コード例 #1
0
def corrEtotplot(ax,Eact,Ecmp,a,b,label):

    d1 = combinenparrayrange(Eact, a, b, Eidx)
    d2 = combinenparrayrange(Ecmp, a, b, Eidx)

    rmse = gt.calculaterootmeansqrerror(d1, d2)
    slope, intercept, r_value, p_value, std_err = st.linregress(d1, d2)

    lin = 'Slope: ' + '%s' % float('%.3g' % slope) + ' Int.: ' + '%s' % float('%.3g' % intercept) + ' $r^2$: ' + '%s' % float('%.3g' % r_value**2)

    ax.plot(d1,d1,color='black',label='DFT',linewidth=2,)
    ax.scatter(d1, d2, color='red',label=label + ' RMSE ' + '%s' % float('%.3g' % rmse) + ' kcal/mol ' + lin, marker=r"o",s=50)

    # Set Limits
    ax.set_xlim([d1.min(),d1.max()])
    ax.set_ylim([d1.min(),d1.max()])

    font = {'family': 'Bitstream Vera Sans',
            'weight': 'heavy',
            'size': 24}

    ax.set_ylabel('$E_{cmp}$',fontdict=font)
    ax.set_xlabel('$E_{ref}$',fontdict=font)
    ax.legend(bbox_to_anchor=(0.01, 0.99), loc=2, borderaxespad=0., fontsize=10)

    t_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    ax.xaxis.set_major_formatter(t_formatter)
    ax.yaxis.set_major_formatter(t_formatter)
コード例 #2
0
def graphEdiffDelta2D(ax, data1, data2, Na):
    #data1 = gt.convert * data1
    #data2 = gt.convert * data2

    x, y, z, d = gt.calculateelementdiff2D(data1)
    x2, y2, z2, d2 = gt.calculateelementdiff2D(data2)

    RMSE = gt.calculaterootmeansqrerror(d, d2) / float(Na)

    print('dataz1:', z)
    print('dataz2:', z2)

    z = np.abs(z - z2)

    print('zdiff:', z)

    # Set up a regular grid of interpolation points
    xi, yi = np.linspace(x.min(), x.max(),
                         100), np.linspace(y.min(), y.max(), 100)
    xi, yi = np.meshgrid(xi, yi)

    # Interpolate
    rbf = scipy.interpolate.Rbf(x, y, z, function='linear')
    zi = rbf(xi, yi)

    im = ax.imshow(zi,
                   vmin=z.min(),
                   vmax=z.max(),
                   origin='lower',
                   extent=[x.min(), x.max(),
                           y.min(), y.max()])

    ax.set_title('Difference Plot (symmetric)\nRMSE: ' +
                 "{:.5f}".format(RMSE) + 'kcal/mol/atom Atoms: ' + str(Na),
                 fontsize=14)
    # plt.xlabel('Structure')
    # plt.ylabel('Structure')

    ax.scatter(x, y, c=z, vmin=z.min(), vmax=z.max())

    ax.set_xlim([-0.02 * x.max(), x.max() + 0.02 * x.max()])
    ax.set_ylim([-0.02 * y.max(), y.max() + 0.02 * y.max()])

    #ax.plot([x.min(),x.max()],[y.min(),x.max()],color='red',linewidth=4)
    ax.grid(True)

    return im
コード例 #3
0
def graphEdiffDelta2D(ax, data1, data2, Na):
    #data1 = gt.convert * data1
    #data2 = gt.convert * data2

    x, y, z, d = gt.calculateelementdiff2D(data1)
    x2, y2, z2, d2 = gt.calculateelementdiff2D(data2)

    RMSE = gt.calculaterootmeansqrerror(d, d2) / float(Na)

    print('Number of atoms: ' + str(Na))
    print('RMSE: ' + str(RMSE) + ' kcal/mol/atom')
    print('RMSE: ' + str(float(Na) * RMSE) + ' kcal/mol')

    z = np.abs(z - z2)

    C = data1.shape[0]

    mat = np.ndarray(shape=(C, C), dtype=float)

    for i in x:
        for j in y:
            I = int(i)
            J = int(j)
            mat[J, I] = z[J + I * C]

    #get discrete colormap
    cmap = plt.get_cmap('RdBu', np.max(mat) - np.min(mat) + 1)

    # Show mat
    im = ax.matshow(mat, vmin=np.min(mat), vmax=np.max(mat))

    cmap = plt.cm.jet
    norm = plt.Normalize(mat.min(), mat.max())
    rgba = cmap(norm(mat))
    rgba[range(C), range(C), :3] = 1, 1, 1
    ax.imshow(rgba, interpolation='nearest')

    # Plot center line
    #ax.plot([x.min()-0.5,x.max()+0.5],[y.min()-0.5,x.max()+0.5],color='black',linewidth=4,alpha=0.9)

    # Set Limits
    ax.set_xlim([-0.02 * x.max(), x.max() + 0.02 * x.max()])
    ax.set_ylim([-0.02 * y.max(), y.max() + 0.02 * y.max()])

    ax.xaxis.tick_bottom()

    return im
コード例 #4
0
def graphEdiffDelta2D(ax, data1, data2, Na):
    #data1 = gt.convert * data1
    #data2 = gt.convert * data2

    x, y, z, d = gt.calculateelementdiff2D(data1)
    x2, y2, z2, d2 = gt.calculateelementdiff2D(data2)

    RMSE = gt.calculaterootmeansqrerror(d,d2) / float(Na)

    print ('Number of atoms: ' + str(Na))
    print ('RMSE: ' + str(RMSE) + ' kcal/mol/atom')
    print ('RMSE: ' + str(float(Na)*RMSE) + ' kcal/mol')

    z = np.abs(z - z2)

    C = data1.shape[0]

    mat = np.ndarray(shape=(C,C),dtype=float)

    for i in x:
        for j in y:
            I = int(i)
            J = int(j)
            mat[J,I] = z[J+I*C]

    #get discrete colormap
    cmap = plt.get_cmap('RdBu', np.max(mat)-np.min(mat)+1)

    # Show mat
    im = ax.matshow(mat,vmin = np.min(mat), vmax = np.max(mat))

    cmap = plt.cm.jet
    norm = plt.Normalize(mat.min(), mat.max())
    rgba = cmap(norm(mat))
    rgba[range(C), range(C), :3] = 1, 1, 1
    ax.imshow(rgba, interpolation='nearest')

    # Plot center line
    #ax.plot([x.min()-0.5,x.max()+0.5],[y.min()-0.5,x.max()+0.5],color='black',linewidth=4,alpha=0.9)

    # Set Limits
    ax.set_xlim([-0.02*x.max(),x.max()+0.02*x.max()])
    ax.set_ylim([-0.02*y.max(),y.max()+0.02*y.max()])

    ax.xaxis.tick_bottom()

    return im
コード例 #5
0
def Ecorrplot (ax1,Eact,Ecmp,mlbl,color,lab=False):
    mx = Eact.max()
    mn = Eact.min()

    if lab:
        ax1.plot((mn, mx), (mn, mx), color='black',label='DFT', linewidth=5)
    else:
        ax1.plot((mn, mx), (mn, mx), color='black', linewidth=5)

    rmse = gt.calculaterootmeansqrerror(Eact, Ecmp)
    ax1.scatter(Eact, Ecmp, marker=r'o', color=color, label= mlbl + ' RMSE: ' + "{:.3f}".format(rmse) + ' kcal/mol', linewidth=1)

    ax1.set_xlim([mn,mx])
    ax1.set_ylim([mn,mx])

    #ax1.set_title("title)
    ax1.set_ylabel('$\Delta E_{cmp}$ (kcal/mol)')
    ax1.set_xlabel('$\Delta E_{ref}$ (kcal/mol)')
    ax1.legend(bbox_to_anchor=(0.01, 0.99), loc=2, borderaxespad=0., fontsize=16)
コード例 #6
0
def graphEdiffDelta2D(ax, data1, data2, Na):
    data1 = gt.convert * data1
    data2 = gt.convert * data2

    x, y, z, d = gt.calculateelementdiff2D(data1)
    x2, y2, z2, d2 = gt.calculateelementdiff2D(data2)

    RMSE = gt.calculaterootmeansqrerror(d, d2) / float(Na)

    print("dataz1:", z)
    print("dataz2:", z2)

    z = np.abs(z - z2)

    print("zdiff:", z)

    # Set up a regular grid of interpolation points
    xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100)
    xi, yi = np.meshgrid(xi, yi)

    # Interpolate
    rbf = scipy.interpolate.Rbf(x, y, z, function="linear")
    zi = rbf(xi, yi)

    im = ax.imshow(zi, vmin=z.min(), vmax=z.max(), origin="lower", extent=[x.min(), x.max(), y.min(), y.max()])

    ax.set_title(
        "Difference Plot (symmetric)\nRMSE: " + "{:.5f}".format(RMSE) + "kcal/mol/atom Atoms: " + str(natm), fontsize=14
    )
    # plt.xlabel('Structure')
    # plt.ylabel('Structure')

    ax.scatter(x, y, c=z, vmin=z.min(), vmax=z.max())

    ax.set_xlim([-0.02 * x.max(), x.max() + 0.02 * x.max()])
    ax.set_ylim([-0.02 * y.max(), y.max() + 0.02 * y.max()])

    # ax.plot([x.min(),x.max()],[y.min(),x.max()],color='red',linewidth=4)
    ax.grid(True)

    return im
コード例 #7
0
def corrEtotplot(ax, Eact, Ecmp, a, b, label):

    d1 = combinenparrayrange(Eact, a, b, Eidx)
    d2 = combinenparrayrange(Ecmp, a, b, Eidx)

    rmse = gt.calculaterootmeansqrerror(d1, d2)
    slope, intercept, r_value, p_value, std_err = st.linregress(d1, d2)

    lin = (
        "Slope: "
        + "%s" % float("%.3g" % slope)
        + " Int.: "
        + "%s" % float("%.3g" % intercept)
        + " $r^2$: "
        + "%s" % float("%.3g" % r_value ** 2)
    )

    ax.plot(d1, d1, color="black", label="DFT", linewidth=2)
    ax.scatter(
        d1,
        d2,
        color="red",
        label=label + " RMSE " + "%s" % float("%.3g" % rmse) + " kcal/mol " + lin,
        marker=r"o",
        s=50,
    )

    # Set Limits
    ax.set_xlim([d1.min(), d1.max()])
    ax.set_ylim([d1.min(), d1.max()])

    font = {"family": "Bitstream Vera Sans", "weight": "heavy", "size": 24}

    ax.set_ylabel("$E_{cmp}$", fontdict=font)
    ax.set_xlabel("$E_{ref}$", fontdict=font)
    ax.legend(bbox_to_anchor=(0.01, 0.99), loc=2, borderaxespad=0.0, fontsize=10)

    t_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    ax.xaxis.set_major_formatter(t_formatter)
    ax.yaxis.set_major_formatter(t_formatter)
コード例 #8
0
        # Print some data from the NeuroChem
        print( '1) Number of Atoms Loaded: ' + str(nc.getNumAtoms()) )
        print( '1) Number of Confs Loaded: ' + str(nc.getNumConfs()) )

        # Compute Energies of Conformations
        print('Computing energies...')
        _t1b = tm.time()
        Ecmp_t = nc.computeEnergies()
        _t2b = (tm.time() - _t1b) * 1000.0
        print('Computation complete. Time: ' + "{:.4f}".format(_t2b)  + 'ms')

        Ecmp_t = setmaxE(Eact_t, Ecmp_t, 300.0)
        Eact_t = setmaxE(Eact_t, Eact_t, 300.0)

        tNa = nc.getNumAtoms()
        err.append(gt.hatokcal * gt.calculaterootmeansqrerror(np.array(Eact_t, dtype=float),np.array(Ecmp_t, dtype=float)) / float(tNa))
        sze.append(float(len(Eact_t)))

        time += _t2b

        Eidx.append(N)
        Emin.append(gt.hatokcal * np.array( Ecmp_t ).min())
        Efle.append(i)

        N += 1
        Ecmp.append( gt.hatokcal * np.array( Ecmp_t ) )
        Eact.append( gt.hatokcal * np.array( Eact_t ) )

err = np.array(err, dtype=float)
sze = np.array(sze, dtype=float)
コード例 #9
0
# n = 0
# m = 9
# Ecmp1 = gt.hatokcal * Ecmp1[n:m]
# Eact  = gt.hatokcal * Eact[n:m]
Ecmp1 = gt.hatokcal * Ecmp1
Eact = gt.hatokcal * Eact
# Eact2  = gt.hatokcal * Eact2

IDX = np.arange(0, Eact.shape[0], 1, dtype=float) + 1

# Ecmp1 = Ecmp1 - Ecmp1.min()
# Eact  = Eact  - Eact.min()
# Eact2  = Eact2  - Eact2.min()

rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)
# rmse2 = gt.calculaterootmeansqrerror(Eact,Eact2)

print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))
# print ( "Spearman corr. 2: " + "{:.3f}".format(st.spearmanr(Eact2,Eact)[0]) )

# plt.plot   (IDX, Eact, '-', marker=r'o', color='black',label='DFT',  linewidth=2, markersize=10)
# plt.plot   (IDX, Ecmp1, ':', marker=r'D', color='red',  label='ANI-1 RMSE: ' + "{:.7f}".format(rmse1) + ' kcal/mol',  linewidth=4, markersize=8)
plt.plot(IDX, Eact, "-", color="black", label="DFT", linewidth=3)
plt.plot(IDX, Ecmp1, "--", color="red", label="ANI-1 RMSE: " + "{:.3f}".format(rmse1) + " kcal/mol", linewidth=3)
# plt.plot   (IDX, Eact2, '--', color='blue',  label='DFTB   RMSE: ' + "{:.3f}".format(rmse2) + ' kcal/mol',  linewidth=2)

plt.title("BO MD Trajectory - Ranolazine")

plt.ylabel("$\Delta$E calculated (kcal/mol)")
plt.xlabel("Step number")
コード例 #10
0
#n = 0
#m = 9
#Ecmp1 = gt.hatokcal * Ecmp1[n:m]
#Eact  = gt.hatokcal * Eact[n:m]
Ecmp1 = gt.hatokcal * Ecmp1
Eact  = gt.hatokcal * Eact
#Eact2  = gt.hatokcal * Eact2

IDX = np.arange(0,Eact.shape[0],1,dtype=float) + 1

#Ecmp1 = Ecmp1 - Ecmp1.min()
#Eact  = Eact  - Eact.min()
#Eact2  = Eact2  - Eact2.min()

rmse1 = gt.calculaterootmeansqrerror(Eact,Ecmp1)
#rmse2 = gt.calculaterootmeansqrerror(Eact,Eact2)

print ( "Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1,Eact)[0]) )
#print ( "Spearman corr. 2: " + "{:.3f}".format(st.spearmanr(Eact2,Eact)[0]) )

#plt.plot   (IDX, Eact, '-', marker=r'o', color='black',label='DFT',  linewidth=2, markersize=10)
#plt.plot   (IDX, Ecmp1, ':', marker=r'D', color='red',  label='ANI-1 RMSE: ' + "{:.7f}".format(rmse1) + ' kcal/mol',  linewidth=4, markersize=8)
plt.plot   (IDX, Eact, '-', color='black',label='DFT',  linewidth=3)
plt.plot   (IDX, Ecmp1, '--', color='red',  label='ANI-1 RMSE: ' + "{:.3f}".format(rmse1) + ' kcal/mol',  linewidth=3)
#plt.plot   (IDX, Eact2, '--', color='blue',  label='DFTB   RMSE: ' + "{:.3f}".format(rmse2) + ' kcal/mol',  linewidth=2)

plt.title("BO MD Trajectory - Ranolazine")

plt.ylabel('$\Delta$E calculated (kcal/mol)')
plt.xlabel('Step number')
コード例 #11
0
dir = '/Research/ANN-Test-Data/GDB-11-W98XD-6-31gd/train_05/'
dir2 = '/Research/ANN-Test-Data/GDB-11-W98XD-6-31gd/train_06/'
#file = 'RMSEperATOM.dat'
file = 'gdb11_s05-99_test.dat_graph'

data1 = gt.getfltsfromfile('/home/' + user + dir + file, [0])
data2 = gt.getfltsfromfile('/home/' + user + dir + file, [1])
data3 = gt.getfltsfromfile('/home/' + user + dir + file, [2])
data4 = gt.getfltsfromfile('/home/' + user + dir2 + file, [2])

data2 = gt.calculateelementdiff(data2)
data3 = gt.calculateelementdiff(data3)
data4 = gt.calculateelementdiff(data4)

rmse5 = gt.calculaterootmeansqrerror(data2[:,1],data3[:,1]) / 63.0
rmse6 = gt.calculaterootmeansqrerror(data2[:,1],data4[:,1]) / 63.0

print('Datasize: ' + str(data1.shape[0]))

font = {'family' : 'Bitstream Vera Sans',
            'weight' : 'normal',
            'size'   : 14}

plt.rc('font', **font)

#print(data2)

plt.plot(data2[:,0], data2[:,1], color='black', label='wB97X/6-31G*',linewidth=2)
plt.scatter(data2[:,0], data2[:,1], color='black',linewidth=4)
plt.plot(data3[:,0], data3[:,1],'r--', color='blue', label='ANN - GDB-5 RMSE: ' + "{:.6f}".format(rmse5) + "eV/atom",linewidth=2)
コード例 #12
0
        print("1) Number of Confs Loaded: " + str(nc.getNumConfs()))

        # Compute Energies of Conformations
        print("Computing energies...")
        _t1b = tm.time()
        Ecmp_t = nc.computeEnergies()
        _t2b = (tm.time() - _t1b) * 1000.0
        print("Computation complete. Time: " + "{:.4f}".format(_t2b) + "ms")

        Ecmp_t = setmaxE(Eact_t, Ecmp_t, 300.0)
        Eact_t = setmaxE(Eact_t, Eact_t, 300.0)

        tNa = nc.getNumAtoms()
        err.append(
            gt.hatokcal
            * gt.calculaterootmeansqrerror(np.array(Eact_t, dtype=float), np.array(Ecmp_t, dtype=float))
            / float(tNa)
        )
        sze.append(float(len(Eact_t)))

        time += _t2b

        Eidx.append(N)
        Emin.append(gt.hatokcal * np.array(Ecmp_t).min())
        Efle.append(i)

        N += 1
        Ecmp.append(gt.hatokcal * np.array(Ecmp_t))
        Eact.append(gt.hatokcal * np.array(Eact_t))

err = np.array(err, dtype=float)
コード例 #13
0
                                        [1])
data3 = gt.convert * gt.getfltsfromfile('/home/' + user + dir1 + file, ' ',
                                        [2])
#data4 = gt.convert * gt.getfltsfromfile('/home/' + user + dir1 + file2,' ', [1])

#data4 = gt.getfltsfromfile('/home/' + user + dir2 + file,' ', [1])
#data5 = gt.getfltsfromfile('/home/' + user + dir2 + file,' ', [2])
#data5 = gt.getfltsfromfile('/home/' + user + dir3 + file, [2])

#mean = np.mean(data3)

#data2 = data2 - np.mean(data2)
#data3 = data3 - np.mean(data3)
#data4 = data4 - np.mean(data4)

rmse1 = gt.calculaterootmeansqrerror(data2, data3)
#rmse2 = gt.calculaterootmeansqrerror(data2,data4)
#rmse3 = gt.calculaterootmeansqrerror(data2,data5)

print('Datasize: ' + str(data1.shape[0]))

font = {'family': 'Bitstream Vera Sans', 'weight': 'normal', 'size': 14}

plt.rc('font', **font)

data1 = data1

plt.plot(data1, data2, color='black', label='wB97X/6-31G*', linewidth=4)
plt.scatter(data1, data2, color='black', linewidth=3)
plt.scatter(data1, data3, color='blue', linewidth=3)
plt.plot(data1,
コード例 #14
0
def produce_scan(ax,title,xlabel,cnstfile,saefile,nnfdir,dtdir,dt1,dt2,dt3,smin,smax,iscale,ishift):
    xyz, typ, Eact, chk = gt.readncdat(dtdir + dt1,np.float32)
    xyz2, typ2, Eact2, chk = gt.readncdat(dtdir + dt2)
    xyz3, typ3, Eact3, chk = gt.readncdat(dtdir + dt3)

    #gt.writexyzfile("/home/jujuman/Dropbox/ChemSciencePaper.AER/TestCases/Dihedrals/4-Cyclohexyl-1-butanol/optimization/dihedral_"+dt1+".xyz",xyz,typ)

    #Eact = np.array(Eact)
    #Eact2 = np.array(Eact2)
    #Eact3 = np.array(Eact3)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 1)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Forces of Conformations
    print('Computing energies 1...')
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print('Computation complete 1. Time: ' + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact  = gt.hatokcal * Eact
    Eact2 = gt.hatokcal * Eact2
    Eact3 = gt.hatokcal * Eact3

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX[n:m]
    Eact = Eact[n:m]
    Eact2 = Eact2[n:m]
    Eact3 = Eact3[n:m]
    Ecmp1 = Ecmp1[n:m]

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact  = Eact  - Eact.min()
    Eact2 = Eact2 - Eact2.min()
    Eact3 = Eact3 - Eact3.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)
    rmse3 = gt.calculaterootmeansqrerror(Eact, Eact2)
    rmse4 = gt.calculaterootmeansqrerror(Eact, Eact3)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))
    print("Spearman corr. 2: " + "{:.3f}".format(st.spearmanr(Eact2, Eact)[0]))
    print("Spearman corr. 3: " + "{:.3f}".format(st.spearmanr(Eact3, Eact)[0]))

    ax.plot(IDX, Eact, '-', marker=r'o', color='black', label='DFT',
             linewidth=2, markersize=7)
    ax.plot(IDX, Ecmp1, ':', marker=r'D', color='red', label='ANI-1 RMSE: ' + '%s' % float('%.3g' % rmse1) + ' kcal/mol',
             linewidth=2, markersize=5)
    ax.plot(IDX, Eact2, ':', marker=r'v', color='blue', label='DFTB  RMSE: ' + '%s' % float('%.3g' % rmse3) + ' kcal/mol',
             linewidth=2, markersize=5)
    ax.plot(IDX, Eact3, ':', marker=r'*', color='orange', label='PM6   RMSE: ' + '%s' % float('%.3g' % rmse4) + ' kcal/mol',
             linewidth=2, markersize=7)

    #ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    #ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = ax.set_title(title,fontsize=16)
    th.set_position([0.5,1.005])

    # Set Limits
    ax.set_xlim([ IDX.min(),IDX.max()])
    ax.set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    ax.set_ylabel('$\Delta$E calculated (kcal/mol)')
    ax.set_xlabel(xlabel)
    ax.legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0., fontsize=14)
コード例 #15
0
def produce_scan(title, xlabel, cnstfile, saefile, nnfdir, dtdir, dt1, smin,
                 smax, iscale, ishift, atm):
    xyz, frc, typ, Eact, chk = gt.readncdatwforce(dtdir + dt1)

    xyz = np.asarray(xyz, dtype=np.float32)
    xyz = xyz.reshape((xyz.shape[0], len(typ), 3))

    print(xyz)

    frc = np.asarray(frc, dtype=np.float32)
    frc = frc.reshape((frc.shape[0], len(typ), 3))

    Eact = np.array(Eact)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print('1) Number of Atoms Loaded: ' + str(nc1.getNumAtoms()))
    print('1) Number of Confs Loaded: ' + str(nc1.getNumConfs()))

    # Compute Energies of Conformations
    print('Computing energies...')
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print('Energy computation complete. Time: ' +
          "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    # Compute Forces of Conformations
    print('Compute forces...')
    _t1b = tm.time()
    F = nc1.force()
    print('Force computation complete. Time: ' +
          "{:.4f}".format((tm.time() - _t1b) * 1000.0) + 'ms')

    #Fn = np.array(nc1.computeNumericalForces(dr=0.0001))

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact = gt.hatokcal * Eact

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX
    Eact = Eact
    Ecmp1 = Ecmp1

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact = Eact - Eact.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))

    fig, axes = plt.subplots(nrows=2, ncols=2)

    axes.flat[0].plot(IDX, Eact, '-', color='black', label='DFT', linewidth=6)
    axes.flat[0].plot(IDX,
                      Ecmp1,
                      '--',
                      color='red',
                      label='ANI-1',
                      linewidth=6)

    #ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    #ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = axes.flat[0].set_title(title, fontsize=13)
    th.set_position([0.5, 1.00])

    # Set Limits
    axes.flat[0].set_xlim([IDX.min(), IDX.max()])
    #axes.flat[0].set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    axes.flat[0].set_ylabel('$\Delta$E calculated (kcal/mol)')
    axes.flat[0].set_xlabel(xlabel)
    axes.flat[0].legend(bbox_to_anchor=(0.2, 0.98),
                        loc=2,
                        borderaxespad=0.,
                        fontsize=12)

    #print (Fn)

    for i in range(0, 3):
        Fq = F[:, :, i][:, atm]
        #Fnq = Fn[:,i]
        Faq = (1.8897259885789 * np.array(frc)[:, :, i][:, atm])
        print(Fq)
        print(Faq)

        th = axes.flat[i + 1].set_title("Force for atom " + str(atm) +
                                        ": coordinate " + str(i),
                                        fontsize=13)
        th.set_position([0.5, 1.00])

        axes.flat[i + 1].set_xlim([IDX.min(), IDX.max()])

        axes.flat[i + 1].plot(IDX,
                              Faq,
                              '-',
                              color='black',
                              label='DFT',
                              linewidth=6)
        #axes.flat[i+1].plot(IDX, Fnq, '-', color='blue', label='ANI Numerical',
        #    linewidth=6)
        axes.flat[i + 1].plot(IDX,
                              Fq,
                              '--',
                              color='red',
                              label='ANI Analytical',
                              linewidth=6)

        axes.flat[i + 1].set_ylabel('Force (Ha/A)')
        axes.flat[i + 1].set_xlabel(xlabel)
        axes.flat[i + 1].legend(bbox_to_anchor=(0.2, 0.98),
                                loc=2,
                                borderaxespad=0.,
                                fontsize=12)

    font = {'family': 'Bitstream Vera Sans', 'weight': 'normal', 'size': 12}

    plt.rc('font', **font)

    plt.show()
コード例 #16
0
mse_t = sqd / float(dpts)

print('|-----------Prediction Complete-----------|')
print('  Epoch error MSE(Ha) -- ')
print('     Test: ' + "{:.5f}".format(mse_t))

print('  Epoch error RMSE(kcal/mol) -- ')
print('     Test: ' + "{:.5f}".format(gt.hatokcal * np.sqrt(mse_t)))

print('|-----------------------------------------|')

Ecmp = gt.hatokcal * np.array(Ecmp, dtype=float)
Eact = gt.hatokcal * np.array(Eact, dtype=float)

# Compute RMSE in kcal/mol
rmse = gt.calculaterootmeansqrerror(Ecmp, Eact)

# End timer
_t1e = tm.time()
print('Computation complete. Time: ' + "{:.4f}".format((_t1e - _t1b)) + 's')

# Output model information
print('RMSE: ' + str(rmse))

# Plot
plt.scatter(Eact,
            Ecmp,
            label='Baseline RMSE: ' + '%s' % float('%.3g' % rmse) +
            ' kcal/mol',
            color='red')
plt.scatter(Eact, Eact, label='DFT', color='blue')
コード例 #17
0
file = 'pp_02_test.dat_graph'
#file = 'polypep_test.dat_graph'
#file = 'aminoacid_00-12_test.dat_graph'
#file = 'benzamide_conformers-0_test.dat_graph'
#file = 'pentadecane_test.dat_graph'
#file = 'retinolconformer_test.dat_graph'

#data1 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [0])
data0 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [1])
data1 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [2])

data0 = gt.calculateelementdiff(data0)
data1 = gt.calculateelementdiff(data1)

rmse1 = 27.2113825435 * gt.calculaterootmeansqrerror(data0[:,1],data1[:,1]) / 24.0

print('Datasize: ' + str(data1.shape[0]))

font = {'family' : 'Bitstream Vera Sans',
        'weight' : 'normal',
        'size'   : 8}

plt.rc('font', **font)

data = data0
plt.plot(data[:,0], data[:,1], color='black', label='wB97X/6-31G*',linewidth=2)
plt.scatter(data[:,0], data[:,1], color='black',linewidth=4)

data = data1
plt.plot(data[:,0], data[:,1],'r--', color='blue', label='ANN - GDB-7 (6.1$\AA$) RMSE: ' + "{:.6f}".format(rmse1) + "eV/atom",linewidth=2)
コード例 #18
0
file = 'pp_02_test.dat_graph'
#file = 'polypep_test.dat_graph'
#file = 'aminoacid_00-12_test.dat_graph'
#file = 'benzamide_conformers-0_test.dat_graph'
#file = 'pentadecane_test.dat_graph'
#file = 'retinolconformer_test.dat_graph'

#data1 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [0])
data0 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [1])
data1 = gt.getfltsfromfile('/home/' + user + dir1 + file, ' ', [2])

data0 = gt.calculateelementdiff(data0)
data1 = gt.calculateelementdiff(data1)

rmse1 = 27.2113825435 * gt.calculaterootmeansqrerror(data0[:, 1],
                                                     data1[:, 1]) / 24.0

print('Datasize: ' + str(data1.shape[0]))

font = {'family': 'Bitstream Vera Sans', 'weight': 'normal', 'size': 8}

plt.rc('font', **font)

data = data0
plt.plot(data[:, 0],
         data[:, 1],
         color='black',
         label='wB97X/6-31G*',
         linewidth=2)
plt.scatter(data[:, 0], data[:, 1], color='black', linewidth=4)
コード例 #19
0
Ecmp3 = gt.hatokcal * Ecmp3
Ecmp4 = gt.hatokcal * Ecmp4
Ecmp5 = gt.hatokcal * Ecmp5
Eact  = gt.hatokcal * Eact
Eotr  = gt.hatokcal * Eotr

Emax = 400.0
Ecmp1 = setmaxE(Eact,Ecmp1,Emax)
Ecmp2 = setmaxE(Eact,Ecmp2,Emax)
Ecmp3 = setmaxE(Eact,Ecmp3,Emax)
Ecmp4 = setmaxE(Eact,Ecmp4,Emax)
Ecmp5 = setmaxE(Eact,Ecmp5,Emax)
Eotr =  setmaxE(Eact,Eotr, Emax)
Eact =  setmaxE(Eact,Eact, Emax)

rmse1 = gt.calculaterootmeansqrerror(Eact,Eotr)
rmse2 = gt.calculaterootmeansqrerror(Eact,Ecmp1)
rmse3 = gt.calculaterootmeansqrerror(Eact,Ecmp2)
rmse4 = gt.calculaterootmeansqrerror(Eact,Ecmp3)
rmse5 = gt.calculaterootmeansqrerror(Eact,Ecmp4)
rmse6 = gt.calculaterootmeansqrerror(Eact,Ecmp5)

mx = Eact.max()
mn = Eact.min()

#plt.scatter(IDX, Eact, marker='o' , color='black',  linewidth=3)

print ( "Spearman corr. DFTB: " + "{:.3f}".format(st.spearmanr(Eotr,Eact)[0]) )
print ( "Spearman corr. TGM 08: " + "{:.3f}".format(st.spearmanr(Ecmp1,Eact)[0]) )
#print ( "Spearman corr. TGM 07: " + "{:.3f}".format(st.spearmanr(Ecmp2,Eact)[0]) )
#print ( "Spearman corr. TGM 06: " + "{:.3f}".format(st.spearmanr(Ecmp3,Eact)[0]) )
コード例 #20
0
data1 = gt.getfltsfromfile('/home/' + user + dir1 + file,' ', [0])
data2 = gt.convert * gt.getfltsfromfile('/home/' + user + dir1 + file,' ', [1])
data3 = gt.convert * gt.getfltsfromfile('/home/' + user + dir1 + file,' ', [2])
#data4 = gt.convert * gt.getfltsfromfile('/home/' + user + dir1 + file2,' ', [1])

#data4 = gt.getfltsfromfile('/home/' + user + dir2 + file,' ', [1])
#data5 = gt.getfltsfromfile('/home/' + user + dir2 + file,' ', [2])
#data5 = gt.getfltsfromfile('/home/' + user + dir3 + file, [2])

#mean = np.mean(data3)

#data2 = data2 - np.mean(data2)
#data3 = data3 - np.mean(data3)
#data4 = data4 - np.mean(data4)

rmse1 = gt.calculaterootmeansqrerror(data2,data3)
#rmse2 = gt.calculaterootmeansqrerror(data2,data4)
#rmse3 = gt.calculaterootmeansqrerror(data2,data5)

print('Datasize: ' + str(data1.shape[0]))

font = {'family' : 'Bitstream Vera Sans',
            'weight' : 'normal',
            'size'   : 14}

plt.rc('font', **font)

data1 = data1

plt.plot(data1, data2, color='black', label='wB97X/6-31G*',linewidth=4)
plt.scatter(data1, data2, color='black',linewidth=3)
コード例 #21
0
"""

# Fit model
clf.fit(X_train, y_train)

# Compute and print r^2 score
print(clf.score(X_test, y_test))

# Store predicted energies
Ecmp = clf.predict(X_test)

Ecmp = gt.hatokcal * (Ecmp)
Eact = gt.hatokcal * (y_test)

# Compute RMSE in kcal/mol
rmse = gt.calculaterootmeansqrerror(Ecmp, Eact)

# End timer
_t1e = tm.time()
print("Computation complete. Time: " + "{:.4f}".format((_t1e - _t1b)) + "s")

# Output model information
print("RMSE: " + str(rmse))
# print(clf.coef_)
# print(clf.intercept_)

# Plot
plt.scatter(Eact, Ecmp, label="Baseline RMSE: " + "%s" % float("%.3g" % rmse) + " kcal/mol", color="red")
plt.scatter(Eact, Eact, label="DFT", color="blue")

plt.title("GDB-2 - CM/MLP energy correlation to DFT")
コード例 #22
0
            deltas = gt.hatokcal * np.abs(Ecmp_t - np.array(Eact_t, dtype=float))
            Me = max (deltas)
            if Me > Herror:
                Herror = Me
                Wfile = i

            Le = min (deltas)
            if Le < Lerror:
                Lerror = Le
                Bfile = i

            #print (gt.hatokcal * gt.calculaterootmeansqrerror(np.array(Eact_t, dtype=float),Ecmp_t))

            tNa = nc.getNumAtoms()
            err.append(gt.hatokcal * gt.calculaterootmeansqrerror(np.array(Eact_t, dtype=float),Ecmp_t) / float(tNa))
            sze.append(float(len(Eact_t)))

            time += _t2b

            Ecmp += Ecmp_t
            Eact += Eact_t

#plt_by_index(np.array(Eerr),-1)

Ndps = len(Ecmp)

print ('\nMax Delta (kcal/mol): ' + str(Herror) + ' FILE: ' + Wfile)
print ('Min Delta (kcal/mol): ' + str(Lerror) + ' FILE: ' + Bfile)
print('\nMAXE')
print(ld)
コード例 #23
0
def produce_scan(title, xlabel, cnstfile, saefile, nnfdir, dtdir, dt1, smin, smax, iscale, ishift, atm):
    xyz, frc, typ, Eact, chk = gt.readncdatwforce(dtdir + dt1)

    xyz = np.asarray(xyz, dtype=np.float32)
    xyz = xyz.reshape((xyz.shape[0], len(typ), 3))

    print(xyz)

    frc = np.asarray(frc, dtype=np.float32)
    frc = frc.reshape((frc.shape[0], len(typ), 3))

    Eact = np.array(Eact)

    # Construct pyNeuroChem classes
    nc1 = pync.pyNeuroChem(cnstfile, saefile, nnfdir, 0)

    # Set the conformers in NeuroChem
    nc1.setConformers(confs=xyz, types=typ)

    # Print some data from the NeuroChem
    print("1) Number of Atoms Loaded: " + str(nc1.getNumAtoms()))
    print("1) Number of Confs Loaded: " + str(nc1.getNumConfs()))

    # Compute Energies of Conformations
    print("Computing energies...")
    _t1b = tm.time()
    Ecmp1 = nc1.energy()
    print("Energy computation complete. Time: " + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + "ms")

    # Compute Forces of Conformations
    print("Compute forces...")
    _t1b = tm.time()
    F = nc1.force()
    print("Force computation complete. Time: " + "{:.4f}".format((tm.time() - _t1b) * 1000.0) + "ms")

    # Fn = np.array(nc1.computeNumericalForces(dr=0.0001))

    n = smin
    m = smax
    Ecmp1 = gt.hatokcal * Ecmp1
    Eact = gt.hatokcal * Eact

    IDX = np.arange(0, Eact.shape[0], 1, dtype=float) * iscale + ishift

    IDX = IDX
    Eact = Eact
    Ecmp1 = Ecmp1

    Ecmp1 = Ecmp1 - Ecmp1.min()
    Eact = Eact - Eact.min()

    rmse1 = gt.calculaterootmeansqrerror(Eact, Ecmp1)

    print("Spearman corr. 1: " + "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))

    fig, axes = plt.subplots(nrows=2, ncols=2)

    axes.flat[0].plot(IDX, Eact, "-", color="black", label="DFT", linewidth=6)
    axes.flat[0].plot(IDX, Ecmp1, "--", color="red", label="ANI-1", linewidth=6)

    # ax.plot(IDX, Eact, color='black', label='DFT', linewidth=3)
    # ax.scatter(IDX, Eact, marker='o', color='black', linewidth=4)

    th = axes.flat[0].set_title(title, fontsize=13)
    th.set_position([0.5, 1.00])

    # Set Limits
    axes.flat[0].set_xlim([IDX.min(), IDX.max()])
    # axes.flat[0].set_ylim([Eact.min()-1.0,Eact.max()+1.0])

    axes.flat[0].set_ylabel("$\Delta$E calculated (kcal/mol)")
    axes.flat[0].set_xlabel(xlabel)
    axes.flat[0].legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0.0, fontsize=12)

    # print (Fn)

    for i in range(0, 3):
        Fq = F[:, :, i][:, atm]
        # Fnq = Fn[:,i]
        Faq = 1.8897259885789 * np.array(frc)[:, :, i][:, atm]
        print(Fq)
        print(Faq)

        th = axes.flat[i + 1].set_title("Force for atom " + str(atm) + ": coordinate " + str(i), fontsize=13)
        th.set_position([0.5, 1.00])

        axes.flat[i + 1].set_xlim([IDX.min(), IDX.max()])

        axes.flat[i + 1].plot(IDX, Faq, "-", color="black", label="DFT", linewidth=6)
        # axes.flat[i+1].plot(IDX, Fnq, '-', color='blue', label='ANI Numerical',
        #    linewidth=6)
        axes.flat[i + 1].plot(IDX, Fq, "--", color="red", label="ANI Analytical", linewidth=6)

        axes.flat[i + 1].set_ylabel("Force (Ha/A)")
        axes.flat[i + 1].set_xlabel(xlabel)
        axes.flat[i + 1].legend(bbox_to_anchor=(0.2, 0.98), loc=2, borderaxespad=0.0, fontsize=12)

    font = {"family": "Bitstream Vera Sans", "weight": "normal", "size": 12}

    plt.rc("font", **font)

    plt.show()
コード例 #24
0
Ecmp3 = gt.hatokcal * Ecmp3
Ecmp4 = gt.hatokcal * Ecmp4
Ecmp5 = gt.hatokcal * Ecmp5
Eact = gt.hatokcal * Eact
Eotr = gt.hatokcal * Eotr

Emax = 400.0
Ecmp1 = setmaxE(Eact, Ecmp1, Emax)
Ecmp2 = setmaxE(Eact, Ecmp2, Emax)
Ecmp3 = setmaxE(Eact, Ecmp3, Emax)
Ecmp4 = setmaxE(Eact, Ecmp4, Emax)
Ecmp5 = setmaxE(Eact, Ecmp5, Emax)
Eotr = setmaxE(Eact, Eotr, Emax)
Eact = setmaxE(Eact, Eact, Emax)

rmse1 = gt.calculaterootmeansqrerror(Eact, Eotr)
rmse2 = gt.calculaterootmeansqrerror(Eact, Ecmp1)
rmse3 = gt.calculaterootmeansqrerror(Eact, Ecmp2)
rmse4 = gt.calculaterootmeansqrerror(Eact, Ecmp3)
rmse5 = gt.calculaterootmeansqrerror(Eact, Ecmp4)
rmse6 = gt.calculaterootmeansqrerror(Eact, Ecmp5)

mx = Eact.max()
mn = Eact.min()

#plt.scatter(IDX, Eact, marker='o' , color='black',  linewidth=3)

print("Spearman corr. DFTB: " + "{:.3f}".format(st.spearmanr(Eotr, Eact)[0]))
print("Spearman corr. TGM 08: " +
      "{:.3f}".format(st.spearmanr(Ecmp1, Eact)[0]))
#print ( "Spearman corr. TGM 07: " + "{:.3f}".format(st.spearmanr(Ecmp2,Eact)[0]) )