コード例 #1
0
def test_implicit_out():
    op = operation(str, "hh", provides=["A", implicit("a")])

    pipe = compose(..., op)
    got = pipe.compute()
    assert got == {"A": ""}

    assert "(implicit)" in str(op.plot())
コード例 #2
0
ファイル: test_base.py プロジェクト: ankostis/graphtik
def test_jetsam_n_plot_with_DEBUG():
    pipe = compose(
        "mix",
        operation(
            str,
            "FUNC",
            needs=[
                "a",
                sfxed("b", "foo", keyword="bb"),
                implicit("c"),
                sfxed("d", "bar"),
                vararg("e"),
                varargs("f"),
            ],
            provides=[
                "A",
                sfxed("b", "FOO", keyword="bb"),
                implicit("C"),
                sfxed("d", "BAR", optional=True),
                sfx("FOOBAR"),
            ],
            aliases={
                "A": "aaa",
                "b": "bbb",
                "d": "ddd"
            },  # FIXME: "D" is implicit!
        ),
    )

    with debug_enabled(True), pytest.raises(ValueError, match="^Unsolvable"):
        pipe.compute()
    with debug_enabled(True), pytest.raises(
            ValueError, match="^Failed matching inputs <=> needs") as exc:
        pipe.compute({
            "a": 1,
            sfxed("b", "foo"): 2,
            "c": 3,
            sfxed("d", "bar"): 4,
            "e": 5,
            "f": [6, 7],
        })

    exc.value.jetsam.plot_fpath.unlink()
コード例 #3
0
def test_implicit_inp():
    op = operation(str, needs=["A", implicit("a")], provides="b")

    pipe = compose(..., op)
    got = pipe.compute({"A": "val", "a": 1})
    assert got == {"A": "val", "a": 1, "b": "val"}

    with pytest.raises(ValueError, match="Unsolvable graph"):
        pipe.compute({"A": "val"})

    assert "(implicit)" in str(op.plot())
コード例 #4
0
def test_cwd_fnop():
    op = operation(
        str,
        None,
        needs=[
            "a",
            "a/b",
            "/r/b",
            optional("o"),
            keyword("k"),
            implicit("i"),
            vararg("v1"),
            varargs("v2"),
            sfx("s1"),
            sfxed("s2", "s22"),
            vcat("vc"),
        ],
        provides=["A/B", "C", "/R"],
        aliases=[("A/B", "aa"), ("C", "CC"), ("/R", "RR")],
        cwd="root",
    )
    exp = """
    FnOp(name='str',
        needs=['root/a'($),
            'root/a/b'($),
            '/r/b'($),
            'root/o'($?'o'),
            'root/k'($>'k'),
            'root/i'($),
            'root/v1'($*),
            'root/v2'($+),
            sfx('s1'),
            sfxed('root/s2'($),
            's22'),
            'root/vc'($)],
        provides=['root/A/B'($),
            'root/C'($),
            '/R'($),
            'root/aa'($),
            'root/CC'($),
            'root/RR'($)],
         aliases=[('root/A/B'($), 'root/aa'($)),
            ('root/C'($), 'root/CC'($)),
            ('/R'($), 'root/RR'($))],
        fn='str')
    """
    assert oneliner(op) == oneliner(exp)
コード例 #5
0
        for gnum, n2v in enumerate(n2v_ratios, 1)
    }

    wot_grid = pd.concat(
        wot_grids.values(),
        axis=1,
        keys=wot_grids.keys(),
        names=["gear", "item"],
        verify_integrity=True,
    ).swaplevel(axis=1)

    return wot_grid


@autog.autographed(
    provides=[sfxed("gwots", "p_avail"), implicit("gwots/p_avail")],
)
def attach_p_avail_in_gwots(gwots: pd.DataFrame, *, f_safety_margin) -> pd.DataFrame:
    """
    Attaches both `p_avail` and `p_avail_stable` for all gears.

    .. attention:
        Must NOT interpolate along with wot on grid, or great INNACCURACIES.

    :param gwots:
        a  df with 2-level multiindex columns, having at least (`g1`, 'p'), and
        optionally ('g1', 'ASM')) for each gears
        (as returned by :func:`interpolate_wot_on_v_grid()`).
    """
    w = wio.pstep_factory.get().wot
コード例 #6
0
        (
            ("a", {
                "a": sfx("AA")
            }),
            ValueError("must not contain `sideffects"),
        ),
        (
            (["a", "b"], {
                "a": "b"
            }),
            ValueError(r"clash with existing provides in \['a', 'b'\]"),
        ),
        ## Implicits
        #
        (
            ([implicit("i")], {
                implicit("i"): "II"
            }),
            ValueError("must not contain `implicits"),
        ),
        (
            (["i"], {
                "i": implicit("II")
            }),
            ValueError("must not contain `implicits"),
        ),
    ],
)
def test_func_op_validation_aliases_BAD(prov_aliases, ex):
    with pytest.raises(type(ex), match=str(ex)):
        reparse_operation_data("t", None, *prov_aliases)
コード例 #7
0
ファイル: cycler.py プロジェクト: AndresLaverdeMarin/wltp
    ok_n = cycle.loc[:, c.ok_n]
    p_remain = cycle.loc[:, c.p_remain]
    cycle.loc[idx_miss_gear]


@autog.autographed(
    needs=[
        vararg("wltc_class_data/V_cycle"),
        vararg("V_dsc"),
        vararg("V_capped"),
        vararg("V_compensated"),
        vararg("forced_cycle"),
    ],
    provides=[
        sfxed("cycle", "init"),
        implicit("cycle/t"),
        implicit("cycle/V"),
    ],
)
def init_cycle_velocity(*velocities: Union[pd.Series, pd.DataFrame]) -> pd.DataFrame:
    """
    Concatenate velocities(series)/cycle(dataframe), cloning the last column as `V`.

    :param velocities:
        one or more velocity (same) time-indexed series & datarames
        (properly named), with the last one becoming the `V`,
        unless it already exists

    :return:
        the concatenated cycle with 2-level columns (item, gear)
    """
コード例 #8
0
ファイル: vmax.py プロジェクト: AndresLaverdeMarin/wltp
                roots_head[0],
                v_max,
                wot.loc[v_max - 5 * v_step:v_max + 5 * v_step,
                        w.p_remain_stable],
            )
            rec = VMaxRec(v_max, n_v_max, gid, False, wot)
        else:
            rec = VMaxRec(np.NAN, np.NAN, gid, False, wot)

    return rec


@autog.autographed(
    needs=[
        sfxed("gwots", "p_avail"),
        implicit("gwots/p_resist"),
    ],
    provides=[
        *VMaxRec._fields[:-2],
        keyword("is_n_lim_vmax", "is_n_lim"),
        keyword("vmax_gwot", "wot"),  # `wot` causes cycle!
    ],
    inp_sideffects=[("gwots", "p_avail")],
    returns_dict=True,
)
def calc_v_max(gwots: Union[pd.Series, pd.DataFrame]) -> VMaxRec:
    """
    Finds maximum velocity by scanning gears from the top.

    TODO: accept `n_lim`