コード例 #1
0
def sparse_edge_to_sparse_tensor(edge_index: np.ndarray,
                                 edge_weight: np.ndarray = None,
                                 shape: tuple = None) -> tf.SparseTensor:
    """
    edge_index: shape [M, 2] or [2, M]
    edge_weight: shape [M,]
    """
    edge_index = gf.asedge(edge_index, shape="row_wise")

    if edge_weight is None:
        edge_weight = tf.ones(edge_index.shape[0], dtype=gg.floatx())

    if shape is None:
        shape = gf.maybe_shape(edge_index)

    return tf.SparseTensor(edge_index, edge_weight, shape)
コード例 #2
0
def sparse_edge_to_sparse_tensor(edge_index: np.ndarray,
                                 edge_weight: np.ndarray = None,
                                 shape: tuple = None) -> torch.Tensor:
    """
    edge_index: shape [2, M]
    edge_weight: shape [M,]
    """
    edge_index = gf.asedge(edge_index, shape="col_wise")
    edge_index = torch.LongTensor(edge_index)

    if edge_weight is None:
        edge_weight = torch.ones(edge_index.shape[1],
                                 dtype=getattr(torch, "float32"))
    else:
        edge_weight = torch.tensor(edge_weight)

    if shape is None:
        shape = gf.maybe_shape(edge_index)

    shape = torch.Size(shape)
    dtype = str(edge_weight.dtype)
    return getattr(torch.sparse,
                   dtype_to_tensor_class(dtype))(edge_index, edge_weight,
                                                 shape)
コード例 #3
0
    def split_edges(self,
                    *,
                    val: float = 0.05,
                    test: float = 0.1,
                    train: Optional[float] = None,
                    random_state: Optional[int] = None) -> dict:

        graph = self.graph

        assert not graph.is_multiple(), "NOT Supported for multiple graph"
        if train is not None:
            train = 1 - (val + test)
            assert train + val + test <= 1
        else:
            assert val + test < 1

        np.random.seed(random_state)

        is_directed = graph.is_directed()
        graph = graph.to_directed()

        num_nodes = graph.num_nodes
        row, col = graph.edge_index

        splits = gf.BunchDict()

        # Return upper triangular portion.
        mask = row < col
        row, col = row[mask], col[mask]

        # TODO: `edge_attr` processing
        edge_attr = getattr(graph, "edge_attr", None)
        if edge_attr is not None:
            edge_attr = edge_attr[mask]

        n_val = int(math.floor(val * row.shape[0]))
        n_test = int(math.floor(test * row.shape[0]))

        # Positive edges.
        perm = np.random.permutation(row.shape[0])
        row, col = row[perm], col[perm]

        r, c = row[n_val + n_test:], col[n_val + n_test:]
        if train is not None:
            n_train = int(math.floor(train * row.shape[0]))
            r, c = row[:n_train], col[:n_train]

        splits.train_pos_edge_index = np.stack([r, c], axis=0)

        if not is_directed:
            splits.train_pos_edge_index = gf.asedge(
                splits.train_pos_edge_index, shape='col_wise', symmetric=True)

        r, c = row[:n_val], col[:n_val]
        splits.val_pos_edge_index = np.stack([r, c], axis=0)

        r, c = row[n_val:n_val + n_test], col[n_val:n_val + n_test]
        splits.test_pos_edge_index = np.stack([r, c], axis=0)

        # Negative edges.
        neg_adj_mask = np.ones((num_nodes, num_nodes), dtype=np.bool)
        neg_adj_mask = np.triu(neg_adj_mask, k=1)
        neg_adj_mask[row, col] = False

        neg_row, neg_col = neg_adj_mask.nonzero()
        perm = np.random.permutation(neg_row.shape[0])[:n_val + n_test]
        neg_row, neg_col = neg_row[perm], neg_col[perm]

        row, col = neg_row[:n_val], neg_col[:n_val]
        splits.val_neg_edge_index = np.stack([row, col], axis=0)

        row, col = neg_row[n_val:n_val + n_test], neg_col[n_val:n_val + n_test]
        splits.test_neg_edge_index = np.stack([row, col], axis=0)

        self.splits.update(**splits)
        return self.splits
コード例 #4
0
def _check_edge_index(edge_index, copy=False):
    edge_index = np.array(edge_index, dtype=np.int64, copy=copy)
    return gf.asedge(edge_index, shape="col_wise")