コード例 #1
0
ファイル: test_kernel.py プロジェクト: yhtang/GraphDot
def test_mlgk_gradient(caseitem, nodal):
    '''derivative w.r.t. hyperparameters'''

    _, case = caseitem

    G = case['graphs']
    knode = case['knode']
    kedge = case['kedge']
    for q in case['q']:

        mlgk = MarginalizedGraphKernel(knode, kedge, q=q)

        np.set_printoptions(precision=4, linewidth=999, suppress=True)

        R, dR = mlgk(G, nodal=nodal, eval_gradient=True)

        assert (len(dR.shape) == 3)
        assert (R.shape[0] == dR.shape[0])
        assert (R.shape[1] == dR.shape[1])
        assert (dR.shape[2] >= 1)

        for i in range(len(mlgk.theta)):

            theta = mlgk.theta

            eps = 1e-3

            t = np.copy(theta)
            t[i] += eps
            mlgk.theta = t
            Rr = mlgk(G, nodal=nodal)

            t = np.copy(theta)
            t[i] -= eps
            mlgk.theta = t
            Rl = mlgk(G, nodal=nodal)

            mlgk.theta = theta

            dR_dLogt = (Rr - Rl) / (2 * eps)
            dLogt_dt = 1 / np.exp(theta)[i]
            dR_dt = dR_dLogt * dLogt_dt

            assert np.allclose(dR[:, :, i], dR_dt, rtol=0.05, atol=0.05)
コード例 #2
0
ファイル: test_kernel.py プロジェクト: yhtang/GraphDot
def test_mlgk_diag_gradient(caseitem, nodal):
    '''derivative w.r.t. hyperparameters'''

    _, case = caseitem

    G = case['graphs']
    knode = case['knode']
    kedge = case['kedge']
    for q in case['q']:

        mlgk = MarginalizedGraphKernel(knode, kedge, q=q)

        R, dR = mlgk.diag(G, nodal=nodal, eval_gradient=True)

        assert (len(dR.shape) == 2)
        assert (R.shape[0] == dR.shape[0])
        assert (dR.shape[1] >= 1)

        for i in range(len(mlgk.theta)):

            theta = mlgk.theta

            eps = 1e-3

            t = np.copy(theta)
            t[i] += eps
            mlgk.theta = t
            Rr = mlgk.diag(G, nodal=nodal, eval_gradient=False)

            t = np.copy(theta)
            t[i] -= eps
            mlgk.theta = t
            Rl = mlgk.diag(G, nodal=nodal, eval_gradient=False)

            mlgk.theta = theta

            dR_dLogt = (Rr - Rl) / (2 * eps)
            dLogt_dt = 1 / np.exp(theta)[i]
            dR_dt = dR_dLogt * dLogt_dt

            for a, b in zip(dR[:, i].ravel(), dR_dt.ravel()):
                assert (a == pytest.approx(b, rel=0.05, abs=0.05))