def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False # Set the random seed for the program torch.manual_seed(args.random_seed) np.random.seed(args.random_seed) np.set_printoptions(precision=8) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) search_space, action_list, submodel_manager = \ build_search_space(args) if args.optimizer == 'EA': model_selector = EA_Selector(args, search_space, action_list, submodel_manager) elif args.optimizer == 'RL': model_selector = RL_Selector(args, search_space, action_list, submodel_manager) elif args.optimizer == 'GS': model_selector = GridSearch_Selector(args, search_space, action_list, submodel_manager) elif args.optimizer == 'RS': model_selector = RandomSearch_Selector(args, search_space, action_list, submodel_manager) else: raise Exception("[!] Optimizer not found: ", args.optimizer) exit(1) print('on selector main: ', args) model_selector.select()
def main(args): # pylint:disable=redefined-outer-name # os.environ['CUDA_VISIBLE_DEVICE'] = args.device if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False print("CUDA NOT AVAILABLE!") # args.max_epoch = 1 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: # print("Device Num", torch.cuda.current_device()) torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False # args.max_epoch = 10 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) # 创建包含数据集Citeseer名称目录 utils.makedirs(args.dataset) """ def makedirs(path): if not os.path.exists(path): logger.info("[*] Make directories : {}".format(path)) os.makedirs(path) """ #训练入口,获取最终GNN入口 trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False torch.manual_seed(args.random_seed) np.random.seed(args.random_seed) np.set_printoptions(precision=8) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) if args.optimizer == 'EA': trainer = Evolution_Trainer(args) elif args.optimizer == 'RL': trainer = RL_Trainer(args) elif args.optimizer == 'GS': trainer = GridSearch_Trainer(args) elif args.optimizer == 'RS': trainer = RandomSearch_Trainer(args) else: raise Exception("[!] Optimizer not found: ", args.optimizer) if args.mode == 'train': print(args) trainer.train() elif args.mode == 'derive': trainer.derive() else: raise Exception("[!] Mode not found: ", args.mode)
def __init__(self, args): if args.cuda and not torch.cuda.is_available(): args.cuda = False torch.manual_seed(args.random_seed) np.random.seed(args.random_seed) np.set_printoptions(precision=8) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trainer = Evolution_Trainer(args) trainer.train()
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False torch.manual_seed(args.random_seed) np.random.seed(args.random_seed) np.set_printoptions(precision=8) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trainer = Evolution_Trainer(args) trainer.train()
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False # args.max_epoch = 1 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
def fitness_func(solution, solution_idx): args = build_args() if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) global trnr search_space = MacroSearchSpace().search_space gnn = [] gnn.append(search_space['attention_type'][int(solution[0])]) gnn.append(search_space['aggregator_type'][int(solution[1])]) gnn.append(search_space['activate_function'][int(solution[2])]) gnn.append(int(solution[3])) gnn.append(int(solution[4])) gnn.append(search_space['attention_type'][int(solution[5])]) gnn.append(search_space['aggregator_type'][int(solution[6])]) gnn.append(search_space['activate_function'][int(solution[7])]) gnn.append(int(solution[8])) gnn.append(6) fitness = trnr.genetic_get_reward(gnn)[1] return fitness
args1 = Parameter(method1) args2 = Parameter(method2) args3 = Parameter(method3) if args1.cuda and not torch.cuda.is_available(): args1.cuda = False torch.manual_seed(args1.random_seed) np.random.seed(args1.random_seed) np.set_printoptions(precision=8) if args1.cuda: torch.cuda.manual_seed(args1.random_seed) utils.makedirs(args1.dataset) trainer1 = Evolution_Trainer.remote(args1) trainer2 = Evolution_Trainer.remote(args2) trainer3 = Evolution_Trainer.remote(args3) initialize_pop1, initialize_acc1 = trainer1.initialize_population_Random.remote( ) initialize_pop2, initialize_acc2 = trainer2.initialize_population_Random.remote( ) initialize_pop3, initialize_acc3 = trainer3.initialize_population_Random.remote( ) task1 = [initialize_pop1, initialize_acc1] task2 = [initialize_pop2, initialize_acc2] task3 = [initialize_pop3, initialize_acc3]