def test_ge_metrics_urn(): urn = "urn:great_expectations:metrics:20200403T1234.324Z:my_suite:expect_something.observed_value:column=mycol" res = ge_urn.parseString(urn) assert res["urn_type"] == "metrics" assert res["run_id"] == "20200403T1234.324Z" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == {"column": ["mycol"]} # No kwargs is ok urn = "urn:great_expectations:metrics:20200403T1234.324Z:my_suite:expect_something.observed_value" res = ge_urn.parseString(urn) assert res["urn_type"] == "metrics" assert res["run_id"] == "20200403T1234.324Z" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" assert "kwargs_dict" not in res
def test_ge_stores_urn(): urn = "urn:great_expectations:stores:my_store:mymetric:kw=param" res = ge_urn.parseString(urn) assert res["urn_type"] == "stores" assert res["store_name"] == "my_store" assert res["metric_name"] == "mymetric" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == { "kw": ["param"], } # No kwargs is ok urn = "urn:great_expectations:stores:my_store:mymetric" res = ge_urn.parseString(urn) assert res["urn_type"] == "stores" assert res["store_name"] == "my_store" assert res["metric_name"] == "mymetric" assert "metric_kwargs" not in res
def test_ge_validations_urn(): # We should be able to parse validations urns urn = ( "urn:great_expectations:validations:my_suite:expect_something.observed_value:query=s%20tring&query=" "string3&query2=string2") res = ge_urn.parseString(urn) assert res["urn_type"] == "validations" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == { "query": ["s tring", "string3"], "query2": ["string2"] } # no kwargs is ok urn = "urn:great_expectations:validations:my_suite:expect_something.observed_value" res = ge_urn.parseString(urn) assert res["urn_type"] == "validations" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" assert "metric_kwargs" not in res
def test_invalid_urn(): # Must start with "urn:great_expectations" with pytest.raises(ParseException) as e: ge_urn.parseString("not_a_ge_urn") assert "not_a_ge_urn" in e.value.line # Must have one of the recognized types with pytest.raises(ParseException) as e: ge_urn.parseString("urn:great_expectations:foo:bar:baz:bin:barg") assert "urn:great_expectations:foo:bar:baz:bin:barg" in e.value.line # Cannot have too many parts with pytest.raises(ParseException) as e: ge_urn.parseString( "urn:great_expectations:validations:foo:bar:baz:bin:barg:boo") assert "urn:great_expectations:validations:foo:bar:baz:bin:barg:boo" in e.value.line
def parse_evaluation_parameter(parameter_expression, evaluation_parameters=None, data_context=None): """Use the provided evaluation_parameters dict to parse a given parameter expression. Args: parameter_expression (str): A string, potentially containing basic arithmetic operations and functions, and variables to be substituted evaluation_parameters (dict): A dictionary of name-value pairs consisting of values to substitute data_context (DataContext): A data context to use to obtain metrics, if necessary The parser will allow arithmetic operations +, -, /, *, as well as basic functions, including trunc() and round() to obtain integer values when needed for certain expectations (e.g. expect_column_value_length_to_be_between). Valid variables must begin with an alphabetic character and may contain alphanumeric characters plus '_' and '$', EXCEPT if they begin with the string "urn:great_expectations" in which case they may also include additional characters to support inclusion of GE URLs (see :ref:`evaluation_parameters` for more information). """ if evaluation_parameters is None: evaluation_parameters = {} # Calling get_parser clears the stack parser = expr.get_parser() try: L = parser.parseString(parameter_expression, parseAll=True) except ParseException as err: L = [ "Parse Failure", parameter_expression, (str(err), err.line, err.column) ] if len(L) == 1 and L[0] not in evaluation_parameters: # In this special case there were no operations to find, so only one value, but we don't have something to # substitute for that value try: res = ge_urn.parseString(L[0]) if res["urn_type"] == "stores": store = data_context.stores.get(res["store_name"]) return store.get_query_result(res["metric_name"], res.get("metric_kwargs", {})) else: logger.error( "Unrecognized urn_type in ge_urn: must be 'stores' to use a metric store." ) raise EvaluationParameterError( "No value found for $PARAMETER " + str(L[0])) except ParseException: raise EvaluationParameterError("No value found for $PARAMETER " + str(L[0])) except AttributeError: logger.warning( "Unable to get store for store-type valuation parameter.") raise EvaluationParameterError("No value found for $PARAMETER " + str(L[0])) elif len(L) == 1: # In this case, we *do* have a substitution for a single type. We treat this specially because in this # case, we allow complex type substitutions (i.e. do not coerce to string as part of parsing) return evaluation_parameters[L[0]] elif len(L) == 0 or L[0] != "Parse Failure": for i, ob in enumerate(expr.exprStack): if isinstance(ob, str) and ob in evaluation_parameters: expr.exprStack[i] = str(evaluation_parameters[ob]) else: err_str, err_line, err_col = L[-1] raise EvaluationParameterError( f"Parse Failure: {err_str}\nStatement: {err_line}\nColumn: {err_col}" ) try: result = expr.evaluate_stack(expr.exprStack) except Exception as e: exception_traceback = traceback.format_exc() exception_message = ( f'{type(e).__name__}: "{str(e)}". Traceback: "{exception_traceback}".' ) logger.debug(exception_message, e, exc_info=True) raise EvaluationParameterError( "Error while evaluating evaluation parameter expression: " + str(e)) return result