namespace='unaids', categoryId=the_category, subcategoryId=the_subcategory) newdataset.save() dataset_name_to_object[subcategory_name] = newdataset new_datasets_list.append(newdataset) else: newdataset = Dataset.objects.get(name=subcategory_name, categoryId=the_category) source_name = 'UNAIDS' if source_name not in source_name_to_object: newsource = Source(name=source_name, description=json.dumps(source_description), datasetId=newdataset.pk) newsource.save() source_name_to_object[source_name] = newsource else: newsource = Source.objects.get(name=source_name, datasetId=newdataset.pk) newsource.description = json.dumps(source_description) newsource.save() source_name_to_object[source_name] = newsource for eachfile in glob.glob(unaids_downloads + '/*.csv'): print("Processing: {}".format(eachfile)) with open(eachfile, mode='rt', encoding='utf-8-sig') as f: reader = csv.DictReader(f) for row in reader: row_number += 1
def process_csv_file_insert(filename_to_process: str, original_filename: str): print('Processing: %s' % original_filename) global unique_data_tracker global datasets_list current_file_vars_countries = set( ) # keeps track of variables+countries we saw in the current file current_file_var_codes = set() current_file_var_names = set() previous_row = tuple() # inserting a subcategory if file_to_category_dict[ original_filename] not in existing_subcategories_list: the_subcategory = DatasetSubcategory( name=file_to_category_dict[original_filename], fk_dst_cat_id=the_category) the_subcategory.save() existing_subcategories_list.add( file_to_category_dict[original_filename]) else: the_subcategory = DatasetSubcategory.objects.get( name=file_to_category_dict[original_filename]) insert_string = 'INSERT into data_values (value, year, fk_ent_id, fk_var_id) VALUES (%s, %s, %s, %s)' # this is used for constructing the query for mass inserting to the data_values table data_values_tuple_list = [] # inserting a dataset newdataset = Dataset( name='%s: %s' % (file_to_category_dict[original_filename], file_dataset_names[original_filename]), description='This is a dataset imported by the automated fetcher', namespace='faostat', fk_dst_cat_id=the_category, fk_dst_subcat_id=the_subcategory) newdataset.save() datasets_list.append(newdataset) # reading source information from a csv file in metadata_dir metadata_file_path = os.path.join( metadata_dir, os.path.splitext(original_filename)[0] + ".csv") data_published_by = 'Food and Agriculture Organization of the United Nations (FAO)' data_publishers_source = '' additional_information = '' variable_description = '' if os.path.isfile(metadata_file_path): with open(metadata_file_path, encoding='latin-1') as metadatacsv: metadatareader = csv.DictReader(metadatacsv) metadatacolumns = tuple(metadatareader.fieldnames) for row in metadatareader: if row['Subsection Code'] == '1.1': data_published_by = row['Metadata'] if row['Subsection Code'] == '3.1': variable_description = row['Metadata'] if row['Subsection Code'] == '3.4': additional_information = row['Metadata'] if row['Subsection Code'] == '20.1': data_publishers_source = row['Metadata'] # inserting a dataset source newsource = Source( name=file_dataset_names[original_filename], description=source_template % (file_dataset_names[original_filename], data_published_by, data_publishers_source, additional_information), datasetId=newdataset.pk) newsource.save() existing_fao_variables = Variable.objects.filter( fk_dst_id__in=Dataset.objects.filter(namespace='faostat')) existing_fao_variables_dict = {} for each in existing_fao_variables: existing_fao_variables_dict[each.name] = each with open(filename_to_process, encoding='latin-1') as currentfile: currentreader = csv.DictReader(currentfile) filecolumns = tuple(currentreader.fieldnames) # these column types are very similar if filecolumns == column_types[0] or filecolumns == column_types[1] \ or filecolumns == column_types[2] or filecolumns == column_types[3] \ or filecolumns == column_types[4]: for row in currentreader: if filecolumns == column_types[0]: countryname = row['Area'] variablename = row['Item'] variablecode = row['Item Code'] if filecolumns == column_types[1]: countryname = row['Country'] variablename = '%s - %s' % (row['Item'], row['Element']) variablecode = '%s - %s' % (row['ItemCode'], row['ElementCode']) if filecolumns == column_types[2]: countryname = row['Area'] variablename = '%s - %s' % (row['Item'], row['Element']) variablecode = '%s - %s' % (row['Item Code'], row['Element Code']) if filecolumns == column_types[3]: countryname = row['Country'] variablename = '%s - %s' % (row['Item'], row['Element']) variablecode = '%s - %s' % (row['Item Code'], row['Element Code']) if filecolumns == column_types[4]: countryname = row['Country'] variablename = '%s - %s' % (row['Indicator'], row['Source']) variablecode = '%s - %s' % (row['Indicator Code'], row['Source Code']) if original_filename == 'Emissions_Agriculture_Energy_E_All_Data_(Norm).zip': variablename += ' - %s' % row['Unit'] if original_filename == 'Production_LivestockPrimary_E_All_Data_(Normalized).zip': variablename += ' - %s' % row['Unit'] if original_filename == 'Trade_LiveAnimals_E_All_Data_(Normalized).zip': variablename += ' - %s' % row['Unit'] # avoiding duplicate rows if original_filename == 'Inputs_Pesticides_Use_E_All_Data_(Normalized).zip': if row['Item Code'] not in current_file_var_codes and row[ 'Item'] not in current_file_var_names: current_file_var_codes.add(row['Item Code']) current_file_var_names.add(row['Item']) elif row['Item Code'] in current_file_var_codes and row[ 'Item'] in current_file_var_names: pass else: continue # avoiding duplicate rows if original_filename == 'FoodBalanceSheets_E_All_Data_(Normalized).csv': if tuple(row) == previous_row: previous_row = tuple(row) continue else: previous_row = tuple(row) try: year = int(row['Year']) value = float(row['Value']) except ValueError: year = False value = False variablename = file_dataset_names[ original_filename] + ': ' + variablename current_file_vars_countries.add( tuple([countryname, variablecode])) process_one_row(year, value, countryname, variablecode, variablename, existing_fao_variables_dict, row['Unit'], newsource, newdataset, variable_description, data_values_tuple_list) unique_data_tracker.update(current_file_vars_countries) # these are the files that require several iterations over all rows if filecolumns == column_types[5] or filecolumns == column_types[ 6] or filecolumns == column_types[7]: if filecolumns == column_types[5]: iterations = [{ 'country_field': 'Donor Country', 'varname_format': '%s - Donors' }, { 'country_field': 'Recipient Country', 'varname_format': '%s - Recipients' }] if filecolumns == column_types[6]: iterations = [{ 'country_field': 'Reporter Countries', 'varname_format': '%s - %s - Reporters' }, { 'country_field': 'Partner Countries', 'varname_format': '%s - %s - Partners' }] if filecolumns == column_types[7]: iterations = [{ 'country_field': 'Donor', 'varname_format': '%s - %s - Donors' }, { 'country_field': 'Recipient Country', 'varname_format': '%s - %s - Recipients' }] for oneiteration in iterations: file_stream_holder = { } # we will break down these files into smaller files dict_writer_holder = {} separate_files_names = { } # we will keep the filenames in this dict unique_vars = [] # first we collect all variable names currentfile.seek(0) row_counter = 0 for row in currentreader: if row['Year'] == 'Year': continue row_counter += 1 if row_counter % 300 == 0: time.sleep( 0.001 ) # this is done in order to not keep the CPU busy all the time if filecolumns == column_types[5]: variablename = oneiteration['varname_format'] % row[ 'Item'] if filecolumns == column_types[6]: variablename = oneiteration['varname_format'] % ( row['Item'], row['Element']) if filecolumns == column_types[7]: variablename = oneiteration['varname_format'] % ( row['Item'], row['Purpose']) if variablename not in unique_vars: unique_vars.append(variablename) # then we break the dataset into files named after the variable names for varname in unique_vars: separate_files_names[varname.replace('/', '+') + '.csv'] = varname file_stream_holder[varname] = open(os.path.join( '/tmp', varname.replace('/', '+') + '.csv'), 'w+', encoding='latin-1') dict_writer_holder[varname] = csv.DictWriter( file_stream_holder[varname], fieldnames=[ 'Country', 'Variable', 'Varcode', 'Year', 'Unit', 'Value' ]) dict_writer_holder[varname].writeheader() # go back to the beginning of the file currentfile.seek(0) row_counter = 0 for row in currentreader: if row['Year'] == 'Year': continue row_counter += 1 if row_counter % 300 == 0: time.sleep( 0.001 ) # this is done in order to not keep the CPU busy all the time if filecolumns == column_types[5]: variablename = oneiteration['varname_format'] % row[ 'Item'] variablecode = row['Item Code'] dict_writer_holder[variablename].writerow({ 'Country': row[oneiteration['country_field']], 'Variable': variablename, 'Varcode': variablecode, 'Unit': row['Unit'], 'Year': row['Year'], 'Value': row['Value'] }) if filecolumns == column_types[6]: variablename = oneiteration['varname_format'] % ( row['Item'], row['Element']) variablecode = '%s - %s' % (row['Item Code'], row['Element Code']) dict_writer_holder[variablename].writerow({ 'Country': row[oneiteration['country_field']], 'Variable': variablename, 'Varcode': variablecode, 'Unit': row['Unit'], 'Year': row['Year'], 'Value': row['Value'] }) if filecolumns == column_types[7]: variablename = oneiteration['varname_format'] % ( row['Item'], row['Purpose']) variablecode = '%s - %s' % (row['Item Code'], row['Purpose Code']) dict_writer_holder[variablename].writerow({ 'Country': row[oneiteration['country_field']], 'Variable': variablename, 'Varcode': variablecode, 'Unit': row['Unit'], 'Year': row['Year'], 'Value': row['Value'] }) if row_counter % 100000 == 0: for fileholder, actual_file in file_stream_holder.items( ): actual_file.flush() os.fsync(actual_file.fileno()) for fileholder, actual_file in file_stream_holder.items(): actual_file.close() # now parsing and importing each file individually for each_separate_file, file_variable_name in separate_files_names.items( ): unique_records_holder = {} with open('/tmp/%s' % each_separate_file, encoding='latin-1') as separate_file: separate_file_reader = csv.DictReader(separate_file) row_counter = 0 for row in separate_file_reader: row_counter += 1 if row_counter % 300 == 0: time.sleep( 0.001 ) # this is done in order to not keep the CPU busy all the time countryname = row['Country'] variablecode = row['Varcode'] variableunit = row['Unit'] year = row['Year'] value = row['Value'] try: year = int(year) value = float(value) except ValueError: year = False value = False if year is not False and value is not False: unique_record = tuple([countryname, year]) if unique_record not in unique_records_holder: unique_records_holder[ unique_record] = value else: unique_records_holder[ unique_record] += value for key, value in unique_records_holder.items(): variablename = file_dataset_names[ original_filename] + ': ' + file_variable_name process_one_row( list(key)[1], str(value), list(key)[0], variablecode, variablename, existing_fao_variables_dict, variableunit, newsource, newdataset, variable_description, data_values_tuple_list) os.remove('/tmp/%s' % each_separate_file) if len(data_values_tuple_list): # insert any leftover data_values with connection.cursor() as c: c.executemany(insert_string, data_values_tuple_list)