コード例 #1
0
ファイル: logger_pyg.py プロジェクト: snap-stanford/GraphGym
    def write_epoch(self, cur_epoch):
        basic_stats = self.basic()

        if self.task_type == 'regression':
            task_stats = self.regression()
        elif self.task_type == 'classification_binary':
            task_stats = self.classification_binary()
        elif self.task_type == 'classification_multi':
            task_stats = self.classification_multi()
        else:
            raise ValueError('Task has to be regression or classification')

        epoch_stats = {'epoch': cur_epoch}
        eta_stats = {'eta': round(self.eta(cur_epoch), cfg.round)}
        custom_stats = self.custom()

        if self.name == 'train':
            stats = {**epoch_stats, **eta_stats, **basic_stats, **task_stats,
                     **custom_stats}
        else:
            stats = {**epoch_stats, **basic_stats, **task_stats, **custom_stats}

        # print
        logging.info('{}: {}'.format(self.name, stats))
        # json
        dict_to_json(stats, '{}/stats.json'.format(self.out_dir))
        # tensorboard
        if cfg.tensorboard_each_run:
            dict_to_tb(stats, self.tb_writer, cur_epoch)
        self.reset()
コード例 #2
0
    def write_epoch(self, cur_epoch, loader=None):
        # additionally pass in loader to access graph structure for community metrics
        basic_stats = self.basic()

        if self.task_type == 'regression':
            task_stats = self.regression()
        elif self.task_type == 'classification_binary':
            task_stats = self.classification_binary()
        elif self.task_type == 'classification_multi':
            task_stats = self.classification_multi()
        elif self.task_type == 'community':
            # TODO code smell, these should be registered like loaders
            task_stats = self.community_metrics(loader)
        else:
            raise ValueError('unknown task type')

        epoch_stats = {'epoch': cur_epoch}
        eta_stats = {'eta': round(self.eta(cur_epoch), cfg.round)}

        if self.name == 'train':
            stats = {**epoch_stats, **eta_stats, **basic_stats, **task_stats}
        else:
            stats = {**epoch_stats, **basic_stats, **task_stats}

        # print
        # logging.info('{}: {}'.format(self.name, stats))
        # json
        dict_to_json(stats, '{}/stats.json'.format(self.out_dir))
        # tensorboard
        if cfg.tensorboard_each_run:
            dict_to_tb(stats, self.tb_writer, cur_epoch)
        self.reset()
コード例 #3
0
ファイル: agg_runs.py プロジェクト: xnhp/GraphGym
def agg_runs(dir, metric_best='auto'):
    results = {'train': None, 'val': None, 'test': None}
    results_best = {'train': None, 'val': None, 'test': None}
    for seed in os.listdir(dir):
        if is_seed(seed):
            dir_seed = os.path.join(dir, seed)
            best_epoch = None
            # split = 'val'
            split = 'train'  # hack: only consider train split for unsupervised case (the
            # only split there is)
            if split in os.listdir(dir_seed):
                dir_split = os.path.join(dir_seed, split)
                fname_stats = os.path.join(dir_split, 'stats.json')
                stats_list = json_to_dict_list(fname_stats)  # read files
                if metric_best == 'auto':
                    metric = 'auc' if 'auc' in stats_list[0] else 'accuracy'
                else:
                    metric = metric_best
                performance_np = np.array(
                    [stats[metric] for stats in stats_list])
                best_epoch = stats_list[performance_np.argmax()]['epoch']
                print('best epoch:', best_epoch)

            # hack to catch cases where best_epoch is not determined
            if best_epoch is None:
                best_epoch = 0

            for split in os.listdir(dir_seed):
                if is_split(split):
                    dir_split = os.path.join(dir_seed, split)
                    fname_stats = os.path.join(dir_split, 'stats.json')
                    stats_list = json_to_dict_list(fname_stats)
                    # for each split, pick the stats of the epoch which gave the best
                    # performance on the validation split (see above)
                    stats_best = \
                        [stats for stats in stats_list if stats['epoch'] == best_epoch][0]
                    # write to file
                    dict_list_to_json([stats_best],
                                      os.path.join(dir_seed, "best.json"))
                    print(stats_best)
                    stats_list = [[stats] for stats in stats_list]
                    if results[split] is None:
                        results[split] = stats_list
                    else:
                        results[split] = join_list(results[split], stats_list)
                    if results_best[split] is None:
                        results_best[split] = [stats_best]
                    else:
                        results_best[split] += [stats_best]
    results = {k: v for k, v in results.items() if v is not None}  # rm None
    results_best = {k: v
                    for k, v in results_best.items()
                    if v is not None}  # rm None
    for key in results:
        for i in range(len(results[key])):
            results[key][i] = agg_dict_list(results[key][i])
    for key in results_best:
        results_best[key] = agg_dict_list(results_best[key])
    # save aggregated results
    for key, value in results.items():
        dir_out = os.path.join(dir, 'agg', key)
        makedirs_rm_exist(dir_out)
        fname = os.path.join(dir_out, 'stats.json')
        dict_list_to_json(value, fname)

        if cfg.tensorboard_agg:
            writer = SummaryWriter(dir_out)
            dict_list_to_tb(value, writer)
            writer.close()
    for key, value in results_best.items():
        dir_out = os.path.join(dir, 'agg', key)
        fname = os.path.join(dir_out, 'best.json')
        dict_to_json(value, fname)
    logging.info('Results aggregated across runs saved in {}'.format(
        os.path.join(dir, 'agg')))
コード例 #4
0
def agg_runs(dir, metric_best='auto'):
    results = {'train': None, 'val': None, 'test': None}
    results_best = {'train': None, 'val': None, 'test': None}
    for seed in os.listdir(dir):
        if is_seed(seed):
            dir_seed = os.path.join(dir, seed)

            split = 'val'
            if split in os.listdir(dir_seed):
                dir_split = os.path.join(dir_seed, split)
                fname_stats = os.path.join(dir_split, 'stats.json')
                stats_list = json_to_dict_list(fname_stats)
                if metric_best == 'auto':
                    metric = 'auc' if 'auc' in stats_list[0] else 'accuracy'
                else:
                    metric = metric_best
                performance_np = np.array(
                    [stats[metric] for stats in stats_list])
                best_epoch = stats_list[performance_np.argmax()]['epoch']
                print(best_epoch)

            for split in os.listdir(dir_seed):
                if is_split(split):
                    dir_split = os.path.join(dir_seed, split)
                    fname_stats = os.path.join(dir_split, 'stats.json')
                    stats_list = json_to_dict_list(fname_stats)
                    stats_best = [
                        stats for stats in stats_list
                        if stats['epoch'] == best_epoch
                    ][0]
                    print(stats_best)
                    stats_list = [[stats] for stats in stats_list]
                    if results[split] is None:
                        results[split] = stats_list
                    else:
                        results[split] = join_list(results[split], stats_list)
                    if results_best[split] is None:
                        results_best[split] = [stats_best]
                    else:
                        results_best[split] += [stats_best]
    results = {k: v for k, v in results.items() if v is not None}  # rm None
    results_best = {k: v
                    for k, v in results_best.items()
                    if v is not None}  # rm None
    for key in results:
        for i in range(len(results[key])):
            results[key][i] = agg_dict_list(results[key][i])
    for key in results_best:
        results_best[key] = agg_dict_list(results_best[key])
    # save aggregated results
    for key, value in results.items():
        dir_out = os.path.join(dir, 'agg', key)
        makedirs_rm_exist(dir_out)
        fname = os.path.join(dir_out, 'stats.json')
        dict_list_to_json(value, fname)

        if cfg.tensorboard_agg:
            writer = SummaryWriter(dir_out)
            dict_list_to_tb(value, writer)
            writer.close()
    for key, value in results_best.items():
        dir_out = os.path.join(dir, 'agg', key)
        fname = os.path.join(dir_out, 'best.json')
        dict_to_json(value, fname)
    logging.info('Results aggregated across runs saved in {}'.format(
        os.path.join(dir, 'agg')))