def test_small_graph_centrality(self): G = nx.empty_graph(create_using=nx.DiGraph) assert {} == nx.degree_centrality(G) assert {} == nx.out_degree_centrality(G) assert {} == nx.in_degree_centrality(G) G = nx.empty_graph(1, create_using=nx.DiGraph) assert {0: 1} == nx.degree_centrality(G) assert {0: 1} == nx.out_degree_centrality(G) assert {0: 1} == nx.in_degree_centrality(G)
def parse_adjlist(lines, comments="#", delimiter=None, create_using=None, nodetype=None): G = nx.empty_graph(0, create_using) edges = [] for line in lines: p = line.find(comments) if p >= 0: line = line[:p] if not len(line): continue vlist = line.strip().split(delimiter) u = vlist.pop(0) # convert types if nodetype is not None: try: u = nodetype(u) except Exception as e: raise TypeError( "Failed to convert node ({}) to type {}".format( u, nodetype)) from e if nodetype is not None: try: vlist = map(nodetype, vlist) except Exception as e: raise TypeError( "Failed to convert nodes ({}) to type {}".format( ",".join(vlist), nodetype)) from e edges.extend([u, v] for v in vlist) G.add_edges_from(edges) return G
def from_pandas_edgelist(df, source="source", target="target", edge_attr=None, create_using=None): g = nx.empty_graph(0, create_using) if edge_attr is None: g.add_edges_from(zip(df[source], df[target])) return g # Additional columns requested if edge_attr is True: cols = [c for c in df.columns if c is not source and c is not target] elif isinstance(edge_attr, (list, tuple)): cols = edge_attr else: cols = [edge_attr] if len(cols) == 0: msg = f"Invalid edge_attr argument. No columns found with name: {cols}" raise nx.NetworkXError(msg) try: eattrs = zip(*[df[col] for col in cols]) except (KeyError, TypeError) as e: msg = f"Invalid edge_attr argument: {edge_attr}" raise nx.NetworkXError(msg) from e edges = [] for s, t, attrs in zip(df[source], df[target], eattrs): edges.append((s, t, zip(cols, attrs))) g.add_edges_from(edges) return g
def parse_edgelist( lines, comments="#", delimiter=None, create_using=None, nodetype=None, data=True ): from ast import literal_eval G = nx.empty_graph(0, create_using) edges = [] for line in lines: p = line.find(comments) if p >= 0: line = line[:p] if not len(line): continue # split line, should have 2 or more s = line.strip().split(delimiter) if len(s) < 2: continue u = s.pop(0) v = s.pop(0) d = s if nodetype is not None: try: u = nodetype(u) v = nodetype(v) except Exception as e: raise TypeError( "Failed to convert nodes %s,%s to type %s." % (u, v, nodetype) ) from e if len(d) == 0 or data is False: # no data or data type specified edgedata = {} elif data is True: # no edge types specified try: # try to evaluate as dictionary edgedata = dict(literal_eval(" ".join(d))) except Exception as e: raise TypeError( "Failed to convert edge data (%s) to dictionary." % (d) ) from e else: # convert edge data to dictionary with specified keys and type if len(d) != len(data): raise IndexError( "Edge data %s and data_keys %s are not the same length" % (d, data) ) edgedata = {} for (edge_key, edge_type), edge_value in zip(data, d): try: edge_value = edge_type(edge_value) except Exception as e: raise TypeError( "Failed to convert %s data %s to type %s." % (edge_key, edge_value, edge_type) ) from e edgedata.update({edge_key: edge_value}) edges.append((u, v, edgedata)) G.add_edges_from(edges) return G
def binomial_tree(n): G = nx.empty_graph(1) N = 1 for i in range(n): edges = [(u + N, v + N) for (u, v) in G.edges] G.add_edges_from(edges) G.add_edge(0, N) N *= 2 return G
def random_k_out_graph(n, k, alpha, self_loops=True, seed=None): """Returns a random `k`-out graph with preferential attachment. A random `k`-out graph with preferential attachment is a multidigraph generated by the following algorithm. 1. Begin with an empty digraph, and initially set each node to have weight `alpha`. 2. Choose a node `u` with out-degree less than `k` uniformly at random. 3. Choose a node `v` from with probability proportional to its weight. 4. Add a directed edge from `u` to `v`, and increase the weight of `v` by one. 5. If each node has out-degree `k`, halt, otherwise repeat from step 2. For more information on this model of random graph, see [1]. Parameters ---------- n : int The number of nodes in the returned graph. k : int The out-degree of each node in the returned graph. alpha : float A positive :class:`float` representing the initial weight of each vertex. A higher number means that in step 3 above, nodes will be chosen more like a true uniformly random sample, and a lower number means that nodes are more likely to be chosen as their in-degree increases. If this parameter is not positive, a :exc:`ValueError` is raised. self_loops : bool If True, self-loops are allowed when generating the graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- :class:`~networkx.classes.MultiDiGraph` A `k`-out-regular multidigraph generated according to the above algorithm. Raises ------ ValueError If `alpha` is not positive. Notes ----- The returned multidigraph may not be strongly connected, or even weakly connected. References ---------- [1]: Peterson, Nicholas R., and Boris Pittel. "Distance between two random `k`-out digraphs, with and without preferential attachment." arXiv preprint arXiv:1311.5961 (2013). <https://arxiv.org/abs/1311.5961> """ if alpha < 0: raise ValueError("alpha must be positive") G = nx.empty_graph(n, create_using=nx.MultiDiGraph) weights = Counter({v: alpha for v in G}) for i in range(k * n): u = seed.choice([v for v, d in G.out_degree() if d < k]) # If self-loops are not allowed, make the source node `u` have # weight zero. if not self_loops: adjustment = Counter({u: weights[u]}) else: adjustment = Counter() v = weighted_choice(weights - adjustment, seed=seed) G.add_edge(u, v) weights[v] += 1 return G
def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None): """Returns a random `k`-out graph with uniform attachment. A random `k`-out graph with uniform attachment is a multidigraph generated by the following algorithm. For each node *u*, choose `k` nodes *v* uniformly at random (with replacement). Add a directed edge joining *u* to *v*. Parameters ---------- n : int The number of nodes in the returned graph. k : int The out-degree of each node in the returned graph. self_loops : bool If True, self-loops are allowed when generating the graph. with_replacement : bool If True, neighbors are chosen with replacement and the returned graph will be a directed multigraph. Otherwise, neighbors are chosen without replacement and the returned graph will be a directed graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- NetworkX graph A `k`-out-regular directed graph generated according to the above algorithm. It will be a multigraph if and only if `with_replacement` is True. Raises ------ ValueError If `with_replacement` is False and `k` is greater than `n`. See also -------- random_k_out_graph Notes ----- The return digraph or multidigraph may not be strongly connected, or even weakly connected. If `with_replacement` is True, this function is similar to :func:`random_k_out_graph`, if that function had parameter `alpha` set to positive infinity. """ if with_replacement: create_using = nx.MultiDiGraph() def sample(v, nodes): if not self_loops: nodes = nodes - {v} return (seed.choice(list(nodes)) for i in range(k)) else: create_using = nx.DiGraph() def sample(v, nodes): if not self_loops: nodes = nodes - {v} return seed.sample(nodes, k) G = nx.empty_graph(n, create_using) nodes = set(G) for u in G: G.add_edges_from((u, v) for v in sample(u, nodes)) return G
def scale_free_graph( n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, create_using=None, seed=None, ): """Returns a scale-free directed graph. Parameters ---------- n : integer Number of nodes in graph alpha : float Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution. beta : float Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution. gamma : float Probability for adding a new node connected to an existing node chosen randomly according to the out-degree distribution. delta_in : float Bias for choosing nodes from in-degree distribution. delta_out : float Bias for choosing nodes from out-degree distribution. create_using : NetworkX graph constructor, optional The default is a MultiDiGraph 3-cycle. If a graph instance, use it without clearing first. If a graph constructor, call it to construct an empty graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Examples -------- Create a scale-free graph on one hundred nodes:: >>> G = nx.scale_free_graph(100) Notes ----- The sum of `alpha`, `beta`, and `gamma` must be 1. References ---------- .. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Directed scale-free graphs, Proceedings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms, 132--139, 2003. """ def _choose_node(G, distribution, delta, psum): cumsum = 0.0 # normalization r = seed.random() for n, d in distribution: cumsum += (d + delta) / psum if r < cumsum: break return n if create_using is None or not hasattr(create_using, "_adj"): # start with 3-cycle G = nx.empty_graph(3, create_using, default=nx.MultiDiGraph) G.add_edges_from([(0, 1), (1, 2), (2, 0)]) else: G = create_using if not (G.is_directed() and G.is_multigraph()): raise nx.NetworkXError("MultiDiGraph required in create_using") if alpha <= 0: raise ValueError("alpha must be > 0.") if beta <= 0: raise ValueError("beta must be > 0.") if gamma <= 0: raise ValueError("gamma must be > 0.") if abs(alpha + beta + gamma - 1.0) >= 1e-9: raise ValueError("alpha+beta+gamma must equal 1.") number_of_edges = G.number_of_edges() while len(G) < n: psum_in = number_of_edges + delta_in * len(G) psum_out = number_of_edges + delta_out * len(G) r = seed.random() # random choice in alpha,beta,gamma ranges if r < alpha: # alpha # add new node v v = len(G) # choose w according to in-degree and delta_in w = _choose_node(G, G.in_degree(), delta_in, psum_in) elif r < alpha + beta: # beta # choose v according to out-degree and delta_out v = _choose_node(G, G.out_degree(), delta_out, psum_out) # choose w according to in-degree and delta_in w = _choose_node(G, G.in_degree(), delta_in, psum_in) else: # gamma # choose v according to out-degree and delta_out v = _choose_node(G, G.out_degree(), delta_out, psum_out) # add new node w w = len(G) G.add_edge(v, w) number_of_edges += 1 return G