コード例 #1
0
 def test_wheel5(self):
     N = 5
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(0, 2),
         Edge(0, 3),
         Edge(0, 4),
         Edge(1, 2),
         Edge(2, 3),
         Edge(3, 4),
         Edge(4, 1)
     ]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([1, 2, 3, 4]))
     algorithm.run()
     #print "wheel5 outer", algorithm.outer
     #print "wheel5 cycle", algorithm.cycle
     parent = {0: None, 1: 0, 2: 0, 3: 0, 4: 0}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #2
0
 def test_3prism(self):
     N = 6
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(1, 2),
         Edge(2, 3),
         Edge(3, 4),
         Edge(4, 5),
         Edge(0, 5),
         Edge(1, 4),
         Edge(2, 0),
         Edge(3, 5)
     ]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     #print "3prism"
     algorithm = HalinNodeColoring(G, outer=set([0, 2, 3, 5]))
     #algorithm = HalinNodeColoring(G, outer=set([0, 1, 4, 5]))
     #algorithm = HalinNodeColoring(G, outer=set([1, 2, 3, 4]))
     algorithm.run()
     #print "3prism outer", algorithm.outer
     parent = {0: 1, 1: None, 2: 1, 3: 4, 4: 1, 5: 4}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #3
0
 def test_halin8c(self):
     N = 8
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(0, 5),
         Edge(0, 7),
         Edge(1, 2),
         Edge(1, 7),
         Edge(2, 3),
         Edge(2, 6),
         Edge(3, 4),
         Edge(3, 6),
         Edge(4, 5),
         Edge(4, 6),
         Edge(5, 6),
         Edge(6, 7)
     ]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([0, 1, 2, 3, 4, 5]))
     algorithm.run()
     #print "halin8c outer", algorithm.outer
     parent = {0: 7, 1: 7, 2: 6, 3: 6, 4: 6, 5: 6, 6: None, 7: 6}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #4
0
 def test_halin16(self):
     N = 16
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 2), Edge(0, 15), Edge(1, 2), 
         Edge(1, 6), Edge(2, 3), Edge(3, 4), Edge(3, 5), 
         Edge(4, 5), Edge(4, 10), Edge(5, 6), Edge(6, 7), 
         Edge(7, 8), Edge(7, 15), Edge(8, 9), Edge(8, 13), 
         Edge(9, 10), Edge(9, 11), Edge(10, 11), Edge(11, 12), 
         Edge(12, 13), Edge(12, 14), Edge(13, 14), Edge(14, 15)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     #print "halin16"
     algorithm = HalinNodeColoring(G, outer=set([0, 2, 3, 4, 10, 11, 12, 14, 15]))
     algorithm.run()
     #print "halin16 outer", algorithm.outer
     parent = {0: 1, 1: None, 2: 1, 3: 5, 4: 5, 5: 6, 6: 1, 7: 6, 
         8: 7, 9: 8, 10: 9, 11: 9, 12: 13, 13: 8, 14: 13, 15: 7}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #5
0
 def test_frucht12(self):
     N = 10
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 4), Edge(0, 11), Edge(1, 2), 
         Edge(1, 10), Edge(2, 3), Edge(2, 7), Edge(3, 4), 
         Edge(3, 5), Edge(4, 5), Edge(5, 6), Edge(6, 7), 
         Edge(6, 8), Edge(7, 8), Edge(8, 9), Edge(9, 10), 
         Edge(9, 11), Edge(10, 11)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     #print "frucht12"
     algorithm = HalinNodeColoring(G, outer=set([0, 4, 5, 6, 8, 9, 11]))
     algorithm.run()
     #print "frucht12 outer", algorithm.outer
     parent = {0: 1, 1: None, 2: 1, 3: 2, 4: 3, 5: 3, 6: 7, 7: 2, 8: 7, 9: 10, 10: 1, 11: 10}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #6
0
class TestNodeColoring(unittest.TestCase):

    def setUp(self):
        self.N = 6
        self.G = Graph(self.N)
        self.nodes = range(self.N)
        self.edges = [
            Edge(0, 1), Edge(0, 3), Edge(1, 3), Edge(1, 4), Edge(1, 2), 
            Edge(2, 4), Edge(2, 5), Edge(3, 4), Edge(4, 5)]
        for node in self.nodes:
            self.G.add_node(node)
        for edge in self.edges:
            self.G.add_edge(edge)
        #self.G.show()

    def test_us_node_coloring(self):
        algorithm = UnorderedSequentialNodeColoring(self.G)
        algorithm.run()
        for node in self.G.iternodes():
            self.assertNotEqual(algorithm.color[node], None)
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge.source],
                                algorithm.color[edge.target])
        #print algorithm.color
        all_colors = set(algorithm.color[node] for node in self.G.iternodes())
        self.assertEqual(len(all_colors), 4)

    def test_exceptions(self):
        self.assertRaises(ValueError, UnorderedSequentialNodeColoring,
            Graph(5, directed=True))

    def tearDown(self): pass
コード例 #7
0
class TestNodeColoring(unittest.TestCase):
    def setUp(self):
        self.N = 6
        self.G = Graph(self.N)
        self.nodes = range(self.N)
        self.edges = [
            Edge(0, 1),
            Edge(0, 3),
            Edge(1, 3),
            Edge(1, 4),
            Edge(1, 2),
            Edge(2, 4),
            Edge(2, 5),
            Edge(3, 4),
            Edge(4, 5)
        ]
        for node in self.nodes:
            self.G.add_node(node)
        for edge in self.edges:
            self.G.add_edge(edge)
        #self.G.show()

    def test_brooks_node_coloring(self):
        algorithm = BrooksNodeColoring(self.G)
        algorithm.run()
        for node in self.G.iternodes():
            self.assertNotEqual(algorithm.color[node], None)
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge.source],
                                algorithm.color[edge.target])
        #print algorithm.color
        all_colors = set(algorithm.color[node] for node in self.G.iternodes())
        self.assertEqual(len(all_colors), 4)

    def test_brooks_node_coloring_regular(self):
        # Buduje graf 4-regularny planarny z Delta=4.
        # Graf jest 3-connected, dlatego algorytm dziala.
        self.G.add_edge(Edge(0, 2))
        self.G.add_edge(Edge(3, 5))
        self.G.add_edge(Edge(0, 5))
        algorithm = BrooksNodeColoring(self.G)
        algorithm.run()
        for node in self.G.iternodes():
            self.assertNotEqual(algorithm.color[node], None)
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge.source],
                                algorithm.color[edge.target])
        #print algorithm.color
        all_colors = set(algorithm.color[node] for node in self.G.iternodes())
        self.assertEqual(len(all_colors), 3)  # best

    def test_exceptions(self):
        self.assertRaises(ValueError, BrooksNodeColoring,
                          Graph(5, directed=True))

    def tearDown(self):
        pass
コード例 #8
0
 def test_frucht12(self):
     N = 10
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(0, 4),
         Edge(0, 11),
         Edge(1, 2),
         Edge(1, 10),
         Edge(2, 3),
         Edge(2, 7),
         Edge(3, 4),
         Edge(3, 5),
         Edge(4, 5),
         Edge(5, 6),
         Edge(6, 7),
         Edge(6, 8),
         Edge(7, 8),
         Edge(8, 9),
         Edge(9, 10),
         Edge(9, 11),
         Edge(10, 11)
     ]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     #print "frucht12"
     algorithm = HalinNodeColoring(G, outer=set([0, 4, 5, 6, 8, 9, 11]))
     algorithm.run()
     #print "frucht12 outer", algorithm.outer
     parent = {
         0: 1,
         1: None,
         2: 1,
         3: 2,
         4: 3,
         5: 3,
         6: 7,
         7: 2,
         8: 7,
         9: 10,
         10: 1,
         11: 10
     }
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #9
0
 def test_halin11(self):
     N = 11
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(0, 2),
         Edge(0, 10),
         Edge(1, 2),
         Edge(1, 5),
         Edge(2, 3),
         Edge(3, 4),
         Edge(3, 9),
         Edge(4, 5),
         Edge(4, 6),
         Edge(5, 6),
         Edge(6, 7),
         Edge(7, 8),
         Edge(7, 9),
         Edge(8, 9),
         Edge(8, 10),
         Edge(9, 10)
     ]  # E=17
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([0, 1, 5, 6, 7, 8, 10]))
     algorithm.run()
     #print "halin11 outer", algorithm.outer
     parent = {
         0: 2,
         1: 2,
         2: None,
         3: 2,
         4: 3,
         5: 4,
         6: 4,
         7: 9,
         8: 9,
         9: 3,
         10: 9
     }
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #10
0
ファイル: halintools.py プロジェクト: kgashok/graphs-dict
def make_halin_outer(n=4):
    """Create a random weighted Halin graph with the set of outer nodes."""
    if n < 4:
        raise ValueError("number of nodes must be greater than 3")
    graph = Graph(n)
    weights = list(range(1, 1 + 2 * n - 2))
    random.shuffle(weights)
    for node in xrange(n):
        graph.add_node(node)
    # Teraz trzeba dodawac krawedzie, ale nie moze zostac wierzcholek
    # stopnia 2. Startuje od gwiazdy.
    graph.add_edge(Edge(1, 0, weights.pop()))
    graph.add_edge(Edge(2, 0, weights.pop()))
    graph.add_edge(Edge(3, 0, weights.pop()))
    nodes = set([0, 1, 2, 3])
    node = 4
    while node < n:
        parent = random.sample(nodes, 1)[0]
        if graph.degree(parent) == 1:  # leaf, we must add two edges
            if node + 1 == n:
                continue
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
        else:  # degree > 2
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
    # Method 1. Finding root without TreeCenter.
    for node in graph.iternodes():
        if graph.degree(node) > 1:  # always present
            root = node
            break
    # Method 2. Finding root with TreeCenter.
    # TreeCenter reduces floating point errors for points.
    #algorithm = TreeCenter(graph)
    #algorithm.run()
    #root = algorithm.tree_center[0]
    # Wyznaczam slownik z punktami.
    algorithm = TreePlotRadiusAngle(graph)
    algorithm.run(root)
    L = list()  # for leafs
    for node in algorithm.point_dict:
        if graph.degree(node) == 1:  # leafs
            L.append(node)
    # Sortowanie lisci ze wzgledu na kat.
    L.sort(key=lambda node: algorithm.point_dict[node][1])
    n_leafs = len(L)
    for i in range(n_leafs):
        graph.add_edge(Edge(L[i], L[(i + 1) % n_leafs], weights.pop()))
    return graph, set(L)
コード例 #11
0
ファイル: halintools.py プロジェクト: ufkapano/graphs-dict
def make_halin_outer(n=4):
    """Create a random weighted Halin graph with the set of outer nodes."""
    if n < 4:
        raise ValueError("number of nodes must be greater than 3")
    graph = Graph(n)
    weights = list(range(1, 1 + 2 * n - 2))
    random.shuffle(weights)
    for node in xrange(n):
        graph.add_node(node)
    # Teraz trzeba dodawac krawedzie, ale nie moze zostac wierzcholek
    # stopnia 2. Startuje od gwiazdy.
    graph.add_edge(Edge(1, 0, weights.pop()))
    graph.add_edge(Edge(2, 0, weights.pop()))
    graph.add_edge(Edge(3, 0, weights.pop()))
    nodes = set([0, 1, 2, 3])
    node = 4
    while node < n:
        parent = random.sample(nodes, 1)[0]
        if graph.degree(parent) == 1:   # leaf, we must add two edges
            if node + 1 == n:
                continue
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
        else:    # degree > 2
            nodes.add(node)
            graph.add_edge(Edge(parent, node, weights.pop()))
            node += 1
    # Method 1. Finding root without TreeCenter.
    for node in graph.iternodes():
        if graph.degree(node) > 1:   # always present
            root = node
            break
    # Method 2. Finding root with TreeCenter.
    # TreeCenter reduces floating point errors for points.
    #algorithm = TreeCenter(graph)
    #algorithm.run()
    #root = algorithm.tree_center[0]
    # Wyznaczam slownik z punktami.
    algorithm = TreePlotRadiusAngle(graph)
    algorithm.run(root)
    L = list()   # for leafs
    for node in algorithm.point_dict:
        if graph.degree(node) == 1:   # leafs
            L.append(node)
    # Sortowanie lisci ze wzgledu na kat.
    L.sort(key=lambda node: algorithm.point_dict[node][1])
    n_leafs = len(L)
    for i in range(n_leafs):
        graph.add_edge(Edge(L[i], L[(i + 1) % n_leafs], weights.pop()))
    return graph, set(L)
コード例 #12
0
 def test_halin8c(self):
     N = 8
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 5), Edge(0, 7), Edge(1, 2), 
         Edge(1, 7), Edge(2, 3), Edge(2, 6), Edge(3, 4), Edge(3, 6), 
         Edge(4, 5), Edge(4, 6), Edge(5, 6), Edge(6, 7)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([0, 1, 2, 3, 4, 5]))
     algorithm.run()
     #print "halin8c outer", algorithm.outer
     parent = {0: 7, 1: 7, 2: 6, 3: 6, 4: 6, 5: 6, 6: None, 7: 6}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #13
0
 def test_halin7(self):
     N = 7
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 2), Edge(0, 6), Edge(1, 2), 
         Edge(1, 4), Edge(2, 3), Edge(3, 4), Edge(3, 5), 
         Edge(4, 5), Edge(4, 6), Edge(5, 6)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([0, 2, 3, 5, 6]))
     algorithm.run()
     #print "halin7 outer", algorithm.outer
     parent = {0: 1, 1: None, 2: 1, 3: 4, 4: 1, 5: 4, 6: 4}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #14
0
 def test_wheel5(self):
     N = 5
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 2), Edge(0, 3), Edge(0, 4), 
         Edge(1, 2), Edge(2, 3), Edge(3, 4), Edge(4, 1)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([1, 2, 3, 4]))
     algorithm.run()
     #print "wheel5 outer", algorithm.outer
     #print "wheel5 cycle", algorithm.cycle
     parent = {0: None, 1: 0, 2: 0, 3: 0, 4: 0}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #15
0
class TestNodeColoring2(unittest.TestCase):
    def setUp(self):
        self.N = 8
        self.G = Graph(self.N)
        self.nodes = range(self.N)
        self.edges = [
            Edge(0, 1),
            Edge(0, 2),
            Edge(0, 7),
            Edge(1, 2),
            Edge(1, 3),
            Edge(2, 3),
            Edge(3, 4),
            Edge(4, 5),
            Edge(4, 6),
            Edge(5, 6),
            Edge(5, 7),
            Edge(6, 7)
        ]
        for node in self.nodes:
            self.G.add_node(node)
        for edge in self.edges:
            self.G.add_edge(edge)
        #self.G.show()

    def test_brooks_node_coloring_regular(self):
        algorithm = BrooksNodeColoring(self.G)
        algorithm.run()
        for node in self.G.iternodes():
            self.assertNotEqual(algorithm.color[node], None)
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge.source],
                                algorithm.color[edge.target])
        #print algorithm.color
        all_colors = set(algorithm.color[node] for node in self.G.iternodes())
        self.assertEqual(len(all_colors), 3)

    def tearDown(self):
        pass
コード例 #16
0
 def test_halin10k(self):
     N = 10
     G = Graph(N, False)
     edges = [Edge(0, 1), Edge(0, 2), Edge(0, 9), Edge(1, 2), 
         Edge(1, 4), Edge(2, 3), Edge(3, 4), Edge(3, 8), 
         Edge(4, 5), Edge(5, 6), Edge(5, 7), Edge(6, 7), 
         Edge(6, 9), Edge(7, 8), Edge(8, 9)]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     algorithm = HalinNodeColoring(G, outer=set([0, 1, 4, 5, 6, 9]))
     algorithm.run()
     #print "halin10k outer", algorithm.outer
     parent = {0: 2, 1: 2, 2: None, 3: 2, 4: 3, 5: 7, 6: 7, 7: 8, 8: 3, 9: 8}
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #17
0
class TestEdgeColoring(unittest.TestCase):
    def setUp(self):
        self.N = 6
        self.G = Graph(self.N)
        self.nodes = range(self.N)
        self.edges = [
            Edge(0, 1),
            Edge(0, 3),
            Edge(1, 3),
            Edge(1, 4),
            Edge(1, 2),
            Edge(2, 4),
            Edge(2, 5),
            Edge(3, 4),
            Edge(4, 5)
        ]
        for node in self.nodes:
            self.G.add_node(node)
        for edge in self.edges:
            self.G.add_edge(edge)
        #self.G.show()

    def test_rs_edge_coloring(self):
        algorithm = RandomSequentialEdgeColoring(self.G)
        algorithm.run()
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge], None)
        for node in self.G.iternodes():
            color_set = set()
            for edge in self.G.iteroutedges(node):
                if edge.source > edge.target:
                    color_set.add(algorithm.color[~edge])
                else:
                    color_set.add(algorithm.color[edge])
            self.assertEqual(len(color_set), self.G.degree(node))
        #print ( algorithm.color )
        #algorithm.show_colors()
        all_colors = set(algorithm.color[edge] for edge in self.G.iteredges())
        self.assertTrue(len(all_colors) in set([4, 5, 6, 7]))

    def test_exceptions(self):
        self.assertRaises(ValueError, RandomSequentialEdgeColoring,
                          Graph(5, directed=True))

    def tearDown(self):
        pass
コード例 #18
0
class TestEdgeColoring(unittest.TestCase):

    def setUp(self):
        self.N = 6
        self.G = Graph(self.N)
        self.nodes = range(self.N)
        self.edges = [
            Edge(0, 1), Edge(0, 3), Edge(1, 3), Edge(1, 4), Edge(1, 2), 
            Edge(2, 4), Edge(2, 5), Edge(3, 4), Edge(4, 5)]
        for node in self.nodes:
            self.G.add_node(node)
        for edge in self.edges:
            self.G.add_edge(edge)
        #self.G.show()

    def test_ntl_edge_coloring(self):
        algorithm = NTLEdgeColoring(self.G)
        algorithm.run()
        for edge in self.G.iteredges():
            self.assertNotEqual(algorithm.color[edge], None)
        for node in self.G.iternodes():
            color_set = set()
            for edge in self.G.iteroutedges(node):
                if edge.source > edge.target:
                    color_set.add(algorithm.color[~edge])
                else:
                    color_set.add(algorithm.color[edge])
            self.assertEqual(len(color_set), self.G.degree(node))
        #print algorithm.color
        all_colors = set(algorithm.color[edge] for edge in self.G.iteredges())
        self.assertEqual(len(all_colors), 5)

    def test_exceptions(self):
        self.assertRaises(ValueError, NTLEdgeColoring,
            Graph(5, directed=True))

    def tearDown(self): pass
コード例 #19
0
ファイル: timeit_tsp.py プロジェクト: yjfiejd/graphs-dict
from graphtheory.structures.graphs import Graph
from graphtheory.hamiltonian.tspbf import BruteForceTSPWithGraph
from graphtheory.hamiltonian.tspnn import NearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tsprnn import RepeatedNearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tspse import SortedEdgeTSPWithGraph
from graphtheory.hamiltonian.tspmst import PrimTSPWithGraph

# Euclidean TSP.
# Nodes are points in a unit square.
# Weights are distances.
V = 8  # number of nodes
E = V * (V - 1) / 2  # number of edges
G = Graph(n=V, directed=False)
for i in xrange(V):
    G.add_node((random.random(), random.random()))
for source in G.iternodes():
    for target in G.iternodes():
        if source < target:
            x0, y0 = source
            x1, y1 = target
            weight = math.hypot(x1 - x0, y1 - y0)
            G.add_edge(Edge(source, target, weight))
#G.show()

print "Calculate parameters ..."
print "Nodes:", G.v(), V
print "Edges:", G.e(), E
print "Directed:", G.is_directed()
print "Delta:", max(G.degree(node) for node in G.iternodes())

print "Testing BruteForceTSPWithGraph ..."
コード例 #20
0
ファイル: timeit_tsp.py プロジェクト: kgashok/graphs-dict
from graphtheory.structures.graphs import Graph
from graphtheory.hamiltonian.tspbf import BruteForceTSPWithGraph
from graphtheory.hamiltonian.tspnn import NearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tsprnn import RepeatedNearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tspse import SortedEdgeTSPWithGraph
from graphtheory.hamiltonian.tspmst import PrimTSPWithGraph

# Euclidean TSP.
# Nodes are points in a unit square.
# Weights are distances.
V = 8  # number of nodes
E = V * (V - 1) // 2  # number of edges
G = Graph(n=V, directed=False)
for i in range(V):
    G.add_node((random.random(), random.random()))
for source in G.iternodes():
    for target in G.iternodes():
        if source < target:
            x0, y0 = source
            x1, y1 = target
            weight = math.hypot(x1 - x0, y1 - y0)
            G.add_edge(Edge(source, target, weight))
#G.show()

print("Calculate parameters ...")
print("Nodes: {} {}".format(G.v(), V))
print("Edges: {} {}".format(G.e(), E))
print("Directed: {}".format(G.is_directed()))
print("Delta: {}".format(max(G.degree(node) for node in G.iternodes())))

print("Testing BruteForceTSPWithGraph ...")
コード例 #21
0
ファイル: timeit_tsp.py プロジェクト: ufkapano/graphs-dict
from graphtheory.structures.graphs import Graph
from graphtheory.hamiltonian.tspbf import BruteForceTSPWithGraph
from graphtheory.hamiltonian.tspnn import NearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tsprnn import RepeatedNearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tspse import SortedEdgeTSPWithGraph
from graphtheory.hamiltonian.tspmst import PrimTSPWithGraph

# Euclidean TSP.
# Nodes are points in a unit square.
# Weights are distances.
V = 8               # number of nodes
E = V*(V-1) // 2       # number of edges
G = Graph(n=V, directed=False)
for i in range(V):
    G.add_node((random.random(), random.random()))
for source in G.iternodes():
    for target in G.iternodes():
        if source < target:
            x0, y0 = source
            x1, y1 = target
            weight = math.hypot(x1-x0, y1-y0)
            G.add_edge(Edge(source, target, weight))
#G.show()

print ( "Calculate parameters ..." )
print ( "Nodes: {} {}".format( G.v(), V ))
print ( "Edges: {} {}".format( G.e(), E ))
print ( "Directed: {}".format( G.is_directed() ))
print ( "Delta: {}".format( max(G.degree(node) for node in G.iternodes()) ))

print ( "Testing BruteForceTSPWithGraph ..." )
コード例 #22
0
 def test_halin16(self):
     N = 16
     G = Graph(N, False)
     edges = [
         Edge(0, 1),
         Edge(0, 2),
         Edge(0, 15),
         Edge(1, 2),
         Edge(1, 6),
         Edge(2, 3),
         Edge(3, 4),
         Edge(3, 5),
         Edge(4, 5),
         Edge(4, 10),
         Edge(5, 6),
         Edge(6, 7),
         Edge(7, 8),
         Edge(7, 15),
         Edge(8, 9),
         Edge(8, 13),
         Edge(9, 10),
         Edge(9, 11),
         Edge(10, 11),
         Edge(11, 12),
         Edge(12, 13),
         Edge(12, 14),
         Edge(13, 14),
         Edge(14, 15)
     ]
     for node in range(N):
         G.add_node(node)
     for edge in edges:
         G.add_edge(edge)
     #print "halin16"
     algorithm = HalinNodeColoring(G,
                                   outer=set(
                                       [0, 2, 3, 4, 10, 11, 12, 14, 15]))
     algorithm.run()
     #print "halin16 outer", algorithm.outer
     parent = {
         0: 1,
         1: None,
         2: 1,
         3: 5,
         4: 5,
         5: 6,
         6: 1,
         7: 6,
         8: 7,
         9: 8,
         10: 9,
         11: 9,
         12: 13,
         13: 8,
         14: 13,
         15: 7
     }
     self.assertEqual(algorithm.parent, parent)
     for node in G.iternodes():
         self.assertNotEqual(algorithm.color[node], None)
     for edge in G.iteredges():
         self.assertNotEqual(algorithm.color[edge.source],
                             algorithm.color[edge.target])
     all_colors = set(algorithm.color[node] for node in G.iternodes())
     self.assertEqual(len(all_colors), 3)
コード例 #23
0
from graphtheory.structures.graphs import Graph
from graphtheory.hamiltonian.tspbf import BruteForceTSPWithGraph
from graphtheory.hamiltonian.tspnn import NearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tsprnn import RepeatedNearestNeighborTSPWithGraph
from graphtheory.hamiltonian.tspse import SortedEdgeTSPWithGraph
from graphtheory.hamiltonian.tspmst import PrimTSPWithGraph

# Euclidean TSP.
# Nodes are points in a unit square.
# Weights are distances.
V = 8               # number of nodes
E = V*(V-1)/2       # number of edges
G = Graph(n=V, directed=False)
for i in xrange(V):
    G.add_node((random.random(), random.random()))
for source in G.iternodes():
    for target in G.iternodes():
        if source < target:
            x0, y0 = source
            x1, y1 = target
            weight = math.hypot(x1-x0, y1-y0)
            G.add_edge(Edge(source, target, weight))
#G.show()

print "Calculate parameters ..."
print "Nodes:", G.v(), V
print "Edges:", G.e(), E
print "Directed:", G.is_directed()
print "Delta:", max(G.degree(node) for node in G.iternodes())

print "Testing BruteForceTSPWithGraph ..."