コード例 #1
0
def is_tensor(x, kind=None):
    """Check whether `x` is 
        tf.Tensor,
        tf.Variable,
        tf.RaggedTensor,
        tf.sparse.SparseTensor,
        torch.Tensor, 
        torch.sparse.Tensor.

    Parameters:
    ----------
    x: A python object to check.
    
    kind: str, optional.
        "T" for TensorFlow
        "P" for PyTorch
        if not specified, using `backend().kind` instead.    

    Returns:
    ----------
    `True` iff `x` is a (tf or torch) (sparse-)tensor.
    """
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)

    if kind == "T":
        return is_tf_tensor(x)
    else:
        return is_th_tensor(x)
コード例 #2
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def astensors(*xs, device=None, kind=None):
    """Convert input matrices to Tensor(s) or SparseTensor(s).

    Parameters:
    ----------
    xs: tf.Tensor, tf.Variable, Scipy sparse matrix, 
        Numpy array-like, or a list of them, etc.

    device (:class:`torch.device`, optional): the desired device of returned tensor.
        Default: if ``None``, uses the current device for the default tensor type
        (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
        for CPU tensor types and the current CUDA device for CUDA tensor types.
        
    kind: str, optional.
        "T" for TensorFlow
        "P" for PyTorch
        if not specified, using `backend().kind` instead.    

    Returns:
    ----------      
        Tensor(s) or SparseTensor(s) with dtype:       
        1. `graphgallery.floatx()` if `x` in `xs` is floating
        2. `graphgallery.intx() ` if `x` in `xs` is integer
        3. `Bool` if `x` in `xs` is bool.
    """
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if kind == "T":
        return T.tf_tensor.astensors(*xs, device=device)
    else:
        return T.th_tensor.astensors(*xs, device=device)
コード例 #3
0
def is_strided_tensor(x, kind=None):
    """Check whether `x` is a strided (dense) Tensor.
    
    Parameters:
    ----------
    x: A python object to check.
    
    kind: str, optional.
        "T" for TensorFlow
        "P" for PyTorch
        if not specified, using `backend().kind` instead.    

    Returns:
    ----------
    `True` iff `x` is a (tf or torch) strided (dense) Tensor.
    """

    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)

    if kind == "T":
        return is_tf_strided_tensor(x)
    else:
        return is_th_strided_tensor(x)
コード例 #4
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def sparse_adj_to_sparse_tensor(x, kind=None):
    """Converts a Scipy sparse matrix to a TensorFlow/PyTorch SparseTensor.

    Parameters
    ----------
    x: Scipy sparse matrix
        Matrix in Scipy sparse format.
        
    kind: str, optional.
        "T" for TensorFlow
        "P" for PyTorch
        if not specified, using `backend().kind` instead.            
    Returns
    -------
    S: SparseTensor
        Matrix as a sparse tensor.
    """
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)

    if kind == "T":
        return T.tf_tensor.sparse_adj_to_sparse_tensor(x)
    else:
        return T.th_tensor.sparse_adj_to_sparse_tensor(x)
コード例 #5
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def sparse_tensor_to_sparse_adj(x, *, kind=None):
    """Converts a SparseTensor to a Scipy sparse matrix (CSR matrix)."""
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)

    if kind == "T":
        return T.tf_tensor.sparse_tensor_to_sparse_adj(x)
    else:
        return T.th_tensor.sparse_tensor_to_sparse_adj(x)
コード例 #6
0
def parse_device(device: str, kind: str  =  None) -> str:
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if device is None:
        # by default, return CPU device
        if kind == "T":
            return 'CPU:0'
        else:
            return torch.device('cpu')

    # tensorflow defice
    if ((hasattr(device, '_device_name') and kind == "T")   
    # pytorch device
    or (isinstance(device, torch.device) and kind == "P")):  
        return device

    if hasattr(device, '_device_name'):
        # tensorflow device meets pytorch backend
        _device = _device_name.split('/')[-1]
    elif isinstance(device, torch.device):
        # pytorch device meets tensorflow backend
        _device = str(device)
    else:
        _device = str(device).lower().split('/')[-1]
        if not any((_device.startswith("cpu"),
                    _device.startswith("cuda"),
                    _device.startswith("gpu"))):
            raise RuntimeError(
                f" Expected one of cpu (CPU), cuda (CUDA), gpu (GPU) at the start of device string, bot got {device}.")

    if _device.startswith("cuda"):
        if kind == "T":
            # tensorflow uses GPU instead of cuda
            _device = "GPU" + _device[4:]
    elif _device.startswith("gpu"):
        if kind == "P":
            # pytorch uses cuda instead of GPU
            _device = "cuda" + _device[3:]

    if kind == "P":
        if _device.startswith('cuda'):
            if not torch.cuda.is_available():
                raise RuntimeError(f"CUDA is unavailable for PyTorch backend.")
            # empty cache to avoid unnecessary memory usage
            # TODO: is this necessary?
            torch.cuda.empty_cache()
        return torch.device(_device)
    if _device.startswith('gpu') and not tf.config.list_physical_devices('GPU'):
        raise RuntimeError(f"GPU is unavailable for TensorFlow backend.")

    return _device.upper()
コード例 #7
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def normalize_adj_tensor(adj, rate=-0.5, fill_weight=1.0, kind=None):
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if kind == "T":
        return T.tf_tensor.normalize_adj_tensor(adj,
                                                rate=rate,
                                                fill_weight=fill_weight)
    else:
        # TODO
        return T.th_tensor.normalize_adj_tensor(adj,
                                                rate=rate,
                                                fill_weight=fill_weight)
コード例 #8
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def sparse_edges_to_sparse_tensor(edge_index: np.ndarray,
                                  edge_weight: np.ndarray = None,
                                  shape: tuple = None,
                                  kind=None):

    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if kind == "T":
        return T.tf_tensor.sparse_edges_to_sparse_tensor(
            edge_index, edge_weight, shape)
    else:
        return T.th_tensor.sparse_edges_to_sparse_tensor(
            edge_index, edge_weight, shape)
コード例 #9
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def add_selfloops_edge(edge_index,
                       edge_weight,
                       n_nodes=None,
                       fill_weight=1.0,
                       kind=None):
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if kind == "T":
        return T.tf_tensor.normalize_adj_tensor(edge_index,
                                                edge_weight,
                                                n_nodes=n_nodes,
                                                fill_weight=fill_weight)
    else:
        # TODO
        return T.th_tensor.normalize_adj_tensor(edge_index,
                                                edge_weight,
                                                n_nodes=n_nodes,
                                                fill_weight=fill_weight)
コード例 #10
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def normalize_edge_tensor(edge_index,
                          edge_weight=None,
                          n_nodes=None,
                          fill_weight=1.0,
                          rate=-0.5,
                          kind=None):
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if kind == "T":
        return T.tf_tensor.normalize_adj_tensor(edge_index,
                                                edge_weight=edge_weight,
                                                n_nodes=n_nodes,
                                                fill_weight=fill_weight,
                                                rate=rate)
    else:
        # TODO
        return T.th_tensor.normalize_adj_tensor(edge_index,
                                                edge_weight=edge_weight,
                                                n_nodes=n_nodes,
                                                fill_weight=fill_weight,
                                                rate=rate)
コード例 #11
0
ファイル: tensor.py プロジェクト: mengliu1998/GraphGallery
def astensor(x, *, dtype=None, device=None, kind=None):
    """Convert input matrices to Tensor or SparseTensor.

    Parameters:
    ----------
    x: tf.Tensor, tf.Variable, Scipy sparse matrix, 
        Numpy array-like, etc.

    dtype: The type of Tensor `x`, if not specified,
        it will automatically using appropriate data type.
        See `graphgallery.infer_type`.

    device (:class:`torch.device` or `tf.device`, optional): the desired device of returned tensor.
        Default: if ``None``, uses the current device for the default tensor type
        
    kind: str, optional.
        "T" for TensorFlow
        "P" for PyTorch
        if not specified, using `backend().kind` instead.

    Returns:
    ----------      
        Tensor or SparseTensor with dtype:       
        1. `graphgallery.floatx()` if `x` is floating
        2. `graphgallery.intx() ` if `x` is integer
        3. `Bool` if `x` is bool.
    """
    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    device = parse_device(device, kind)

    if kind == "T":
        return T.tf_tensor.astensor(x, dtype=dtype, device=device)
    else:
        return T.th_tensor.astensor(x, dtype=dtype, device=device)
コード例 #12
0
def parse_device(device: Device = None, kind: Optional[str] = None) -> Device:
    """
    Specify the device for corresponding kind 

    Parameters
    ----------
    device : (string, tf.device, torch.device, None) 
        device name such as 'cpu', 'gpu', 'cuda'
        or an instance of tf.device/torch.device
    kind : string 
        kind of backend for device
        'T' for tensorflow, 'P' for pytorch

    Returns
    -------
    return string for tf backend
    return torch.device instance for torch backend
    """

    if kind is None:
        kind = backend().kind
    else:
        assert_kind(kind)
    if device is None:
        # by default, return CPU device
        if kind == "T":
            return 'CPU:0'
        else:
            return torch.device('cpu:0')

    # existing tensorflow device
    if hasattr(device, '_device_name') and kind == "T":
        return device._device_name
    # existing pytorch device
    if isinstance(device, torch.device) and kind == "P":
        return device

    if hasattr(device, '_device_name'):
        # tensorflow device meets pytorch backend
        _device = device._device_name.split('/')[-1]
    elif isinstance(device, torch.device):
        # pytorch device meets tensorflow backend
        _device = str(device)
    else:
        _device = str(device).lower().split('/')[-1]
        if not any(
            (_device.startswith("cpu"), _device.startswith("cuda"), _device.startswith("gpu"))):
            raise RuntimeError(
                f" Expected one of cpu (CPU), cuda (CUDA), gpu (GPU) at the start of device string, but got {device}."
            )

    # modify _device name
    if _device.startswith("cuda") and kind == "T":
        _device = "GPU" + _device[4:]  # tensorflow uses 'GPU' instead of 'cuda'
    elif _device.startswith("gpu") and kind == "P":
        _device = "cuda" + _device[3:]  # pytorch uses 'cuda' instead of 'GPU'

    # pytorch return torch.device
    if kind == "P":
        if _device.startswith('cuda'):
            if not torch.cuda.is_available():
                raise RuntimeError(f"CUDA is unavailable for PyTorch backend.")
            # empty cache to avoid unnecessary memory usage
            # TODO: is this necessary?
            torch.cuda.empty_cache()
        return torch.device(_device)

    # tf return string
    if _device.startswith('gpu') and not tf.config.list_physical_devices('GPU'):
        raise RuntimeError(f"GPU is unavailable for TensorFlow backend.")
    return _device.upper()