コード例 #1
0
def dcsbm_objective(adj, labels):
    # class1_var = np.var(input[class1_inds])
    # class2_var = np.var(input[class2_inds])
    dcsbm = SBMEstimator()
    dcsbm.fit(adj, y=labels)
    objective = dcsbm.score(adj)
    return objective
コード例 #2
0
def compute_mse_from_assignments(assignments,
                                 graph,
                                 directed=True,
                                 loops=False):
    estimator = SBMEstimator(loops=loops, directed=directed)
    estimator.fit(graph, y=assignments)
    return compute_mse(estimator, graph)
def run_fit(seed):
    np.random.seed(seed)

    # load
    left_graph, left_labels = load_left()
    right_graph, right_labels = load_right()

    # fit SBM left, predict right
    sbm_fit_left = SBMEstimator(directed=True, loops=False)
    sbm_fit_left.fit(left_graph, y=left_labels)
    right_pred_mse = mse_on_other(sbm_fit_left, right_graph, right_labels)
    right_pred_likelihood = likelihood_on_other(sbm_fit_left, right_graph,
                                                right_labels)
    right_pred_sc_likelihood = likelihood_on_other(
        sbm_fit_left,
        right_graph,
        right_labels,
        clip=1 / (right_graph.size - right_graph.shape[0]),
    )
    right_pred_dict = {
        "n_params": sbm_fit_left._n_parameters(),
        "mse": right_pred_mse,
        "likelihood": right_pred_likelihood,
        "zc_likelihood": right_pred_likelihood,
        "sc_likelihood": right_pred_sc_likelihood,
    }
    right_pred_df = pd.DataFrame(right_pred_dict, index=[0])
    print(right_pred_df)
    save_obj(right_pred_df, file_obs, "right_pred_sbm_df")

    # fit SBM right, predict left
    sbm_fit_right = SBMEstimator(directed=True, loops=False)
    sbm_fit_right.fit(right_graph, y=right_labels)
    left_pred_mse = mse_on_other(sbm_fit_right, left_graph, left_labels)
    left_pred_likelihood = likelihood_on_other(sbm_fit_right, left_graph,
                                               left_labels)
    left_pred_sc_likelihood = likelihood_on_other(
        sbm_fit_right,
        left_graph,
        left_labels,
        clip=1 / (left_graph.size - left_graph.shape[0]),
    )
    left_pred_dict = {
        "n_params": sbm_fit_right._n_parameters(),
        "mse": left_pred_mse,
        "likelihood": left_pred_likelihood,
        "zc_likelihood": left_pred_likelihood,
        "sc_likelihood": left_pred_sc_likelihood,
    }
    left_pred_df = pd.DataFrame(left_pred_dict, index=[0])
    print(left_pred_df)
    save_obj(left_pred_df, file_obs, "left_pred_sbm_df")
    # sbm_fit_right = SBMEstimator(directed=True, loops=False)
    # sbm_fit_right.fit(right_graph, y=right_labels)
    # right_b = sbm_fit_right.block_p_

    # # save_obj(sbm_left_df, file_obs, "sbm_left_df")

    return 0
コード例 #4
0
ファイル: test_models.py プロジェクト: tathey1/graspy
 def test_SBM_nparams(self):
     e = self.estimator.fit(self.graph, y=self.labels)
     assert e._n_parameters() == (4)
     e = SBMEstimator()
     e.fit(self.graph)
     assert e._n_parameters() == (4 + 1)
     e = SBMEstimator(directed=False)
     e.fit(self.graph)
     assert e._n_parameters() == (1 + 3)
コード例 #5
0
def probplot(
    adj,
    labels,
    log_scale=False,
    figsize=(20, 20),
    cmap="Purples",
    title="Edge probability",
    vmin=0,
    vmax=None,
    ax=None,
    font_scale=1,
):
    sbm = SBMEstimator(directed=True, loops=True)
    sbm.fit(binarize(adj), y=labels)
    data = sbm.block_p_
    uni_labels = np.unique(labels)

    cbar_kws = {"fraction": 0.08, "shrink": 0.8, "pad": 0.03}

    if log_scale:
        data = data + 0.001
        vmin = data.min().min()
        vmax = data.max().max()
        log_norm = LogNorm(vmin=vmin, vmax=vmax)
        cbar_ticks = [
            math.pow(10, i)
            for i in range(
                math.floor(math.log10(data.min().min())),
                1 + math.ceil(math.log10(data.max().max())),
            )
        ]
        cbar_kws["ticks"] = cbar_ticks

    prob_df = pd.DataFrame(columns=uni_labels, index=uni_labels, data=data)

    if ax is None:
        plt.figure(figsize=figsize)
        ax = plt.gca()

    ax.set_title(title, pad=30, fontsize=30)

    sns.set_context("talk", font_scale=font_scale)

    heatmap_kws = dict(
        cbar_kws=cbar_kws, annot=True, square=True, cmap=cmap, vmin=vmin, vmax=vmax
    )
    if log_scale:
        heatmap_kws["norm"] = log_norm
    if ax is not None:
        heatmap_kws["ax"] = ax
    ax.tick_params(axis="both", which="major", labelsize=30)
    # ax.tick_params(axis="both", which="minor", labelsize=8)
    ax = sns.heatmap(prob_df, **heatmap_kws)

    ax.set_yticklabels(ax.get_yticklabels(), rotation=0)

    return ax, prob_df
コード例 #6
0
def get_sbm_prob(adj, labels):
    sbm = SBMEstimator(directed=True, loops=True)
    sbm.fit(binarize(adj), y=labels)
    data = sbm.block_p_
    uni_labels, counts = np.unique(labels, return_counts=True)
    sort_inds = np.argsort(counts)[::-1]
    uni_labels = uni_labels[sort_inds]
    data = data[np.ix_(sort_inds, sort_inds)]

    prob_df = pd.DataFrame(columns=uni_labels, index=uni_labels, data=data)

    return prob_df
コード例 #7
0
ファイル: test_models.py プロジェクト: tathey1/graspy
    def test_SBM_fit_unsupervised(self):
        np.random.seed(12345)
        n_verts = 1500

        B = np.array([[0.7, 0.1, 0.1], [0.1, 0.9, 0.1], [0.05, 0.1, 0.75]])
        n = np.array([500, 500, 500])
        labels = _n_to_labels(n)
        p_mat = _block_to_full(B, labels, (n_verts, n_verts))
        p_mat -= np.diag(np.diag(p_mat))
        graph = sample_edges(p_mat, directed=True, loops=False)
        sbe = SBMEstimator(directed=True, loops=False)
        sbe.fit(graph)
        assert adjusted_rand_score(labels, sbe.vertex_assignments_) > 0.95
        assert_allclose(p_mat, sbe.p_mat_, atol=0.12)
コード例 #8
0
ファイル: test_models.py プロジェクト: tathey1/graspy
 def test_SBM_fit_supervised(self):
     np.random.seed(8888)
     B = np.array([
         [0.9, 0.2, 0.05, 0.1],
         [0.1, 0.7, 0.1, 0.1],
         [0.2, 0.4, 0.8, 0.5],
         [0.1, 0.2, 0.1, 0.7],
     ])
     n = np.array([500, 500, 250, 250])
     g = sbm(n, B, directed=True, loops=False)
     sbe = SBMEstimator(directed=True, loops=False)
     labels = _n_to_labels(n)
     sbe.fit(g, y=labels)
     B_hat = sbe.block_p_
     assert_allclose(B_hat, B, atol=0.01)
コード例 #9
0
ファイル: test_models.py プロジェクト: tathey1/graspy
    def test_SBM_inputs(self):
        with pytest.raises(TypeError):
            SBMEstimator(directed="hey")

        with pytest.raises(TypeError):
            SBMEstimator(loops=6)

        with pytest.raises(TypeError):
            SBMEstimator(n_components="XD")

        with pytest.raises(ValueError):
            SBMEstimator(n_components=-1)

        with pytest.raises(TypeError):
            SBMEstimator(min_comm="1")

        with pytest.raises(ValueError):
            SBMEstimator(min_comm=-1)

        with pytest.raises(TypeError):
            SBMEstimator(max_comm="ay")

        with pytest.raises(ValueError):
            SBMEstimator(max_comm=-1)

        with pytest.raises(ValueError):
            SBMEstimator(min_comm=4, max_comm=2)

        graph = er_np(100, 0.5)
        bad_y = np.zeros(99)
        sbe = SBMEstimator()
        with pytest.raises(ValueError):
            sbe.fit(graph, y=bad_y)

        with pytest.raises(ValueError):
            sbe.fit(graph[:, :99])

        with pytest.raises(ValueError):
            sbe.fit(graph[..., np.newaxis])

        with pytest.raises(TypeError):
            SBMEstimator(cluster_kws=1)

        with pytest.raises(TypeError):
            SBMEstimator(embed_kws=1)
コード例 #10
0
# %% [markdown]
# ##

from graspy.models import SBMEstimator

level = 2

n_row = 3
n_col = 7
scale = 10
fig, axs = plt.subplots(n_row, n_col, figsize=(n_row * scale, n_col * scale))

for level in range(8):
    label_name = f"lvl{level}_labels_side"
    sbm = SBMEstimator(directed=True, loops=True)
    sbm.fit(binarize(full_adj), full_meta[label_name].values)
    ax = axs[1, level]
    _, _, top, _ = adjplot(
        sbm.p_mat_,
        ax=ax,
        plot_type="heatmap",
        sort_class=["hemisphere"] + level_names[: level + 1],
        item_order=["merge_class_sf_order", "merge_class", "sf"],
        class_order="sf",
        meta=full_mg.meta,
        palette=CLASS_COLOR_DICT,
        colors="merge_class",
        ticks=False,
        gridline_kws=dict(linewidth=0.05, color="grey", linestyle="--"),
        cbar_kws=dict(shrink=0.6),
    )
コード例 #11
0
#%%
from graspy.models import SBMEstimator
from src.data import load_new_left
from graspy.plot import heatmap
import numpy as np

adj, labels = load_new_left()

sbm = SBMEstimator(loops=False, co_block=False)
sbm.fit(adj, y=labels)
heatmap(sbm.p_mat_, inner_hier_labels=labels, vmin=0, vmax=1)

#%%
co_labels = np.stack((labels, labels), axis=1).astype("U3")

for i, row in enumerate(co_labels):
    if row[1] == "O" or row[1] == "I":
        co_labels[i, 1] = "O/I"
co_labels

#%%
cosbm = SBMEstimator(loops=False, co_block=True)
cosbm.fit(adj, y=co_labels)
heatmap(cosbm.p_mat_, inner_hier_labels=labels)

#%%
コード例 #12
0
right_graph, right_labels = load_right()

np.random.seed(8888)
n_init = 200
clip = 1 / (right_graph.size - right_graph.shape[0])
heatmap_kws = dict(vmin=0,
                   vmax=1,
                   font_scale=1.5,
                   hier_label_fontsize=20,
                   cbar=False)

fig, ax = plt.subplots(4, 2, figsize=(15, 30))

# A priori SBM
ap_estimator = SBMEstimator()
ap_estimator.fit(right_graph, y=right_labels)

lik = ap_estimator.score(right_graph, clip=clip)

heatmap(
    right_graph,
    inner_hier_labels=right_labels,
    title="Right MB (by cell type)",
    ax=ax[0, 0],
    **heatmap_kws,
)
heatmap(
    ap_estimator.p_mat_,
    inner_hier_labels=right_labels,
    title=f"A priori SBM, lik = {lik:.2f}",
    ax=ax[0, 1],
コード例 #13
0
#%%
import matplotlib.pyplot as plt
import matplotlib as mpl

import numpy as np

from graspy.models import DCSBMEstimator, RDPGEstimator, SBMEstimator
from graspy.plot import heatmap
from src.data import load_right

# Load data
right_adj, right_labels = load_right()

# Fit the models
sbm = SBMEstimator(directed=True, loops=False)
sbm.fit(right_adj, y=right_labels)

dcsbm = DCSBMEstimator(degree_directed=False, directed=True, loops=False)
dcsbm.fit(right_adj, y=right_labels)

rdpg = RDPGEstimator(loops=False, n_components=3)
rdpg.fit(right_adj)

# Plotting
np.random.seed(8888)

cmap = mpl.cm.get_cmap("RdBu_r")
center = 0
vmin = 0
vmax = 1
norm = mpl.colors.Normalize(0, 1)
コード例 #14
0
     binarize(full_adj),
     sizes=(0.5, 0.5),
     ax=ax,
     plot_type="scattermap",
     sort_class=["hemisphere"] + level_names[:level + 1],
     item_order=["merge_class_sf_order", "merge_class", "sf"],
     class_order="sf",
     meta=meta,
     palette=CLASS_COLOR_DICT,
     colors="merge_class",
     ticks=False,
     gridline_kws=dict(linewidth=0.05, color="grey", linestyle="--"),
 )
 sbm = SBMEstimator(directed=True, loops=True)
 labels, inv = np.unique(full_meta[label_name].values, return_inverse=True)
 sbm.fit(binarize(full_adj), inv)
 ax = axs[1, level]
 _, _, top, _ = adjplot(
     sbm.p_mat_,
     ax=ax,
     plot_type="heatmap",
     sort_class=["hemisphere"] + level_names[:level + 1],
     item_order=["merge_class_sf_order", "merge_class", "sf"],
     class_order="sf",
     meta=meta,
     palette=CLASS_COLOR_DICT,
     colors="merge_class",
     ticks=False,
     gridline_kws=dict(linewidth=0.05, color="grey", linestyle="--"),
     cbar_kws=dict(shrink=0.6),
 )
コード例 #15
0
    score = gmm.model_.score(latent)
    temp_dict = base_dict.copy()
    temp_dict["Metric"] = "GMM likelihood"
    temp_dict["Score"] = score
    out_dicts.append(temp_dict)

    # GMM BIC
    score = gmm.model_.bic(latent)
    temp_dict = base_dict.copy()
    temp_dict["Metric"] = "GMM BIC"
    temp_dict["Score"] = score
    out_dicts.append(temp_dict)

    # SBM likelihood
    sbm = SBMEstimator(directed=True, loops=False)
    sbm.fit(bin_adj, y=pred_labels)
    score = sbm.score(bin_adj)
    temp_dict = base_dict.copy()
    temp_dict["Metric"] = "SBM likelihood"
    temp_dict["Score"] = score
    out_dicts.append(temp_dict)

    # DCSBM likelihood
    dcsbm = DCSBMEstimator(directed=True, loops=False)
    dcsbm.fit(bin_adj, y=pred_labels)
    score = dcsbm.score(bin_adj)
    temp_dict = base_dict.copy()
    temp_dict["Metric"] = "DCSBM likelihood"
    temp_dict["Score"] = score
    out_dicts.append(temp_dict)
コード例 #16
0
    cbar=False,
    title="Adjacency matrix",
    inner_hier_labels=labels,
    sort_nodes=True,
    hier_label_fontsize=16,
)
mean_degree = np.mean(np.sum(adj, axis=0))
print(f"Mean degree: {mean_degree:.3f}")

# %% [markdown]
# ## Double checking the model parameters
# Below is a quick sanity check that the graph we sampled has block probabilities that are
# close to what we set originally if we undo the rescaling step.
# %% double checking on model params
sbme = SBMEstimator(directed=False, loops=False)
sbme.fit(adj, y=labels)
block_p_hat = sbme.block_p_
block_heatmap(block_p_hat, title=r"Observed $\hat{B}$")
block_p_hat_unscaled = block_p_hat * 1 / scaling_factor
block_heatmap(block_p_hat_unscaled, title=r"Observed $\hat{B}$ (unscaled)")

# %% [markdown]
# ## Spectral embedding
# Here I use graspy to do ASE, LSE, and regularized LSE. Note that we're just using the
# SVDs here. There is an option on whether to throw out the first eigenvector.
#%% embeddings
embed_kws = dict(n_components=k + 1, algorithm="full", check_lcc=False)
ase = AdjacencySpectralEmbed(**embed_kws)
lse = LaplacianSpectralEmbed(form="DAD", **embed_kws)
rlse = LaplacianSpectralEmbed(form="R-DAD", **embed_kws)
コード例 #17
0
    palette=cmap,
    **plt_kws,
)

plt.xlabel("# Params (SBM params for SBMs)")
plt.ylabel("MSE")
plt.title(f"Drosophila old MB left, directed ({experiment}:{run})")
plt.savefig(save_dir / "rank_sbm_Klines.pdf", format="pdf", facecolor="w")

#%%
from graspy.models import SBMEstimator
from graspy.datasets import load_drosophila_left, load_drosophila_right
from graspy.utils import binarize

sbm = SBMEstimator(directed=True, loops=False)
left_adj, left_labels = load_drosophila_left(return_labels=True)
left_adj = binarize(left_adj)
sbm.fit(left_adj, y=left_labels)
sbm.mse(left_adj)
sbm._n_parameters()

right_adj, right_labels = load_drosophila_right(return_labels=True)

er = SBMEstimator(directed=True, loops=False, n_blocks=2)
er.fit(left_adj)
er.mse(left_adj)
heatmap(left_adj,
        inner_hier_labels=er.vertex_assignments_,
        outer_hier_labels=left_labels)
#%%