def store_results(dm, area, sex, year): types_to_plot = 'p i r rr'.split() graphics.plot_convergence_diag(dm.vars) pl.clf() for i, t in enumerate(types_to_plot): pl.subplot(len(types_to_plot), 1, i + 1) graphics.plot_data_bars(dm.model.get_data(t)) pl.plot(range(101), dm.emp_priors[t, 'mu'], linestyle='dashed', color='grey', label='Emp. Prior', linewidth=3) pl.plot(range(101), dm.true[t], 'b-', label='Truth', linewidth=3) pl.plot(range(101), dm.posteriors[t].mean(0), 'r-', label='Estimate', linewidth=3) pl.errorbar(range(101), dm.posteriors[t].mean(0), yerr=1.96 * dm.posteriors[t].std(0), fmt='r-', linewidth=1, capsize=0) pl.ylabel(t) graphics.expand_axis() pl.legend(loc=(0., -.95), fancybox=True, shadow=True) pl.subplots_adjust(hspace=0, left=.1, right=.95, bottom=.2, top=.95) pl.xlabel('Age (Years)') pl.show() model = dm model.mu = pandas.DataFrame() for t in types_to_plot: model.mu = model.mu.append(pandas.DataFrame( dict(true=dm.true[t], mu_pred=dm.posteriors[t].mean(0), sigma_pred=dm.posteriors[t].std(0))), ignore_index=True) data_simulation.add_quality_metrics(model.mu) print '\nparam prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.mu['abs_err'].mean(), pl.median(pl.absolute( model.mu['rel_err'].dropna())), model.mu['covered?'].mean()) print data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'mu') data_simulation.finalize_results(model) print model.results return model
def validate_prior_similarity(): #dm = dismod3.load_disease_model(20945) #dm.model = data.ModelData.from_gbd_jsons(json.loads(dm.to_json())) #t = 'i' #area, sex, year = 'europe_eastern', 'male', 2005 dm = dismod3.load_disease_model(20928) dm.model = data.ModelData.from_gbd_jsons(json.loads(dm.to_json())) t = 'p' area, sex, year = 'sub-saharan_africa_central', 'male', 2005 # select data that is about areas in this region, recent years, and sex of male or total only model = dm.model subtree = nx.traversal.bfs_tree(model.hierarchy, area) relevant_rows = [i for i, r in model.input_data.T.iteritems() \ if (r['area'] in subtree or r['area'] == 'all')\ and ((year == 2005 and r['year_end'] >= 1997) or r['year_start'] <= 1997) \ and r['sex'] in [sex, 'total']] model.input_data = model.input_data.ix[relevant_rows] # replace area 'all' with area model.input_data['area'][model.input_data['area'] == 'all'] = area for het in 'Slightly Moderately Very'.split(): dm.model.parameters[t]['parameter_age_mesh'] = [0, 15, 20, 25, 35, 45, 55, 65, 75, 100] dm.model.parameters[t]['heterogeneity'] = het setup_regional_model(dm, area, sex, year) dm.vars = {} dm.vars[t] = data_model.data_model(t, dm.model, t, root_area=area, root_sex=sex, root_year=year, mu_age=None, mu_age_parent=dm.emp_priors[t, 'mu'], sigma_age_parent=dm.emp_priors[t, 'sigma'], rate_type=(t == 'rr') and 'log_normal' or 'neg_binom') fit_model.fit_data_model(dm.vars[t], iter=10050, burn=5000, thin=50, tune_interval=100) #2graphics.plot_one_effects(dm.vars[t], t, dm.model.hierarchy) #pl.title(het) graphics.plot_convergence_diag(dm.vars[t]) pl.title(het) #graphics.plot_one_ppc(dm.vars[t], t) #pl.title(het) graphics.plot_one_type(dm.model, dm.vars[t], dm.emp_priors, t) pl.title(het) pl.show() return dm
def store_results(dm, area, sex, year): types_to_plot = 'p i r rr'.split() graphics.plot_convergence_diag(dm.vars) pl.clf() for i, t in enumerate(types_to_plot): pl.subplot(len(types_to_plot), 1, i+1) graphics.plot_data_bars(dm.model.get_data(t)) pl.plot(range(101), dm.emp_priors[t, 'mu'], linestyle='dashed', color='grey', label='Emp. Prior', linewidth=3) pl.plot(range(101), dm.true[t], 'b-', label='Truth', linewidth=3) pl.plot(range(101), dm.posteriors[t].mean(0), 'r-', label='Estimate', linewidth=3) pl.errorbar(range(101), dm.posteriors[t].mean(0), yerr=1.96*dm.posteriors[t].std(0), fmt='r-', linewidth=1, capsize=0) pl.ylabel(t) graphics.expand_axis() pl.legend(loc=(0.,-.95), fancybox=True, shadow=True) pl.subplots_adjust(hspace=0, left=.1, right=.95, bottom=.2, top=.95) pl.xlabel('Age (Years)') pl.show() model = dm model.mu = pandas.DataFrame() for t in types_to_plot: model.mu = model.mu.append(pandas.DataFrame(dict(true=dm.true[t], mu_pred=dm.posteriors[t].mean(0), sigma_pred=dm.posteriors[t].std(0))), ignore_index=True) data_simulation.add_quality_metrics(model.mu) print '\nparam prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.mu['abs_err'].mean(), pl.median(pl.absolute(model.mu['rel_err'].dropna())), model.mu['covered?'].mean()) print data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'mu') data_simulation.finalize_results(model) print model.results return model
predict_sex, predict_year, True, # population weighted averages model.vars[t], lower, upper) try: graphics.plot_fit(model, vars, emp_priors, {}) pl.savefig(dir + '/image/posterior-%s+%s+%s.png' % (predict_area, predict_sex, predict_year)) except Exception, e: print 'Error generating output graphics' print e try: graphics.plot_convergence_diag(vars) pl.savefig(dir + '/image/posterior-%s+%s+%s-convergence.png' % (predict_area, predict_sex, predict_year)) except Exception, e: print 'Error generating output graphics' print e dm.vars, dm.model, dm.emp_priors = model.vars, model, emp_priors for t in 'i r f p rr pf X m_with smr'.split(): if t not in dm.vars: continue print 'saving tables for', t if 'data' in dm.vars[t] and 'p_pred' in dm.vars[t]: stats = dm.vars[t]['p_pred'].stats(batches=5) dm.vars[t]['data']['mu_pred'] = stats['mean'] dm.vars[t]['data']['sigma_pred'] = stats['standard deviation']
def validate_prior_similarity(): #dm = dismod3.load_disease_model(20945) #dm.model = data.ModelData.from_gbd_jsons(json.loads(dm.to_json())) #t = 'i' #area, sex, year = 'europe_eastern', 'male', 2005 dm = dismod3.load_disease_model(20928) dm.model = data.ModelData.from_gbd_jsons(json.loads(dm.to_json())) t = 'p' area, sex, year = 'sub-saharan_africa_central', 'male', 2005 # select data that is about areas in this region, recent years, and sex of male or total only model = dm.model subtree = nx.traversal.bfs_tree(model.hierarchy, area) relevant_rows = [i for i, r in model.input_data.T.iteritems() \ if (r['area'] in subtree or r['area'] == 'all')\ and ((year == 2005 and r['year_end'] >= 1997) or r['year_start'] <= 1997) \ and r['sex'] in [sex, 'total']] model.input_data = model.input_data.ix[relevant_rows] # replace area 'all' with area model.input_data['area'][model.input_data['area'] == 'all'] = area for het in 'Slightly Moderately Very'.split(): dm.model.parameters[t]['parameter_age_mesh'] = [ 0, 15, 20, 25, 35, 45, 55, 65, 75, 100 ] dm.model.parameters[t]['heterogeneity'] = het setup_regional_model(dm, area, sex, year) dm.vars = {} dm.vars[t] = data_model.data_model( t, dm.model, t, root_area=area, root_sex=sex, root_year=year, mu_age=None, mu_age_parent=dm.emp_priors[t, 'mu'], sigma_age_parent=dm.emp_priors[t, 'sigma'], rate_type=(t == 'rr') and 'log_normal' or 'neg_binom') fit_model.fit_data_model(dm.vars[t], iter=10050, burn=5000, thin=50, tune_interval=100) #2graphics.plot_one_effects(dm.vars[t], t, dm.model.hierarchy) #pl.title(het) graphics.plot_convergence_diag(dm.vars[t]) pl.title(het) #graphics.plot_one_ppc(dm.vars[t], t) #pl.title(het) graphics.plot_one_type(dm.model, dm.vars[t], dm.emp_priors, t) pl.title(het) pl.show() return dm
def validate_age_pattern_model_sim(N=500, delta_true=.15, pi_true=quadratic): ## generate simulated data a = pl.arange(0, 101, 1) pi_age_true = pi_true(a) model = data_simulation.simple_model(N) model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10) age_list = pl.array(mc.runiform(0, 100, size=N), dtype=int) p = pi_age_true[age_list] n = mc.runiform(100, 10000, size=N) model.input_data['age_start'] = age_list model.input_data['age_end'] = age_list model.input_data['effective_sample_size'] = n model.input_data['true'] = p model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) graphics.plot_one_type(model, model.vars['p'], {}, 'p') pl.plot(a, pi_age_true, 'r:', label='Truth') pl.legend(fancybox=True, shadow=True, loc='upper left') pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() data_simulation.add_quality_metrics(model.delta) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame(dict(true=pi_age_true, mu_pred=model.vars['p']['mu_age'].stats()['mean'], sigma_pred=model.vars['p']['mu_age'].stats()['standard deviation'])) data_simulation.add_quality_metrics(model.mu) model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') model.results = pandas.DataFrame(model.results, columns='param bias mae mare pc'.split()) print model.results return model
upper=pl.inf posteriors[t] = covariate_model.predict_for(model, model.parameters.get(t, {}), predict_area, predict_sex, predict_year, predict_area, predict_sex, predict_year, True, # population weighted averages model.vars[t], lower, upper) try: graphics.plot_fit(model, vars, emp_priors, {}) pl.savefig(dir + '/image/posterior-%s+%s+%s.png'%(predict_area, predict_sex, predict_year)) except Exception, e: print 'Error generating output graphics' print e try: graphics.plot_convergence_diag(vars) pl.savefig(dir + '/image/posterior-%s+%s+%s-convergence.png'%(predict_area, predict_sex, predict_year)) except Exception, e: print 'Error generating output graphics' print e dm.vars, dm.model, dm.emp_priors = model.vars, model, emp_priors for t in 'i r f p rr pf X m_with smr'.split(): if t not in dm.vars: continue print 'saving tables for', t if 'data' in dm.vars[t] and 'p_pred' in dm.vars[t]: stats = dm.vars[t]['p_pred'].stats(batches=5) dm.vars[t]['data']['mu_pred'] = stats['mean'] dm.vars[t]['data']['sigma_pred'] = stats['standard deviation']
def validate_covariate_model_fe(N=100, delta_true=3, pi_true=.01, beta_true=[.5, -.5, 0.], replicate=0): # set random seed for reproducibility mc.np.random.seed(1234567 + replicate) ## generate simulated data a = pl.arange(0, 100, 1) pi_age_true = pi_true * pl.ones_like(a) model = data.ModelData() model.parameters['p']['parameter_age_mesh'] = [0, 100] model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) # add fixed effect to simulated data X = mc.rnormal(0., 1.**-2, size=(N, len(beta_true))) Y_true = pl.dot(X, beta_true) for i in range(len(beta_true)): model.input_data['x_%d' % i] = X[:, i] model.input_data['true'] = pi_true * pl.exp(Y_true) model.input_data['effective_sample_size'] = mc.runiform(100, 10000, N) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n * p, delta_true) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=5, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats( )['standard deviation'] add_quality_metrics(model.input_data) model.beta = pandas.DataFrame(index=model.vars['p']['X'].columns) model.beta['true'] = 0. for i in range(len(beta_true)): model.beta['true']['x_%d' % i] = beta_true[i] model.beta['mu_pred'] = [ n.stats()['mean'] for n in model.vars['p']['beta'] ] model.beta['sigma_pred'] = [ n.stats()['standard deviation'] for n in model.vars['p']['beta'] ] add_quality_metrics(model.beta) print '\nbeta' print model.beta model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'beta') model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta add_to_results(model, 'delta') print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % ( pl.median(pl.absolute(model.beta['abs_err'].dropna())), model.beta.dropna()['covered?'].mean()) add_to_results(model, 'input_data') add_to_results(model, 'beta') model.results = pandas.DataFrame(model.results) return model
def validate_covariate_model_dispersion(N=1000, delta_true=.15, pi_true=.01, zeta_true=[.5, -.5, 0.]): ## generate simulated data a = pl.arange(0, 100, 1) pi_age_true = pi_true * pl.ones_like(a) model = data.ModelData() model.parameters['p']['parameter_age_mesh'] = [0, 100] model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) Z = mc.rbernoulli(.5, size=(N, len(zeta_true))) * 1.0 delta = delta_true * pl.exp(pl.dot(Z, zeta_true)) for i in range(len(zeta_true)): model.input_data['z_%d'%i] = Z[:,i] model.input_data['true'] = pi_true model.input_data['effective_sample_size'] = mc.runiform(100, 10000, N) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n*p, delta*n*p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=5, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation'] add_quality_metrics(model.input_data) model.zeta = pandas.DataFrame(index=model.vars['p']['Z'].columns) model.zeta['true'] = zeta_true model.zeta['mu_pred'] = model.vars['p']['zeta'].stats()['mean'] model.zeta['sigma_pred'] = model.vars['p']['zeta'].stats()['standard deviation'] add_quality_metrics(model.zeta) print '\nzeta' print model.zeta model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % (pl.median(pl.absolute(model.zeta['abs_err'].dropna())), model.zeta.dropna()['covered?'].mean()) model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'delta') add_to_results(model, 'input_data') add_to_results(model, 'zeta') model.results = pandas.DataFrame(model.results, columns='param bias mae mare pc'.split()) return model
def validate_covariate_model_re(N=500, delta_true=.15, pi_true=.01, sigma_true=[.1, .1, .1, .1, .1], ess=1000): ## set simulation parameters import dismod3 import simplejson as json model = data.ModelData.from_gbd_jsons( json.loads(dismod3.disease_json.DiseaseJson().to_json())) model.parameters['p']['parameter_age_mesh'] = [0, 100] model.parameters['p'][ 'heterogeneity'] = 'Slightly' # ensure heterogeneity is slightly area_list = [] for sr in sorted(model.hierarchy.successors('all')): area_list.append(sr) for r in sorted(model.hierarchy.successors(sr)): area_list.append(r) area_list += sorted(model.hierarchy.successors(r))[:5] area_list = pl.array(area_list) ## generate simulation data model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) alpha = alpha_true_sim(model, area_list, sigma_true) # choose observed prevalence values model.input_data['effective_sample_size'] = ess model.input_data['area'] = area_list[mc.rcategorical( pl.ones(len(area_list)) / float(len(area_list)), N)] model.input_data['true'] = pl.nan for i, a in model.input_data['area'].iteritems(): model.input_data['true'][i] = pi_true * pl.exp( pl.sum([ alpha[n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha ])) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n * p, delta_true * n * p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=20000, burn=10000, thin=10, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats( )['standard deviation'] add_quality_metrics(model.input_data) model.alpha = pandas.DataFrame( index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)]) model.alpha['true'] = pandas.Series(dict(alpha)) model.alpha['mu_pred'] = pandas.Series( [n.stats()['mean'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha['sigma_pred'] = pandas.Series( [n.stats()['standard deviation'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) add_quality_metrics(model.alpha) print '\nalpha' print model.alpha.dropna() model.sigma = pandas.DataFrame(dict(true=sigma_true)) model.sigma['mu_pred'] = [ n.stats()['mean'] for n in model.vars['p']['sigma_alpha'] ] model.sigma['sigma_pred'] = [ n.stats()['standard deviation'] for n in model.vars['p']['sigma_alpha'] ] add_quality_metrics(model.sigma) print 'sigma_alpha' print model.sigma model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'sigma') model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta add_to_results(model, 'delta') print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % ( pl.median(pl.absolute(model.alpha['abs_err'].dropna())), model.alpha.dropna()['covered?'].mean()) add_to_results(model, 'input_data') add_to_results(model, 'alpha') model.results = pandas.DataFrame(model.results) return model
def validate_ai_re(N=500, delta_true=.15, sigma_true=[.1, .1, .1, .1, .1], pi_true=quadratic, smoothness='Moderately', heterogeneity='Slightly'): ## generate simulated data a = pl.arange(0, 101, 1) pi_age_true = pi_true(a) import dismod3 import simplejson as json model = data.ModelData.from_gbd_jsons( json.loads(dismod3.disease_json.DiseaseJson().to_json())) gbd_hierarchy = model.hierarchy model = data_simulation.simple_model(N) model.hierarchy = gbd_hierarchy model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10) model.parameters['p']['smoothness'] = dict(amount=smoothness) model.parameters['p']['heterogeneity'] = heterogeneity age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int) age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int) age_weights = pl.ones_like(a) sum_pi_wt = pl.cumsum(pi_age_true * age_weights) sum_wt = pl.cumsum(age_weights * 1.) p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start]) # correct cases where age_start == age_end i = age_start == age_end if pl.any(i): p[i] = pi_age_true[age_start[i]] model.input_data['age_start'] = age_start model.input_data['age_end'] = age_end model.input_data['effective_sample_size'] = mc.runiform(100, 10000, size=N) from validate_covariates import alpha_true_sim area_list = pl.array([ 'all', 'super-region_3', 'north_africa_middle_east', 'EGY', 'KWT', 'IRN', 'IRQ', 'JOR', 'SYR' ]) alpha = alpha_true_sim(model, area_list, sigma_true) print alpha model.input_data['true'] = pl.nan model.input_data['area'] = area_list[mc.rcategorical( pl.ones(len(area_list)) / float(len(area_list)), N)] for i, a in model.input_data['area'].iteritems(): model.input_data['true'][i] = p[i] * pl.exp( pl.sum([ alpha[n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha ])) p = model.input_data['true'] n = model.input_data['effective_sample_size'] model.input_data['value'] = mc.rnegative_binomial(n * p, delta_true * n * p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'north_africa_middle_east', 'total', 'all', None, None, None) #model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=1005, burn=500, thin=5, tune_interval=100) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) graphics.plot_one_type(model, model.vars['p'], {}, 'p') pl.plot(range(101), pi_age_true, 'r:', label='Truth') pl.legend(fancybox=True, shadow=True, loc='upper left') pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats( )['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() data_simulation.add_quality_metrics(model.delta) model.alpha = pandas.DataFrame( index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)]) model.alpha['true'] = pandas.Series(dict(alpha)) model.alpha['mu_pred'] = pandas.Series( [n.stats()['mean'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha['sigma_pred'] = pandas.Series( [n.stats()['standard deviation'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha = model.alpha.dropna() data_simulation.add_quality_metrics(model.alpha) model.sigma = pandas.DataFrame(dict(true=sigma_true)) model.sigma['mu_pred'] = [ n.stats()['mean'] for n in model.vars['p']['sigma_alpha'] ] model.sigma['sigma_pred'] = [ n.stats()['standard deviation'] for n in model.vars['p']['sigma_alpha'] ] data_simulation.add_quality_metrics(model.sigma) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame( dict(true=pi_age_true, mu_pred=model.vars['p']['mu_age'].stats()['mean'], sigma_pred=model.vars['p']['mu_age'].stats() ['standard deviation'])) data_simulation.add_quality_metrics(model.mu) data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') data_simulation.add_to_results(model, 'alpha') data_simulation.add_to_results(model, 'sigma') data_simulation.finalize_results(model) print model.results return model
def validate_consistent_re(N=500, delta_true=.15, sigma_true=[.1,.1,.1,.1,.1], true=dict(i=quadratic, f=constant, r=constant)): types = pl.array(['i', 'r', 'f', 'p']) ## generate simulated data model = data_simulation.simple_model(N) model.input_data['effective_sample_size'] = 1. model.input_data['value'] = 0. # coarse knot spacing for fast testing for t in types: model.parameters[t]['parameter_age_mesh'] = range(0, 101, 20) sim = consistent_model.consistent_model(model, 'all', 'total', 'all', {}) for t in 'irf': for i, k_i in enumerate(sim[t]['knots']): sim[t]['gamma'][i].value = pl.log(true[t](k_i)) age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int) age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int) data_type = types[mc.rcategorical(pl.ones(len(types), dtype=float) / float(len(types)), size=N)] a = pl.arange(101) age_weights = pl.ones_like(a) sum_wt = pl.cumsum(age_weights) p = pl.zeros(N) for t in types: mu_t = sim[t]['mu_age'].value sum_mu_wt = pl.cumsum(mu_t*age_weights) p_t = (sum_mu_wt[age_end] - sum_mu_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start]) # correct cases where age_start == age_end i = age_start == age_end if pl.any(i): p_t[i] = mu_t[age_start[i]] # copy part into p p[data_type==t] = p_t[data_type==t] # add covariate shifts import dismod3 import simplejson as json gbd_model = data.ModelData.from_gbd_jsons(json.loads(dismod3.disease_json.DiseaseJson().to_json())) model.hierarchy = gbd_model.hierarchy from validate_covariates import alpha_true_sim area_list = pl.array(['all', 'super-region_3', 'north_africa_middle_east', 'EGY', 'KWT', 'IRN', 'IRQ', 'JOR', 'SYR']) alpha = {} for t in types: alpha[t] = alpha_true_sim(model, area_list, sigma_true) print json.dumps(alpha, indent=2) model.input_data['area'] = area_list[mc.rcategorical(pl.ones(len(area_list)) / float(len(area_list)), N)] for i, a in model.input_data['area'].iteritems(): t = data_type[i] p[i] = p[i] * pl.exp(pl.sum([alpha[t][n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha])) n = mc.runiform(100, 10000, size=N) model.input_data['data_type'] = data_type model.input_data['age_start'] = age_start model.input_data['age_end'] = age_end model.input_data['effective_sample_size'] = n model.input_data['true'] = p model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true) / n # coarse knot spacing for fast testing for t in types: model.parameters[t]['parameter_age_mesh'] = range(0, 101, 20) ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars = consistent_model.consistent_model(model, 'all', 'total', 'all', {}) #model.map, model.mcmc = fit_model.fit_consistent_model(model.vars, iter=101, burn=0, thin=1, tune_interval=100) model.map, model.mcmc = fit_model.fit_consistent_model(model.vars, iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_convergence_diag(model.vars) graphics.plot_fit(model, model.vars, {}, {}) for i, t in enumerate('i r f p rr pf'.split()): pl.subplot(2, 3, i+1) pl.plot(range(101), sim[t]['mu_age'].value, 'w-', label='Truth', linewidth=2) pl.plot(range(101), sim[t]['mu_age'].value, 'r-', label='Truth', linewidth=1) pl.show() model.input_data['mu_pred'] = 0. model.input_data['sigma_pred'] = 0. for t in types: model.input_data['mu_pred'][data_type==t] = model.vars[t]['p_pred'].stats()['mean'] model.input_data['sigma_pred'][data_type==t] = model.vars[t]['p_pred'].stats()['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame(dict(true=[delta_true for t in types if t != 'rr'])) model.delta['mu_pred'] = [pl.exp(model.vars[t]['eta'].trace()).mean() for t in types if t != 'rr'] model.delta['sigma_pred'] = [pl.exp(model.vars[t]['eta'].trace()).std() for t in types if t != 'rr'] data_simulation.add_quality_metrics(model.delta) model.alpha = pandas.DataFrame() model.sigma = pandas.DataFrame() for t in types: alpha_t = pandas.DataFrame(index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)]) alpha_t['true'] = pandas.Series(dict(alpha[t])) alpha_t['mu_pred'] = pandas.Series([n.stats()['mean'] for n in model.vars[t]['alpha']], index=model.vars[t]['U'].columns) alpha_t['sigma_pred'] = pandas.Series([n.stats()['standard deviation'] for n in model.vars[t]['alpha']], index=model.vars[t]['U'].columns) alpha_t['type'] = t model.alpha = model.alpha.append(alpha_t.dropna(), ignore_index=True) sigma_t = pandas.DataFrame(dict(true=sigma_true)) sigma_t['mu_pred'] = [n.stats()['mean'] for n in model.vars[t]['sigma_alpha']] sigma_t['sigma_pred'] = [n.stats()['standard deviation'] for n in model.vars[t]['sigma_alpha']] model.sigma = model.sigma.append(sigma_t.dropna(), ignore_index=True) data_simulation.add_quality_metrics(model.alpha) data_simulation.add_quality_metrics(model.sigma) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame() for t in types: model.mu = model.mu.append(pandas.DataFrame(dict(true=sim[t]['mu_age'].value, mu_pred=model.vars[t]['mu_age'].stats()['mean'], sigma_pred=model.vars[t]['mu_age'].stats()['standard deviation'])), ignore_index=True) data_simulation.add_quality_metrics(model.mu) print '\nparam prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.mu['abs_err'].mean(), pl.median(pl.absolute(model.mu['rel_err'].dropna())), model.mu['covered?'].mean()) print data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') data_simulation.add_to_results(model, 'alpha') data_simulation.add_to_results(model, 'sigma') data_simulation.finalize_results(model) print model.results return model
def validate_consistent_model_sim(N=500, delta_true=.5, true=dict(i=quadratic, f=constant, r=constant)): types = pl.array(['i', 'r', 'f', 'p']) ## generate simulated data model = data_simulation.simple_model(N) model.input_data['effective_sample_size'] = 1. model.input_data['value'] = 0. for t in types: model.parameters[t]['parameter_age_mesh'] = range(0, 101, 20) sim = consistent_model.consistent_model(model, 'all', 'total', 'all', {}) for t in 'irf': for i, k_i in enumerate(sim[t]['knots']): sim[t]['gamma'][i].value = pl.log(true[t](k_i)) age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int) age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int) data_type = types[mc.rcategorical(pl.ones(len(types), dtype=float) / float(len(types)), size=N)] a = pl.arange(101) age_weights = pl.ones_like(a) sum_wt = pl.cumsum(age_weights) p = pl.zeros(N) for t in types: mu_t = sim[t]['mu_age'].value sum_mu_wt = pl.cumsum(mu_t * age_weights) p_t = (sum_mu_wt[age_end] - sum_mu_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start]) # correct cases where age_start == age_end i = age_start == age_end if pl.any(i): p_t[i] = mu_t[age_start[i]] # copy part into p p[data_type == t] = p_t[data_type == t] n = mc.runiform(100, 10000, size=N) model.input_data['data_type'] = data_type model.input_data['age_start'] = age_start model.input_data['age_end'] = age_end model.input_data['effective_sample_size'] = n model.input_data['true'] = p model.input_data['value'] = mc.rnegative_binomial(n * p, delta_true * n * p) / n # coarse knot spacing for fast testing for t in types: model.parameters[t]['parameter_age_mesh'] = range(0, 101, 20) ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars = consistent_model.consistent_model(model, 'all', 'total', 'all', {}) model.map, model.mcmc = fit_model.fit_consistent_model(model.vars, iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_convergence_diag(model.vars) graphics.plot_fit(model, model.vars, {}, {}) for i, t in enumerate('i r f p rr pf'.split()): pl.subplot(2, 3, i + 1) pl.plot(a, sim[t]['mu_age'].value, 'w-', label='Truth', linewidth=2) pl.plot(a, sim[t]['mu_age'].value, 'r-', label='Truth', linewidth=1) #graphics.plot_one_type(model, model.vars['p'], {}, 'p') #pl.legend(fancybox=True, shadow=True, loc='upper left') pl.show() model.input_data['mu_pred'] = 0. model.input_data['sigma_pred'] = 0. for t in types: model.input_data['mu_pred'][ data_type == t] = model.vars[t]['p_pred'].stats()['mean'] model.input_data['sigma_pred'][data_type == t] = model.vars['p'][ 'p_pred'].stats()['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame( dict(true=[delta_true for t in types if t != 'rr'])) model.delta['mu_pred'] = [ pl.exp(model.vars[t]['eta'].trace()).mean() for t in types if t != 'rr' ] model.delta['sigma_pred'] = [ pl.exp(model.vars[t]['eta'].trace()).std() for t in types if t != 'rr' ] data_simulation.add_quality_metrics(model.delta) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame() for t in types: model.mu = model.mu.append(pandas.DataFrame( dict(true=sim[t]['mu_age'].value, mu_pred=model.vars[t]['mu_age'].stats()['mean'], sigma_pred=model.vars[t]['mu_age'].stats() ['standard deviation'])), ignore_index=True) data_simulation.add_quality_metrics(model.mu) print '\nparam prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.mu['abs_err'].mean(), pl.median(pl.absolute( model.mu['rel_err'].dropna())), model.mu['covered?'].mean()) print data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') data_simulation.finalize_results(model) print model.results return model
def validate_covariate_model_fe(N=100, delta_true=3, pi_true=.01, beta_true=[.5, -.5, 0.], replicate=0): # set random seed for reproducibility mc.np.random.seed(1234567 + replicate) ## generate simulated data a = pl.arange(0, 100, 1) pi_age_true = pi_true * pl.ones_like(a) model = data.ModelData() model.parameters['p']['parameter_age_mesh'] = [0, 100] model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) # add fixed effect to simulated data X = mc.rnormal(0., 1.**-2, size=(N,len(beta_true))) Y_true = pl.dot(X, beta_true) for i in range(len(beta_true)): model.input_data['x_%d'%i] = X[:,i] model.input_data['true'] = pi_true * pl.exp(Y_true) model.input_data['effective_sample_size'] = mc.runiform(100, 10000, N) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=5, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation'] add_quality_metrics(model.input_data) model.beta = pandas.DataFrame(index=model.vars['p']['X'].columns) model.beta['true'] = 0. for i in range(len(beta_true)): model.beta['true']['x_%d'%i] = beta_true[i] model.beta['mu_pred'] = [n.stats()['mean'] for n in model.vars['p']['beta']] model.beta['sigma_pred'] = [n.stats()['standard deviation'] for n in model.vars['p']['beta']] add_quality_metrics(model.beta) print '\nbeta' print model.beta model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'beta') model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta add_to_results(model, 'delta') print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % (pl.median(pl.absolute(model.beta['abs_err'].dropna())), model.beta.dropna()['covered?'].mean()) add_to_results(model, 'input_data') add_to_results(model, 'beta') model.results = pandas.DataFrame(model.results) return model
def validate_ai_re(N=500, delta_true=.15, sigma_true=[.1,.1,.1,.1,.1], pi_true=quadratic, smoothness='Moderately', heterogeneity='Slightly'): ## generate simulated data a = pl.arange(0, 101, 1) pi_age_true = pi_true(a) import dismod3 import simplejson as json model = data.ModelData.from_gbd_jsons(json.loads(dismod3.disease_json.DiseaseJson().to_json())) gbd_hierarchy = model.hierarchy model = data_simulation.simple_model(N) model.hierarchy = gbd_hierarchy model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10) model.parameters['p']['smoothness'] = dict(amount=smoothness) model.parameters['p']['heterogeneity'] = heterogeneity age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int) age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int) age_weights = pl.ones_like(a) sum_pi_wt = pl.cumsum(pi_age_true*age_weights) sum_wt = pl.cumsum(age_weights*1.) p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start]) # correct cases where age_start == age_end i = age_start == age_end if pl.any(i): p[i] = pi_age_true[age_start[i]] model.input_data['age_start'] = age_start model.input_data['age_end'] = age_end model.input_data['effective_sample_size'] = mc.runiform(100, 10000, size=N) from validate_covariates import alpha_true_sim area_list = pl.array(['all', 'super-region_3', 'north_africa_middle_east', 'EGY', 'KWT', 'IRN', 'IRQ', 'JOR', 'SYR']) alpha = alpha_true_sim(model, area_list, sigma_true) print alpha model.input_data['true'] = pl.nan model.input_data['area'] = area_list[mc.rcategorical(pl.ones(len(area_list)) / float(len(area_list)), N)] for i, a in model.input_data['area'].iteritems(): model.input_data['true'][i] = p[i] * pl.exp(pl.sum([alpha[n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha])) p = model.input_data['true'] n = model.input_data['effective_sample_size'] model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'north_africa_middle_east', 'total', 'all', None, None, None) #model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=1005, burn=500, thin=5, tune_interval=100) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) graphics.plot_one_type(model, model.vars['p'], {}, 'p') pl.plot(range(101), pi_age_true, 'r:', label='Truth') pl.legend(fancybox=True, shadow=True, loc='upper left') pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() data_simulation.add_quality_metrics(model.delta) model.alpha = pandas.DataFrame(index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)]) model.alpha['true'] = pandas.Series(dict(alpha)) model.alpha['mu_pred'] = pandas.Series([n.stats()['mean'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha['sigma_pred'] = pandas.Series([n.stats()['standard deviation'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha = model.alpha.dropna() data_simulation.add_quality_metrics(model.alpha) model.sigma = pandas.DataFrame(dict(true=sigma_true)) model.sigma['mu_pred'] = [n.stats()['mean'] for n in model.vars['p']['sigma_alpha']] model.sigma['sigma_pred']=[n.stats()['standard deviation'] for n in model.vars['p']['sigma_alpha']] data_simulation.add_quality_metrics(model.sigma) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame(dict(true=pi_age_true, mu_pred=model.vars['p']['mu_age'].stats()['mean'], sigma_pred=model.vars['p']['mu_age'].stats()['standard deviation'])) data_simulation.add_quality_metrics(model.mu) data_simulation.initialize_results(model) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') data_simulation.add_to_results(model, 'alpha') data_simulation.add_to_results(model, 'sigma') data_simulation.finalize_results(model) print model.results return model
def validate_covariate_model_dispersion(N=1000, delta_true=.15, pi_true=.01, zeta_true=[.5, -.5, 0.]): ## generate simulated data a = pl.arange(0, 100, 1) pi_age_true = pi_true * pl.ones_like(a) model = data.ModelData() model.parameters['p']['parameter_age_mesh'] = [0, 100] model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) Z = mc.rbernoulli(.5, size=(N, len(zeta_true))) * 1.0 delta = delta_true * pl.exp(pl.dot(Z, zeta_true)) for i in range(len(zeta_true)): model.input_data['z_%d' % i] = Z[:, i] model.input_data['true'] = pi_true model.input_data['effective_sample_size'] = mc.runiform(100, 10000, N) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n * p, delta * n * p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=5, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats( )['standard deviation'] add_quality_metrics(model.input_data) model.zeta = pandas.DataFrame(index=model.vars['p']['Z'].columns) model.zeta['true'] = zeta_true model.zeta['mu_pred'] = model.vars['p']['zeta'].stats()['mean'] model.zeta['sigma_pred'] = model.vars['p']['zeta'].stats( )['standard deviation'] add_quality_metrics(model.zeta) print '\nzeta' print model.zeta model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % ( pl.median(pl.absolute(model.zeta['abs_err'].dropna())), model.zeta.dropna()['covered?'].mean()) model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'delta') add_to_results(model, 'input_data') add_to_results(model, 'zeta') model.results = pandas.DataFrame(model.results, columns='param bias mae mare pc'.split()) return model
def validate_age_integrating_model_sim(N=500, delta_true=.15, pi_true=quadratic): ## generate simulated data a = pl.arange(0, 101, 1) pi_age_true = pi_true(a) model = data_simulation.simple_model(N) #model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10) #model.parameters['p']['smoothness'] = dict(amount='Very') age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int) age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int) age_weights = pl.ones_like(a) sum_pi_wt = pl.cumsum(pi_age_true * age_weights) sum_wt = pl.cumsum(age_weights) p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start]) # correct cases where age_start == age_end i = age_start == age_end if pl.any(i): p[i] = pi_age_true[age_start[i]] n = mc.runiform(100, 10000, size=N) model.input_data['age_start'] = age_start model.input_data['age_end'] = age_end model.input_data['effective_sample_size'] = n model.input_data['true'] = p model.input_data['value'] = mc.rnegative_binomial(n * p, delta_true * n * p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) graphics.plot_one_type(model, model.vars['p'], {}, 'p') pl.plot(a, pi_age_true, 'r:', label='Truth') pl.legend(fancybox=True, shadow=True, loc='upper left') pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats( )['standard deviation'] data_simulation.add_quality_metrics(model.input_data) model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() data_simulation.add_quality_metrics(model.delta) print 'delta' print model.delta print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % ( model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) model.mu = pandas.DataFrame( dict(true=pi_age_true, mu_pred=model.vars['p']['mu_age'].stats()['mean'], sigma_pred=model.vars['p']['mu_age'].stats() ['standard deviation'])) data_simulation.add_quality_metrics(model.mu) model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) data_simulation.add_to_results(model, 'delta') data_simulation.add_to_results(model, 'mu') data_simulation.add_to_results(model, 'input_data') model.results = pandas.DataFrame(model.results, columns='param bias mae mare pc'.split()) print model.results return model
def validate_covariate_model_re(N=500, delta_true=.15, pi_true=.01, sigma_true = [.1,.1,.1,.1,.1], ess=1000): ## set simulation parameters import dismod3 import simplejson as json model = data.ModelData.from_gbd_jsons(json.loads(dismod3.disease_json.DiseaseJson().to_json())) model.parameters['p']['parameter_age_mesh'] = [0, 100] model.parameters['p']['heterogeneity'] = 'Slightly' # ensure heterogeneity is slightly area_list = [] for sr in sorted(model.hierarchy.successors('all')): area_list.append(sr) for r in sorted(model.hierarchy.successors(sr)): area_list.append(r) area_list += sorted(model.hierarchy.successors(r))[:5] area_list = pl.array(area_list) ## generate simulation data model.input_data = pandas.DataFrame(index=range(N)) initialize_input_data(model.input_data) alpha = alpha_true_sim(model, area_list, sigma_true) # choose observed prevalence values model.input_data['effective_sample_size'] = ess model.input_data['area'] = area_list[mc.rcategorical(pl.ones(len(area_list)) / float(len(area_list)), N)] model.input_data['true'] = pl.nan for i, a in model.input_data['area'].iteritems(): model.input_data['true'][i] = pi_true * pl.exp(pl.sum([alpha[n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha])) n = model.input_data['effective_sample_size'] p = model.input_data['true'] model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n ## Then fit the model and compare the estimates to the truth model.vars = {} model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None) model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=20000, burn=10000, thin=10, tune_interval=100) graphics.plot_one_ppc(model.vars['p'], 'p') graphics.plot_convergence_diag(model.vars) pl.show() model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean'] model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation'] add_quality_metrics(model.input_data) model.alpha = pandas.DataFrame(index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)]) model.alpha['true'] = pandas.Series(dict(alpha)) model.alpha['mu_pred'] = pandas.Series([n.stats()['mean'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) model.alpha['sigma_pred'] = pandas.Series([n.stats()['standard deviation'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns) add_quality_metrics(model.alpha) print '\nalpha' print model.alpha.dropna() model.sigma = pandas.DataFrame(dict(true=sigma_true)) model.sigma['mu_pred'] = [n.stats()['mean'] for n in model.vars['p']['sigma_alpha']] model.sigma['sigma_pred']=[n.stats()['standard deviation'] for n in model.vars['p']['sigma_alpha']] add_quality_metrics(model.sigma) print 'sigma_alpha' print model.sigma model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[]) add_to_results(model, 'sigma') model.delta = pandas.DataFrame(dict(true=[delta_true])) model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean() model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std() add_quality_metrics(model.delta) print 'delta' print model.delta add_to_results(model, 'delta') print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(), pl.median(pl.absolute(model.input_data['rel_err'].dropna())), model.input_data['covered?'].mean()) print 'effect prediction MAE: %.3f, coverage: %.2f' % (pl.median(pl.absolute(model.alpha['abs_err'].dropna())), model.alpha.dropna()['covered?'].mean()) add_to_results(model, 'input_data') add_to_results(model, 'alpha') model.results = pandas.DataFrame(model.results) return model