after this cis. will provide you with some autocompletion in some IDEs (e.g.: pycharm)
    cis.info('Creating model.')
    # you can have logging capabilities through the solution interface (cis).
    # the info you log can be retrieved from your submission files.

    # We get environment from the Evaluation Engine
    cis.info('Making environment')
    env = gym.make(gym_environment)
    # Then we make sure we have a connection with the environment and it is ready to go
    cis.info('Reset environment')
    observation = env.reset()
    # While there are no signal of completion (simulation done)
    # we run the predictions for a number of episodes, don't worry, we have the control on this part
    frozen_model_filename = "frozen_graph.pb"

    # We use our "load_graph" function
    graph = load_graph(frozen_model_filename)
    # We can verify that we can access the list of operations in the graph
    for op in graph.get_operations():
        print(op.name)
        # prefix/Placeholder/inputs_placeholder
        # ...
        # prefix/Accuracy/predictions

    # We access the input and output nodes
    x = graph.get_tensor_by_name('prefix/x:0')
    y = graph.get_tensor_by_name('prefix/ConvNet/fc_layer_2/BiasAdd:0')
    # We launch a Session
    with tf.Session(graph=graph) as sess:

        while True:
            # we passe the observation to our model, and we get an action in return

            # 48x96 is the image size the model expects
            # Additionally img is converted to greyscale
            observation = fun_img_preprocessing(observation, 48, 96)
            # this outputs omega, the desired angular velocity
            action = sess.run(y, feed_dict={x: observation})
            action = [action[0, 1], action[0, 0]]

            action = simulation_scaling(action)
            # we tell the environment to perform this action and we get some info back in OpenAI Gym style
            observation, reward, done, info = env.step(action)
            # here you may want to compute some stats, like how much reward are you getting
            # notice, this reward may no be associated with the challenge score.

            # it is important to check for this flag, the Evaluation Engine will let us know when should we finish
            # if we are not careful with this the Evaluation Engine will kill our container and we will get no score
            # from this submission
            if 'simulation_done' in info:
                break
            if done:
                env.reset()
コード例 #6
0
def run_(graph_name):
    num_classes = 2
    image_shape = (160, 576)

    data_dir = './data'
    runs_dir = './runs'

    # Load graph
    sess, ops = graph_utils.load_graph(graph_name)
    graph = sess.graph
    # print("operations ", len(ops))
    print("graph names: \n", [n.name for n in graph.as_graph_def().node])
    input_image = graph.get_tensor_by_name('image_input:0')
    keep_prob = graph.get_tensor_by_name('keep_prob:0')
    logits = graph.get_tensor_by_name('adam_logit:0')
    helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                  logits, keep_prob, input_image)
コード例 #7
0
    def __init__(self, model_name):

        self.ready_for_classification = False

        K.set_image_dim_ordering('tf')

        self.graph, ops = load_graph('light_classification/Models/{}.pb'.format(model_name))
        self.sess = tf.Session(graph = self.graph)

        self.learning_phase_tensor = self.graph.get_tensor_by_name('fire9_dropout/keras_learning_phase:0')
        self.op_tensor = self.graph.get_tensor_by_name('softmax/Softmax:0')
        self.input_tensor = self.graph.get_tensor_by_name('input_1:0')

        self.pred_dict = {0: TrafficLight.UNKNOWN,
                    1: TrafficLight.RED,
                    2: TrafficLight.GREEN}

        # This is used to prevent the classification is done before the classifier initialized  
        self.ready_for_classification = True
コード例 #8
0
def run_altered(runs_dir):
    data_dir = './data'
    image_shape = (160, 576)
    model_location = os.path.join(runs_dir, 'model.pb')

    sess = graph_utils.load_graph(model_location, True)

    config = tf.ConfigProto()
    config.gpu_options.allocator_type = 'BFC'
    # JIT level, this can be set to ON_1 or ON_2
    jit_level = tf.OptimizerOptions.ON_1
    config.graph_options.optimizer_options.global_jit_level = jit_level

    with tf.Session(config=config, graph=sess.graph) as sess:
        image_input = sess.graph.get_tensor_by_name('image_input:0')
        keep_prob = sess.graph.get_tensor_by_name('keep_prob:0')
        my_logits = sess.graph.get_tensor_by_name('my_logits:0')

        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, my_logits, keep_prob, image_input)

        run_video(sess, image_input, keep_prob, my_logits, data_dir)
コード例 #9
0
def run():
    num_classes = 2
    image_shape = (160, 576)
    data_dir = './data'
    runs_dir = './runs'

    # Create a TensorFlow configuration object. This will be
    # passed as an argument to the session.
    config = tf.ConfigProto()
    # JIT level, this can be set to ON_1 or ON_2
    jit_level = tf.OptimizerOptions.ON_2
    config.graph_options.optimizer_options.global_jit_level = jit_level
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 1.0

    #with tf.Session(config=config) as sess:
    with tf.Session(config=config, graph=tf.Graph()) as sess:

        #saver = tf.train.import_meta_graph('./runs/semantic_segmentation_model.ckpt.meta')
        #saver.restore(sess,tf.train.latest_checkpoint('./runs/semantic_segmentation_model.ckpt'))

        #sess, _ = load_graph('./runs/frozen_graph.pb')
        sess, _ = load_graph('./runs/optimized_graph.pb')
        graph = sess.graph
        adam_angst = graph.get_tensor_by_name('adam_logit:0')
        image_input = graph.get_tensor_by_name('image_input:0')
        keep_prob = graph.get_tensor_by_name('keep_prob:0')

        print('hallo')
        print('Adam Angst = ', adam_angst)
        logits = graph.get_tensor_by_name('adam_logit:0')
        #sess.run(tf.global_variables_initializer())
        #sess.run(tf.local_variables_initializer())

        # TODO: Save inference data using helper.save_inference_samples
        helper.save_inference_samples(runs_dir, data_dir, sess, image_shape,
                                      logits, keep_prob, image_input)

        print("%d ops in the final graph." % len(output_graph_def.node))
コード例 #10
0
    def compute_action(self, observation):
        frozen_model_filename = "frozen_graph.pb"

        # We use our "load_graph" function
        graph = load_graph(frozen_model_filename)
        # We can verify that we can access the list of operations in the graph
        for op in graph.get_operations():
            print(op.name)

        # We access the input and output nodes
        x = graph.get_tensor_by_name('prefix/x:0')
        y = graph.get_tensor_by_name('prefix/ConvNet/fc_layer_2/BiasAdd:0')
        # We launch a Session
        with tf.Session(graph=graph) as sess:
            # Additionally img is converted to greyscale
            observation = fun_img_preprocessing(observation, 48, 96)
            # this outputs omega, the desired angular velocity
            action = sess.run(y, feed_dict={
                x: observation
            })
            action = [action[0, 1], action[0, 0]]

            return action
コード例 #11
0
from graph_utils import load_graph

sess, base_ops = load_graph('base_graph.pb')
print(len(base_ops))  # 2165
sess, frozen_ops = load_graph('frozen_graph.pb')
print(len(frozen_ops))  # 245
sess, optimized_ops = load_graph('optimized_graph.pb')
print(len(optimized_ops))  # 200
sess, eightbit_ops = load_graph('eightbit_graph.pb')
print(len(eightbit_ops))  # 425
コード例 #12
0
def main():
    args = parser.parse_args()

    output_tensor_dir = os.path.join(args.output_dir,
                                     args.output_node.replace("/", '_'))
    makedir_if_needed(output_tensor_dir)

    print("Loading graph\n")
    graph = graph_utils.load_graph(args.graph)

    print("Processing images tensors\n")
    graph_utils.process_image_tensors(graph=graph,
                                      input_node_name=args.input_node,
                                      output_node_name=args.output_node,
                                      dataset_dir=os.path.join(
                                          args.dataset_dir, "images"),
                                      save_dir=output_tensor_dir)

    print("Calculating percentiles for each filter\n")
    percentile_path = os.path.join(
        args.output_dir, "_".join([
            "percentile",
            str(args.percentile),
            args.output_node.replace('/', '_'), ".npy"
        ]))
    tensor_utils.calculate_percentiles(tensor_dir=output_tensor_dir,
                                       save_path=percentile_path,
                                       percentile=args.percentile)

    print("Creating result dataframe\n")
    labels_pd = pd.read_csv(os.path.join(args.dataset_dir, "labels.csv"),
                            sep=',')
    labels_pd.index = labels_pd['number']
    result_pd = segmentation_scoring.create_result_dataframe(
        args.n_maps, labels_pd)
    source_filenames = os.listdir(os.path.join(args.dataset_dir, "images"))
    percentiles = np.load(percentile_path)

    for source_filename in tqdm(source_filenames):
        source_image_path = os.path.join(args.dataset_dir, 'images',
                                         source_filename)
        label_image_path = os.path.join(args.dataset_dir, 'labeling',
                                        source_filename)
        labeled_image = segmentation_scoring.imread_int_labels(
            label_image_path)
        img_labels_set = set(labeled_image.flatten()).intersection(
            labels_pd.index)

        tensor_path = os.path.join(output_tensor_dir, source_filename + ".npy")
        tensor = np.load(tensor_path)

        for label in img_labels_set:
            bin_mask_labels = labeled_image == label
            for i in range(args.n_maps):
                bin_preds = segmentation_scoring.preprocess_map(
                    tensor[:, :, i], percentiles[i])
                intersection, union = segmentation_scoring.compute_bin_iou(
                    bin_preds, bin_mask_labels)

                result_pd.at[(label, i), 'intersection'] += intersection
                result_pd.at[(label, i), 'union'] += union
                result_pd.at[(label, i), 'num_images'] += 1
                iou_score = intersection * 1. / union
                if iou_score > result_pd.at[(label, i), 'best_score']:
                    result_pd.at[(label, i), 'best_score'] = iou_score
                    result_pd.at[(label, i), 'best_image'] = source_image_path
                    result_pd.at[(label, i), 'best_tensor'] = tensor_path
                    result_pd.at[(label, i),
                                 'best_label_img'] = label_image_path

    result_pd = result_pd[result_pd['union'] != 0]
    result_pd['iou'] = result_pd['intersection'] / result_pd['union']
    result_pd = result_pd.sort_values('iou', ascending=False)

    output_name = "output_scores"
    result_pd.to_csv(os.path.join(args.output_dir, output_name + ".csv"))
    makedir_if_needed(os.path.join(args.output_dir, "demo"))

    print("Making demo: " + os.path.join(args.output_dir, "demo"))
    demo_utils.make_demo(result_pd,
                         os.path.join(args.output_dir, "demo"),
                         percentiles,
                         top_k=10)
コード例 #13
0
ファイル: cere_flag.py プロジェクト: w-simon/cere
def run(args):
  if not cere_configure.init():
    return False
  #Need to save this because args.force will be changed by the replay pass
  force_flags = args.force
  #Array to store best flags for every regions
  best_flags = []
  
  graph = graph_utils.load_graph()
  if graph == None:
    logger.error("CERE graph is missing. Please run cere profile")
    return False

  #Load previous best results
  best_history = {}
  if os.path.isfile("{0}/regions_flags.csv".format(var.CERE_FLAGS_PATH)) and not force_flags:
    flags_file = read_csv(open("{0}/regions_flags.csv".format(var.CERE_FLAGS_PATH), 'rb'))
    for row in flags_file:
      best_history[row["Region"]] = {"best_id":row["Id"], "best_cycles":row["Cycles"], "original_cycles":row["Original_cycles"]}

  #Use llc as backend
  os.environ["CERE_LLC"]="llc"
  #Read flags file
  flags = read_csv(args.FLAGSFILE)

  #Run the requested region
  if args.region:
    found = False
    #Load region information
    for n, d in graph.nodes(data=True):
      if d['_name'] == args.region:
        found = True
        break
    if not found:
      logger.error("{0} does not exist. Valid region name can be found in {1}`".format(args.region, cere_configure.cere_config["regions_infos"]))
      return False
    if not d['_tested']:
      logger.error("{0} not tested. Please run `cere check-matching --region={0}`".format(args.region))
      return False
    if not d['_matching']:
      logger.warning("{0} replay is marked as not matching. Results might not be accurate.".format(args.region))

    #Load any previous measures for this region
    flags_history = get_region_history(args.region, force_flags)

    #Replay region with flags to test
    best_id, best_cycles = run_replay(flags, args, flags_history)

    best_flags.append(get_best_flags(args.region, best_history, d['_invivo'], best_id, best_cycles))

  #or run selected regions from ilp selector
  elif not args.region:
    graph = graph_utils.load_graph()
    if graph == None or graph.graph['selector'] != "ILP":
      logger.error("Selected regions missing. First run cere select-ilp or choose a region manually with cere flag --region.")
      return False
    #Run selected regions
    for n, d in graph.nodes(data=True):
      if d["_selected"]:
        args.region=d['_name']

        #Load any previous measures for this region
        flags_history = get_region_history(args.region, force_flags)

        #Replay region with flags to test
        best_id, best_cycles = run_replay(flags, args, flags_history)

        best_flags.append(get_best_flags(args.region, best_history, d['_invivo'], best_id, best_cycles))

  compute_theorical_speedup(best_flags, graph)
  dump_results(best_flags, args.FLAGSFILE, flags)
  clean_environ()
  return True
コード例 #14
0
parser.add_argument('--graph',
                    type=str,
                    default='models/transformed_graph.pb',
                    help='graph for inference')
args = parser.parse_args()

video = args.video
name_graph = args.graph

#sess, _ = load_graph('models/base_graph.pb')
#sess, _ = load_graph('models/frozen_graph.pb')
#sess, _ = load_graph('models/frozen_model.pb')
#sess, _ = load_graph('models/optimized_graph.pb')
#sess, _ = load_graph('models/transformed_graph.pb')

sess, _ = load_graph(name_graph)

graph = sess.graph
input_image = graph.get_tensor_by_name('image_input:0')
keep_prob = graph.get_tensor_by_name('keep_prob:0')
softmax = graph.get_tensor_by_name('Softmax:0')
predictions_argmax = tf.argmax(softmax, axis=-1, output_type=tf.int64)

num_classes = len(label_defs)
label_colors = {i: np.array(l.color) for i, l in enumerate(label_defs)}

test_image = scipy.misc.imread("data/test_image.png")
image_shape = (256, 512)


def predict_image(image):
コード例 #15
0
    for lemma_obj in frame_obj.lemma_objs:
        if lemma_obj.language == 'Dutch':
            fn_obj.update_lemma_obj_with_lemmapos_id(lemma_obj)

    fn_obj.framelabel2frame_obj[frame_label] = frame_obj

# validate
fn_obj.validate_lemmapos_identifiers()

if verbose:
    print(fn_obj)

# load graph
g = graph_utils.load_graph(fn_obj.framelabel2frame_obj,
                           synset_id2synset_obj,
                           rbn_objs,
                           configuration['graph_options'],
                           verbose=verbose)

# save to file
output_path = out_dir / 'combined.p'
with open(output_path, 'wb') as outfile:
    pickle.dump(fn_obj, outfile)

graph_path = out_dir / 'graph.p'
nx.write_gpickle(g, graph_path)

if verbose:
    print(f'saved output to {output_path}')
    print(f'saved graph to {graph_path}')
    print(datetime.now())
コード例 #16
0
                self.dfs(v, w)
            elif w != u:
                # just found a cycle, store the cyclic path
                self._cycle = []
                p = v
                while True:
                    self._cycle.insert(0, p)
                    p = self._parentChain[p]
                    if p is None or p == w: break

                self._cycle.insert(0, w)
                self._cycle.insert(0, v)

    def cycle(self):
        return self._cycle

    def __has_cycle(self):
        return len(self._cycle) > 0

if __name__ == "__main__":
    import graph_utils
    G = graph_utils.load_graph("../data/cyclicG.txt")
    detector = CycleDetector(G)
    assert detector.has_cycle()
    assert [3, 0, 1, 2, 3] == detector.cycle()

    G = graph_utils.load_graph("../data/tinyG.txt")
    detector = CycleDetector(G)
    assert detector.has_cycle()
    print(detector.cycle())
コード例 #17
0
import sys
import os
import logging
import networkx as nx
sys.path.insert(0, "../../src/cere/")
import cere_configure
from graph_utils import load_graph
import vars as var

logger = logging.getLogger('Test Profile')

if __name__ == "__main__":
  cere_configure.init()

  #Check if call graph exists
  graph = load_graph()
  if graph == None:
    logger.critical("Cannot load graph.")
    sys.exit(1)

  #Is there any cere region?
  if( len(graph.nodes()) == 0):
    logger.info('Graph is empty.')
    sys.exit(1)

  #Check if measuring application cycles works
  if not os.path.isfile("{0}/app_cycles.csv".format(var.CERE_PROFILE_PATH)):
    logger.critical('Measuring cycles failed.')
    sys.exit(1)

  logger.info("Profiling ok.")