コード例 #1
0
    def test_assemblePatchBoundaryMassMatrix2d(self):
        NPatch = np.array([1, 2])
        CLocGetter = fem.localBoundaryMassMatrixGetter(NPatch)
        boundaryMap = np.array([[True, True], [True, True]])
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch,
                                                    CLocGetter,
                                                    boundaryMap=boundaryMap)
        CCorrect = 1. / 12 * np.array(
            [[6, 2, 1, 0, 0, 0], [2, 6, 0, 1, 0, 0], [1, 0, 4, 0, 1, 0],
             [0, 1, 0, 4, 0, 1], [0, 0, 1, 0, 6, 2], [0, 0, 0, 1, 2, 6]]).T
        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))

        NPatch = np.array([1, 2])
        CLocGetter = fem.localBoundaryMassMatrixGetter(NPatch)
        boundaryMap = np.array([[True, True], [False, True]])
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch,
                                                    CLocGetter,
                                                    boundaryMap=boundaryMap)
        CCorrect = 1. / 12 * np.array(
            [[2, 0, 1, 0, 0, 0], [0, 2, 0, 1, 0, 0], [1, 0, 4, 0, 1, 0],
             [0, 1, 0, 4, 0, 1], [0, 0, 1, 0, 6, 2], [0, 0, 0, 1, 2, 6]]).T

        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))

        NPatch = np.array([1, 2])
        CLocGetter = fem.localBoundaryMassMatrixGetter(NPatch)
        boundaryMap = np.array([[False, False], [True, True]])
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch,
                                                    CLocGetter,
                                                    boundaryMap=boundaryMap)
        CCorrect = 1. / 12 * np.array(
            [[4, 2, 0, 0, 0, 0], [2, 4, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4, 2], [0, 0, 0, 0, 2, 4]]).T

        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))
コード例 #2
0
    def test_assemblePatchBoundaryMatrix1d(self):
        NPatch = np.array([4])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter)
        CCorrect = np.array([[4, -4, 0, 0, 0], [0, 0, 0, 0,
                                                0], [0, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0], [0, 0, 0, -4, 4]])
        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))

        NPatch = np.array([4])
        aPatch = np.array([2, 10, 10, 3])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter, aPatch)
        CCorrect = np.array([[8, -8, 0, 0, 0], [0, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
                             [0, 0, 0, -12, 12]])
        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))
コード例 #3
0
    def test_boundaryNormalDerivativeMatrixProperties(self):
        # BoundaryNormalDerivative bilinear form should map constants to 0
        NPatch = np.array([3, 4, 5])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        C = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter)
        constant = np.ones(np.prod(NPatch + 1))
        self.assertTrue(np.isclose(np.linalg.norm(C * constant), 0))

        # BoundaryNormalDerivative bilinear form (a=constant) should map planes to 0
        NPatch = np.array([3, 4, 5, 6])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        C = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter)

        p = util.pCoordinates(NPatch)
        pSum = np.sum(p, axis=1)
        ones = np.ones(np.prod(NPatch + 1))
        self.assertTrue(np.isclose(np.linalg.norm(np.dot(ones, C * pSum)), 0))

        # A function f with df/dx_k = 1 at x_k = 0 and df/dx_k = 0 at
        # x_k = 1 should give 1'*C*f = -d
        NPatch = np.array([5, 4, 3, 7])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        C = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter)

        p = util.pCoordinates(NPatch)
        p = np.minimum(p, 0.5)
        pSum = np.sum(p, axis=1)
        ones = np.ones(np.prod(NPatch + 1))
        self.assertTrue(np.isclose(np.dot(ones, C * pSum), -4))

        # Same test as above, but with a coefficient a
        NPatch = np.array([5, 4, 3, 7])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)

        p = util.pCoordinates(NPatch)
        p0 = p[:, 0]
        pElement = util.pCoordinates(NPatch, NPatch=NPatch - 1)
        pElement0 = pElement[:, 0]
        aPatch = 1. * (pElement0 < 0.5) + 10. * (pElement0 >= 0.5)

        C = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter, aPatch)

        ones = np.ones(np.prod(NPatch + 1))
        self.assertTrue(np.isclose(np.dot(ones, C * p0), 10 - 1))
コード例 #4
0
    def test_assemblePatchBoundaryNormalDerivativeMatrix2d(self):
        NPatch = np.array([1, 2])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter)
        CCorrect = 1. / 12 * np.array(
            [[10, 2, 1, -1, 0, 0], [2, 10, -1, 1, 0, 0],
             [-7, -5, 4, -4, -7, -5], [-5, -7, -4, 4, -5, -7],
             [0, 0, 1, -1, 10, 2], [0, 0, -1, 1, 2, 10]]).T
        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))

        NPatch = np.array([1, 2])
        aPatch = np.array([1, 10])
        CLocGetter = fem.localBoundaryNormalDerivativeMatrixGetter(NPatch)
        CComputed = fem.assemblePatchBoundaryMatrix(NPatch, CLocGetter, aPatch)
        CCorrect = 1. / 12 * np.array(
            [[10, 2, 1, -1, 0, 0], [2, 10, -1, 1, 0, 0],
             [-7, -5, 22, -22, -70, -50], [-5, -7, -22, 22, -50, -70],
             [0, 0, 10, -10, 100, 20], [0, 0, -10, 10, 20, 100]]).T
        self.assertTrue(np.allclose(CComputed.todense(), CCorrect))
コード例 #5
0
ファイル: test_pg.py プロジェクト: LjungPer/Master-Thesis
    def test_2d_flux(self):
        # Stripes perpendicular to flow direction gives effective
        # permeability as the harmonic mean of the permeabilities of
        # the stripes.
        NWorldFine = np.array([20, 20])
        NpFine = np.prod(NWorldFine + 1)
        NtFine = np.prod(NWorldFine)
        NWorldCoarse = np.array([2, 2])
        NCoarseElement = NWorldFine / NWorldCoarse
        NtCoarse = np.prod(NWorldCoarse)
        NpCoarse = np.prod(NWorldCoarse + 1)

        boundaryConditions = np.array([[0, 0], [1, 1]])
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)

        np.random.seed(0)

        aBaseSquare = np.exp(5 * np.random.random_sample(NWorldFine[1]))
        aBaseCube = np.tile(aBaseSquare[..., np.newaxis], [NWorldFine[0], 1])
        aBaseCube = aBaseCube[..., np.newaxis]

        aBase = aBaseCube.flatten()

        IPatchGenerator = lambda i, N: interp.L2ProjectionPatchMatrix(
            i, N, NWorldCoarse, NCoarseElement, boundaryConditions)

        aCoef = coef.coefficientFine(NWorldCoarse, NCoarseElement, aBase)

        k = 2
        printLevel = 0
        pglod = pg.PetrovGalerkinLOD(world, k, IPatchGenerator, 0, printLevel)
        pglod.updateCorrectors(aCoef)

        KmsFull = pglod.assembleMsStiffnessMatrix()

        coords = util.pCoordinates(NWorldCoarse)
        xC = coords[:, 0]
        g = 1 - xC
        bFull = -KmsFull * g

        boundaryMap = boundaryConditions == 0
        fixed = util.boundarypIndexMap(NWorldCoarse, boundaryMap)
        free = np.setdiff1d(np.arange(0, NpCoarse), fixed)
        KmsFree = KmsFull[free][:, free]

        bFree = bFull[free]
        xFree = sparse.linalg.spsolve(KmsFree, bFree)
        xFull = np.zeros(NpCoarse)
        xFull[free] = xFree

        MGammaLocGetter = fem.localBoundaryMassMatrixGetter(NWorldCoarse)
        MGammaFull = fem.assemblePatchBoundaryMatrix(NWorldCoarse,
                                                     MGammaLocGetter,
                                                     boundaryMap=boundaryMap)

        # Solve (F, w) = a(u0, w) + a(g, w) in space of fixed DoFs only
        KmsFixedFull = KmsFull[fixed]
        cFixed = KmsFixedFull * (xFull + g)
        MGammaFixed = MGammaFull[fixed][:, fixed]
        FFixed = sparse.linalg.spsolve(MGammaFixed, cFixed)
        FFull = np.zeros(NpCoarse)
        FFull[fixed] = FFixed

        self.assertTrue(
            np.isclose(np.mean(FFixed[FFixed > 0]), stats.hmean(aBaseSquare)))
コード例 #6
0
def helmholtz_nonlinear_adaptive(mapper, fineLvl, coarseLvl, maxit):
    fineExp = fineLvl
    NFine = np.array([2**fineLvl, 2**fineLvl])
    NpFine = np.prod(NFine + 1)
    N = 2**coarseLvl
    tolList = [2.0, 1.0, 0.5, 0.25, 0.125, 0.0625, 0.]
    ell = 2  # localization parameter

    k = 15.  # wavenumber
    maxit_Fine = 200

    xt = util.tCoordinates(NFine)
    xp = util.pCoordinates(NFine)

    # multiscale coefficients on the scale NFine-2
    np.random.seed(444)
    sizeK = np.size(xt[:, 0])
    nFine = NFine[0]

    # determine domain D_eps = supp(1-n) = supp(1-A) (all equal for the moment)
    indicesIn = (xt[:, 0] > 0.15) & (xt[:, 0] < 0.85) & (xt[:, 1] > 0.15) & (
        xt[:, 1] < 0.85)
    indicesInEps = (xt[:, 0] > 0.15) & (xt[:, 0] < 0.85) & (
        xt[:, 1] > 0.15) & (xt[:, 1] < 0.85)

    # coefficients
    aFine = np.ones(xt.shape[0])

    cn = .05  # lower bound on n
    Cn = 1.  # upper bound on n
    nEpsPro = coeffi(xt[:, 0], xt[:, 1], fineLvl)

    k2Fine = k**2 * np.ones(xt.shape[0])
    k2Fine[indicesIn] = k**2 * ((Cn - cn) * nEpsPro[indicesIn] + cn)
    kFine = k * np.ones(xt.shape[0])

    Ceps = 0.3  # upper bound on eps (lower bound is 0)
    epsEpsPro = np.ones(sizeK)
    epsFine = np.zeros(xt.shape[0])
    epsFine[indicesInEps] = Ceps * epsEpsPro[indicesInEps]  # 0 OR Ceps

    plotC = np.ones(sizeK)
    plotC[indicesIn] = nEpsPro[indicesIn]
    drawCoefficient(NFine, plotC)

    xC = xp[:, 0]
    yC = xp[:, 1]

    # define right-hand side and boundary condition
    def funcF(x, y):
        res = 100 * np.ones(x.shape, dtype='complex128')
        return res

    f = funcF(xC, yC)

    # reference solution
    uSol = np.zeros(NpFine, dtype='complex128')

    # boundary conditions
    boundaryConditions = np.array([[1, 1], [1, 1]])
    worldFine = World(NFine, np.array([1, 1]), boundaryConditions)

    # fine matrices
    BdFineFEM = fem.assemblePatchBoundaryMatrix(
        NFine, fem.localBoundaryMassMatrixGetter(NFine))
    MFineFEM = fem.assemblePatchMatrix(NFine, fem.localMassMatrix(NFine))
    KFineFEM = fem.assemblePatchMatrix(
        NFine, fem.localStiffnessMatrix(NFine))  # , aFine)

    kBdFine = fem.assemblePatchBoundaryMatrix(
        NFine, fem.localBoundaryMassMatrixGetter(NFine), kFine)
    KFine = fem.assemblePatchMatrix(NFine, fem.localStiffnessMatrix(NFine),
                                    aFine)

    print('***computing reference solution***')

    uOldFine = np.zeros(NpFine, dtype='complex128')

    for it in np.arange(maxit_Fine):
        print('-- itFine = %d' % it)
        knonlinUpreFine = np.abs(uOldFine)
        knonlinUFine = func.evaluateCQ1(NFine, knonlinUpreFine, xt)

        k2FineUfine = np.copy(k2Fine)
        k2FineUfine[indicesInEps] *= (
            1. + epsFine[indicesInEps] * knonlinUFine[indicesInEps]**2
        )  # full coefficient, including nonlinearity

        k2MFine = fem.assemblePatchMatrix(
            NFine, fem.localMassMatrix(NFine),
            k2FineUfine)  # weighted mass matrix, updated in every iteration

        nodesFine = np.arange(worldFine.NpFine)
        fixFine = util.boundarypIndexMap(NFine, boundaryConditions == 0)
        freeFine = np.setdiff1d(nodesFine, fixFine)

        # right-hand side
        fhQuad = MFineFEM * f

        # fine system
        lhsh = KFine[freeFine][:, freeFine] - k2MFine[
            freeFine][:, freeFine] + 1j * kBdFine[freeFine][:, freeFine]
        rhsh = fhQuad[freeFine]
        xFreeFine = sparse.linalg.spsolve(lhsh, rhsh)

        xFullFine = np.zeros(worldFine.NpFine, dtype='complex128')
        xFullFine[freeFine] = xFreeFine
        uOldFine = np.copy(xFullFine)

        # residual - used as stopping criterion
        knonlinU = np.abs(uOldFine)
        knonlinUFineIt = func.evaluateCQ1(NFine, knonlinU, xt)

        k2FineUfineIt = np.copy(k2Fine)
        k2FineUfineIt[indicesInEps] *= (
            1. + epsFine[indicesInEps] * knonlinUFineIt[indicesInEps]**2
        )  # update full coefficient, including nonlinearity

        k2MFineIt = fem.assemblePatchMatrix(NFine, fem.localMassMatrix(NFine),
                                            k2FineUfineIt)
        Ares = KFine - k2MFineIt + 1j * kBdFine
        residual = np.linalg.norm(Ares * xFullFine - fhQuad) / np.linalg.norm(
            Ares * xFullFine)
        print('---- residual = %.4e' % residual)

        if residual < 1e-12:
            break  # stopping criterion

    uSol = xFullFine  # final fine reference solution

    print('***reference solution computed***\n')

    counter = 0  # for figures

    print('***computing multiscale approximations***')

    relErrEnergy = np.zeros([len(tolList), maxit])

    for tol in tolList:
        counter += 1
        print('H = %.4e, tol = %.4e' % (1. / N, tol))
        NWorldCoarse = np.array([N, N])
        NCoarseElement = NFine // NWorldCoarse
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)
        NpCoarse = np.prod(NWorldCoarse + 1)

        uOldUps = np.zeros(NpFine, dtype='complex128')

        for it in np.arange(maxit):
            print('-- it = %d:' % it)
            knonlinUpre = np.abs(uOldUps)
            knonlinU = func.evaluateCQ1(NFine, knonlinUpre, xt)

            k2FineU = np.copy(k2Fine)
            k2FineU[indicesInEps] *= (
                1. + epsFine[indicesInEps] * knonlinU[indicesInEps]**2)

            print('---- starting computation of correctors')

            def computeLocalContribution(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def computeIndicators(TInd):
                k2FineUPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineU)
                k2FineUOldPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineUOld)

                E_vh = lod.computeErrorIndicatorCoarse_helmholtz(
                    patchT[TInd], muTPrime[TInd], k2FineUOldPatch,
                    k2FineUPatch)
                return E_vh

            def UpdateCorrectors(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch, k2Patch)
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def UpdateElements(tol, E, Kmsij_old, Mmsij_old, Bdmsij_old,
                               correctors_old, mu_old):
                print('---- apply tolerance')
                Elements_to_be_updated = []
                for (i, eps) in E.items():
                    if eps > tol * k**2:
                        Elements_to_be_updated.append(i)
                if len(E) > 0:
                    print(
                        '---- percentage of non-zero element correctors to be updated: %.4f'
                        % (100 * np.size(Elements_to_be_updated) / len(E)),
                        flush=True)
                    print(
                        '---- total percentage of element correctors to be updated: %.4f'
                        %
                        (100 * np.size(Elements_to_be_updated) / len(mu_old)),
                        flush=True)

                print('---- update local contributions')
                KmsijT_list = list(np.copy(Kmsij_old))
                MmsijT_list = list(np.copy(Mmsij_old))
                BdmsijT_list = list(np.copy(Bdmsij_old))
                muT_list = np.copy(mu_old)
                for T in np.setdiff1d(range(world.NtCoarse),
                                      Elements_to_be_updated):
                    patch = Patch(world, ell, T)
                    aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                    kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                    k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)
                    csi = lod.computeBasisCoarseQuantities_helmholtz(
                        patch, correctors_old[T], aPatch, kPatch, k2Patch)

                    KmsijT_list[T] = csi.Kmsij
                    MmsijT_list[T] = csi.Mmsij
                    BdmsijT_list[T] = csi.Bdmsij
                    muT_list[T] = csi.muTPrime

                if np.size(Elements_to_be_updated) != 0:
                    #print('---- update correctors')
                    patchT_irrelevant, correctorsListTNew, KmsijTNew, MmsijTNew, BdmsijTNew, muTPrimeNew = zip(
                        *mapper(UpdateCorrectors, Elements_to_be_updated))

                    #print('---- update correctorsList')
                    correctorsListT_list = list(np.copy(correctors_old))
                    i = 0
                    for T in Elements_to_be_updated:
                        KmsijT_list[T] = KmsijTNew[i]
                        correctorsListT_list[T] = correctorsListTNew[i]
                        MmsijT_list[T] = MmsijTNew[i]
                        BdmsijT_list[T] = BdmsijTNew[i]
                        muT_list[T] = muTPrimeNew[i]
                        i += 1

                    KmsijT = tuple(KmsijT_list)
                    correctorsListT = tuple(correctorsListT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime
                else:
                    KmsijT = tuple(KmsijT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctors_old, KmsijT, MmsijT, BdmsijT, muTPrime

            if it == 0:
                patchT, correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = zip(
                    *mapper(computeLocalContribution, range(world.NtCoarse)))
            else:
                E_vh = list(mapper(computeIndicators, range(world.NtCoarse)))
                print(
                    '---- maximal value error estimator for basis correctors {}'
                    .format(np.max(E_vh)))
                E = {i: E_vh[i] for i in range(np.size(E_vh)) if E_vh[i] > 0}

                # loop over elements with possible recomputation of correctors
                correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = UpdateElements(
                    tol, E, KmsijT, MmsijT, BdmsijT, correctorsListT,
                    muTPrime)  # tol scaled by maximal error indicator

            print('---- finished computation of correctors')

            KLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, KmsijT)  # ms stiffness matrix
            k2MLOD = pglod.assembleMsStiffnessMatrix(world, patchT,
                                                     MmsijT)  # ms mass matrix
            kBdLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, BdmsijT)  # ms boundary matrix
            MFEM = fem.assemblePatchMatrix(NWorldCoarse, world.MLocCoarse)
            BdFEM = fem.assemblePatchBoundaryMatrix(
                NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse))
            print('---- coarse matrices assembled')

            nodes = np.arange(world.NpCoarse)
            fix = util.boundarypIndexMap(NWorldCoarse, boundaryConditions == 0)
            free = np.setdiff1d(nodes, fix)
            assert (nodes.all() == free.all())

            # compute global interpolation matrix
            patchGlobal = Patch(world, NFine[0] + 2, 0)
            IH = interp.L2ProjectionPatchMatrix(patchGlobal,
                                                boundaryConditions)
            assert (IH.shape[0] == NpCoarse)

            basis = fem.assembleProlongationMatrix(NWorldCoarse,
                                                   NCoarseElement)

            fHQuad = basis.T * MFineFEM * f

            print('---- solving coarse system')

            # coarse system
            lhsH = KLOD[free][:, free] - k2MLOD[
                free][:, free] + 1j * kBdLOD[free][:, free]
            rhsH = fHQuad[free]
            xFree = sparse.linalg.spsolve(lhsH, rhsH)

            basisCorrectors = pglod.assembleBasisCorrectors(
                world, patchT, correctorsListT)
            modifiedBasis = basis - basisCorrectors

            xFull = np.zeros(world.NpCoarse, dtype='complex128')
            xFull[free] = xFree
            uLodCoarse = basis * xFull
            uLodFine = modifiedBasis * xFull
            uOldUps = np.copy(uLodFine)
            k2FineUOld = np.copy(k2FineU)

            Err = np.sqrt(
                np.dot((uSol - uLodFine).conj(), KFineFEM *
                       (uSol - uLodFine)) + k**2 *
                np.dot((uSol - uLodFine).conj(), MFineFEM * (uSol - uLodFine)))
            ErrEnergy = Err / np.sqrt(
                np.dot((uSol).conj(), KFineFEM *
                       (uSol)) + k**2 * np.dot((uSol).conj(), MFineFEM *
                                               (uSol)))
            print('---- ', np.abs(ErrEnergy),
                  '\n***********************************************')

            # save errors in arrays
            relErrEnergy[counter - 1, it] = ErrEnergy

        print('\n')

    its = np.arange(1, maxit + 1)
    plt.figure(1)
    plt.title(
        'Relative energy errors w.r.t iterations for different tolerances - Ex 3'
    )
    plt.plot(its, relErrEnergy[0, :], 'x--', color='black', label='tol = 2')
    plt.plot(its, relErrEnergy[1, :], 'x-', color='blue', label='tol = 1')
    plt.plot(its, relErrEnergy[2, :], 'x-', color='green', label='tol = 0.5')
    plt.plot(its, relErrEnergy[3, :], 'x-', color='orange', label='tol = 0.25')
    plt.plot(its, relErrEnergy[4, :], 'x-', color='red', label='tol = 0.125')
    plt.plot(its,
             relErrEnergy[5, :],
             'x-',
             color='magenta',
             label='tol = 0.0625')
    plt.plot(its, relErrEnergy[6, :], 'x--', color='black', label='tol = 0')
    plt.yscale('log')
    plt.legend()

    plt.show()
コード例 #7
0
def performTPrimeLoop_helmholtz(patch, lambdasList, correctorsList, aPatch,
                                kPatch, k2Patch, accumulate):

    while callable(aPatch):
        aPatch = aPatch()

    while callable(kPatch):
        kPatch = kPatch()

    while callable(k2Patch):
        k2Patch = k2Patch()

    world = patch.world
    NCoarseElement = world.NCoarseElement
    NPatchCoarse = patch.NPatchCoarse
    NPatchFine = NPatchCoarse * NCoarseElement

    NTPrime = np.prod(NPatchCoarse)
    NpPatchCoarse = np.prod(NPatchCoarse + 1)

    d = np.size(NPatchCoarse)

    assert (aPatch.ndim == 1 or aPatch.ndim == 3)
    assert (kPatch.ndim == 1)
    assert (k2Patch.ndim == 1)

    if aPatch.ndim == 1:
        ALocFine = world.ALocFine
    elif aPatch.ndim == 3:
        ALocFine = world.ALocMatrixFine

    MLocFine = world.MLocFine
    BdLocFine = fem.localBoundaryMassMatrixGetter(NCoarseElement *
                                                  world.NWorldCoarse)

    lambdas = np.column_stack(lambdasList)
    numLambdas = len(lambdasList)

    TPrimeCoarsepStartIndices = util.lowerLeftpIndexMap(
        NPatchCoarse - 1, NPatchCoarse)
    TPrimeCoarsepIndexMap = util.lowerLeftpIndexMap(np.ones_like(NPatchCoarse),
                                                    NPatchCoarse)

    TPrimeFinetStartIndices = util.pIndexMap(NPatchCoarse - 1, NPatchFine - 1,
                                             NCoarseElement)
    TPrimeFinetIndexMap = util.lowerLeftpIndexMap(NCoarseElement - 1,
                                                  NPatchFine - 1)

    TPrimeFinepStartIndices = util.pIndexMap(NPatchCoarse - 1, NPatchFine,
                                             NCoarseElement)
    TPrimeFinepIndexMap = util.lowerLeftpIndexMap(NCoarseElement, NPatchFine)

    TInd = util.convertpCoordIndexToLinearIndex(NPatchCoarse - 1,
                                                patch.iElementPatchCoarse)

    QPatch = np.column_stack(correctorsList)

    # global boundary
    bdMapWorld = world.boundaryConditions == 1

    for (TPrimeInd,
         TPrimeCoarsepStartIndex,
         TPrimeFinetStartIndex,
         TPrimeFinepStartIndex) \
         in zip(np.arange(NTPrime),
                TPrimeCoarsepStartIndices,
                TPrimeFinetStartIndices,
                TPrimeFinepStartIndices):

        aTPrime = aPatch[TPrimeFinetStartIndex + TPrimeFinetIndexMap]
        kTPrime = kPatch[TPrimeFinetStartIndex + TPrimeFinetIndexMap]
        k2TPrime = k2Patch[TPrimeFinetStartIndex + TPrimeFinetIndexMap]
        KTPrime = fem.assemblePatchMatrix(NCoarseElement, ALocFine, aTPrime)
        MTPrime = fem.assemblePatchMatrix(NCoarseElement, MLocFine, k2TPrime)
        L2TPrime = fem.assemblePatchMatrix(NCoarseElement, MLocFine)

        # boundary on element
        bdMapElement = np.zeros([d, 2], dtype='bool')

        iElementTPrime = patch.iPatchWorldCoarse + util.convertpLinearIndexToCoordIndex(
            NPatchCoarse - 1, TPrimeInd)

        inheritElement0 = iElementTPrime == 0
        inheritElement1 = (iElementTPrime + np.ones(d)) == world.NWorldCoarse

        bdMapElement[inheritElement0, 0] = bdMapWorld[inheritElement0, 0]
        bdMapElement[inheritElement1, 1] = bdMapWorld[inheritElement1, 1]

        BdTPrime = fem.assemblePatchBoundaryMatrix(NCoarseElement, BdLocFine,
                                                   kTPrime, bdMapElement)
        P = lambdas
        Q = QPatch[TPrimeFinepStartIndex + TPrimeFinepIndexMap, :]
        _KTPrimeij = np.dot(P.T, KTPrime * Q)
        TPrimei = TPrimeCoarsepStartIndex + TPrimeCoarsepIndexMap

        _MTPrimeij = np.dot(P.T, MTPrime * Q)
        _BdTPrimeij = np.dot(P.T, BdTPrime * Q)

        CTPrimeij = np.dot(Q.T, L2TPrime * Q)
        BTPrimeij = np.dot(P.T, L2TPrime * Q)

        accumulate(TPrimeInd, TPrimei, P, Q, KTPrime, _KTPrimeij, MTPrime,
                   BdTPrime, _MTPrimeij, _BdTPrimeij, L2TPrime, CTPrimeij,
                   BTPrimeij)
コード例 #8
0
def computeElementCorrector_helmholtz(patch,
                                      IPatch,
                                      aPatch,
                                      kPatch,
                                      k2Patch,
                                      ARhsList=None,
                                      MRhsList=None,
                                      saddleSolver=None):
    '''Compute the fine correctors over a patch.

    Compute the correctors

    B( Q_T_j, vf)_{U_K(T)} = B( ARhs_j, vf)_{T} + (MRhs_j, vf)_{T}

    where B is the sesquilinear form associated with the linear Helmholtz eq.
    '''

    while callable(IPatch):
        IPatch = IPatch()

    while callable(aPatch):
        aPatch = aPatch()

    while callable(kPatch):
        kPatch = kPatch()

    while callable(k2Patch):
        k2Patch = k2Patch()

    assert (ARhsList is not None or MRhsList is not None)
    numRhs = None

    if ARhsList is not None:
        assert (numRhs is None or numRhs == len(ARhsList))
        numRhs = len(ARhsList)

    if MRhsList is not None:
        assert (numRhs is None or numRhs == len(MRhsList))
        numRhs = len(MRhsList)

    world = patch.world
    NCoarseElement = world.NCoarseElement
    NPatchCoarse = patch.NPatchCoarse
    d = np.size(NCoarseElement)

    NPatchFine = NPatchCoarse * NCoarseElement
    NtFine = np.prod(NPatchFine)
    NpFineCoarseElement = np.prod(NCoarseElement + 1)
    NpCoarse = np.prod(NPatchCoarse + 1)
    NpFine = np.prod(NPatchFine + 1)

    assert (aPatch.shape[0] == NtFine)
    assert (aPatch.ndim == 1 or aPatch.ndim == 3)
    assert (kPatch.ndim == 1)
    assert (k2Patch.ndim == 1)

    if aPatch.ndim == 1:
        ALocFine = world.ALocFine
    elif aPatch.ndim == 3:
        ALocFine = world.ALocMatrixFine

    MLocFine = world.MLocFine
    BdLocFine = fem.localBoundaryMassMatrixGetter(NCoarseElement *
                                                  world.NWorldCoarse)

    iElementPatchCoarse = patch.iElementPatchCoarse
    elementFinetIndexMap = util.extractElementFine(NPatchCoarse,
                                                   NCoarseElement,
                                                   iElementPatchCoarse,
                                                   extractElements=True)
    elementFinepIndexMap = util.extractElementFine(NPatchCoarse,
                                                   NCoarseElement,
                                                   iElementPatchCoarse,
                                                   extractElements=False)

    # global boundary?
    bdMapWorld = world.boundaryConditions == 1

    # on element
    bdMapElement = np.zeros([d, 2], dtype='bool')

    inheritElement0 = patch.iElementWorldCoarse == 0
    inheritElement1 = (patch.iElementWorldCoarse +
                       np.ones(d)) == world.NWorldCoarse

    bdMapElement[inheritElement0, 0] = bdMapWorld[inheritElement0, 0]
    bdMapElement[inheritElement1, 1] = bdMapWorld[inheritElement1, 1]

    # on patch
    inherit0 = patch.iPatchWorldCoarse == 0
    inherit1 = (patch.iPatchWorldCoarse + NPatchCoarse) == world.NWorldCoarse

    bdMapPatch = np.zeros([d, 2], dtype='bool')
    bdMapPatch[inherit0, 0] = bdMapWorld[inherit0, 0]
    bdMapPatch[inherit1, 1] = bdMapWorld[inherit1, 1]

    if ARhsList is not None:
        AElementFull = fem.assemblePatchMatrix(NCoarseElement, ALocFine,
                                               aPatch[elementFinetIndexMap])
        k2MElementFull = fem.assemblePatchMatrix(NCoarseElement, MLocFine,
                                                 k2Patch[elementFinetIndexMap])
        kBdElementFull = fem.assemblePatchBoundaryMatrix(
            NCoarseElement, BdLocFine, kPatch[elementFinetIndexMap],
            bdMapElement)
    if MRhsList is not None:
        MElementFull = fem.assemblePatchMatrix(NCoarseElement, MLocFine)
    APatchFull = fem.assemblePatchMatrix(NPatchFine, ALocFine, aPatch)
    k2MPatchFull = fem.assemblePatchMatrix(NPatchFine, MLocFine, k2Patch)
    kBdPatchFull = fem.assemblePatchBoundaryMatrix(NPatchFine, BdLocFine,
                                                   kPatch, bdMapPatch)

    SPatchFull = APatchFull - k2MPatchFull + 1j * kBdPatchFull

    bPatchFullList = []
    for rhsIndex in range(numRhs):
        bPatchFull = np.zeros(NpFine, dtype='complex128')
        if ARhsList is not None:
            bPatchFull[elementFinepIndexMap] += (
                AElementFull - k2MElementFull +
                1j * kBdElementFull) * ARhsList[rhsIndex]
        if MRhsList is not None:
            bPatchFull[
                elementFinepIndexMap] += MElementFull * MRhsList[rhsIndex]
        bPatchFullList.append(bPatchFull)

    correctorsList = ritzProjectionToFinePatch(patch, SPatchFull,
                                               bPatchFullList, IPatch,
                                               saddleSolver)

    return correctorsList
コード例 #9
0
def helmholtz_nonlinear_adaptive(mapper, fineLvl, maxCoarseLvl, maxit):
    NFine = np.array([2**fineLvl, 2**fineLvl])
    NpFine = np.prod(NFine + 1)
    NList = 2**np.arange(1, maxCoarseLvl + 1)
    ell = 2  # localization parameter

    k = 30.  # wavenumber
    maxit_Fine = 250
    tol = 0.5  # coupled to maximal error indicator

    xt = util.tCoordinates(NFine)
    xp = util.pCoordinates(NFine)

    # multiscale coefficients on the scale NFine-2
    np.random.seed(123)
    sizeK = np.size(xt[:, 0])
    nFine = NFine[0]

    # determine domain D_eps = supp(1-n) = supp(1-A) (all equal for this experiment)
    indicesIn = (xt[:, 0] > 0.25) & (xt[:, 0] < 0.75) & (xt[:, 1] > 0.25) & (
        xt[:, 1] < 0.75)
    indicesInEps = (xt[:, 0] > 0.25) & (xt[:, 0] < 0.75) & (
        xt[:, 1] > 0.25) & (xt[:, 1] < 0.75)

    # coefficients
    cA = .2  # lower bound on A
    CA = 1.  # upper bound on A
    aEps = np.random.uniform(0, 1, sizeK // 16)
    aEpsPro = np.zeros(sizeK)
    for i in range((nFine) // 4):
        aEpsPro[4 * i * (nFine):4 * (i + 1) * (nFine)] = np.tile(
            np.repeat(aEps[i * (nFine) // 4:(i + 1) * (nFine) // 4], 4), 4)
    aFine = np.ones(xt.shape[0])
    aFine[indicesIn] = (CA - cA) * aEpsPro[indicesIn] + cA

    cn = 1.  # lower bound on n
    Cn = 1.  # upper bound on n
    nEps = np.random.uniform(0, 1, sizeK // 16)
    nEpsPro = np.zeros(sizeK)
    for i in range((nFine) // 4):
        nEpsPro[4 * i * (nFine):4 * (i + 1) * (nFine)] = np.tile(
            np.repeat(nEps[i * (nFine) // 4:(i + 1) * (nFine) // 4], 4), 4)

    k2Fine = k**2 * np.ones(xt.shape[0])
    k2Fine[indicesIn] = k**2 * ((Cn - cn) * nEpsPro[indicesIn] + cn)
    kFine = k * np.ones(xt.shape[0])

    Ceps = .85  # upper bound on eps (lower bound is 0)
    lvl = 4
    epsEps = np.random.randint(2, size=(sizeK // lvl**2))
    epsEpsPro = np.zeros(sizeK)
    for i in range((nFine) // lvl):
        epsEpsPro[lvl * i * (nFine):lvl * (i + 1) * (nFine)] = np.tile(
            np.repeat(epsEps[i * (nFine) // lvl:(i + 1) * (nFine) // lvl],
                      lvl), lvl)
    epsFine = np.zeros(xt.shape[0])
    epsFine[indicesInEps] = Ceps * epsEpsPro[indicesInEps]  #  0 OR Ceps

    drawCoefficient(NFine, epsFine)

    xC = xp[:, 0]
    yC = xp[:, 1]

    fact = 100.
    mult = .8
    a = .5
    b = .25
    k2 = 30.

    # define right-hand side and boundary condition
    def funcF(x, y):
        res = mult * (-np.exp(-1.j * k2 * (a * x - b)) *
                      (2 * a**2 * fact**2 * np.sinh(fact * (a * x - b))**2 /
                       (np.cosh(fact * (a * x - b)) + 1)**3 -
                       a**2 * fact**2 * np.cosh(fact * (a * x - b)) /
                       (np.cosh(fact * (a * x - b)) + 1)**2) +
                      a**2 * k2**2 * np.exp(-1.j * k2 * (a * x - b)) /
                      (np.cosh(fact * (a * x - b)) + 1) - 2.j * a**2 * fact *
                      k2 * np.exp(-1.j * k2 *
                                  (a * x - b)) * np.sinh(fact * (a * x - b)) /
                      (np.cosh(fact * (a * x - b)) + 1)**2 -
                      k**2 * np.exp(-1.j * k2 * (a * x - b)) /
                      (np.cosh(fact * (a * x - b)) + 1))
        return res

    f = funcF(xC, yC)

    g = np.zeros(NpFine, dtype='complex128')
    # bottom boundary
    g[0:(NFine[0] +
         1)] = mult * 1.j * k * 1. / (np.cosh(fact *
                                              (a * xC[0:(NFine[0] + 1)] - b)) +
                                      1) * np.exp(
                                          -1.j * k2 *
                                          (a * xC[0:(NFine[0] + 1)] - b))
    # top boundary
    g[(NpFine - NFine[0] -
       1):] = mult * 1.j * k * 1. / (np.cosh(fact * (a * xC[
           (NpFine - NFine[0] - 1):NpFine] - b)) + 1) * np.exp(
               -1.j * k2 * (a * xC[(NpFine - NFine[0] - 1):NpFine] - b))
    # left boundary
    g[0:(NpFine - NFine[0]):(
        NFine[0] +
        1)] = mult * 1.j * k * np.ones_like(yC[0:(NpFine - NFine[0]):(
            NFine[0] + 1)]) / (np.cosh(fact * (a * 0 - b)) + 1) * np.exp(
                -1.j * k2 * (a * 0 - b)) + mult * np.ones_like(
                    yC[0:(NpFine - NFine[0]):(NFine[0] + 1)]) * (
                        a * 1.j * k2 * np.exp(-1.j * k2 * (a * 0 - b)) /
                        (np.cosh((a * 0 - b) * fact) + 1) + a * fact * np.sinh(
                            (a * 0 - b) * fact) * np.exp(-1.j * k2 *
                                                         (a * 0 - b)) /
                        (np.cosh((a * 0 - b) * fact) + 1)**2)
    # right boundary
    g[NFine[0]:NpFine:(
        NFine[0] + 1)] = mult * 1.j * k * np.ones_like(yC[NFine[0]:NpFine:(
            NFine[0] + 1)]) / (np.cosh(fact * (a * 1. - b)) + 1) * np.exp(
                -1.j * k2 * (a * 1. - b)) - mult * np.ones_like(
                    yC[NFine[0]:NpFine:(NFine[0] + 1)]) * (
                        a * 1.j * k2 * np.exp(-1.j * k2 * (a * 1. - b)) /
                        (np.cosh(
                            (a * 1. - b) * fact) + 1) + a * fact * np.sinh(
                                (a * 1. - b) * fact) * np.exp(-1.j * k2 *
                                                              (a * 1. - b)) /
                        (np.cosh((a * 1. - b) * fact) + 1)**2)

    # reference solution
    uSol = np.zeros(NpFine, dtype='complex128')

    # boundary conditions
    boundaryConditions = np.array([[1, 1], [1, 1]])  # Robin boundary
    worldFine = World(NFine, np.array([1, 1]), boundaryConditions)

    # fine matrices
    BdFineFEM = fem.assemblePatchBoundaryMatrix(
        NFine, fem.localBoundaryMassMatrixGetter(NFine))
    MFineFEM = fem.assemblePatchMatrix(NFine, fem.localMassMatrix(NFine))
    KFineFEM = fem.assemblePatchMatrix(NFine, fem.localStiffnessMatrix(NFine))

    kBdFine = fem.assemblePatchBoundaryMatrix(
        NFine, fem.localBoundaryMassMatrixGetter(NFine), kFine)
    KFine = fem.assemblePatchMatrix(NFine, fem.localStiffnessMatrix(NFine),
                                    aFine)

    # incident beam
    uInc = mult / (np.cosh(fact * (a * xC - b)) + 1) * np.exp(-1.j * k2 *
                                                              (a * xC - b))

    print('***computing reference solution***')

    uOldFine = np.zeros(NpFine, dtype='complex128')

    for it in np.arange(maxit_Fine):
        print('-- itFine = %d' % it)
        knonlinUpreFine = np.abs(uOldFine)
        knonlinUFine = func.evaluateCQ1(NFine, knonlinUpreFine, xt)

        k2FineUfine = np.copy(k2Fine)
        k2FineUfine[indicesInEps] *= (
            1. + epsFine[indicesInEps] * knonlinUFine[indicesInEps]**2
        )  # full coefficient, including nonlinearity

        k2MFine = fem.assemblePatchMatrix(
            NFine, fem.localMassMatrix(NFine),
            k2FineUfine)  # weighted mass matrix, updated in every iteration

        nodesFine = np.arange(worldFine.NpFine)
        fixFine = util.boundarypIndexMap(NFine, boundaryConditions == 0)
        freeFine = np.setdiff1d(nodesFine, fixFine)

        # right-hand side (including boundary condition)
        fhQuad = MFineFEM * f + BdFineFEM * g

        # fine system
        lhsh = KFine[freeFine][:, freeFine] - k2MFine[
            freeFine][:, freeFine] + 1j * kBdFine[freeFine][:, freeFine]
        rhsh = fhQuad[freeFine]
        xFreeFine = sparse.linalg.spsolve(lhsh, rhsh)

        xFullFine = np.zeros(worldFine.NpFine, dtype='complex128')
        xFullFine[freeFine] = xFreeFine
        uOldFine = np.copy(xFullFine)

        # residual - used as stopping criterion
        knonlinU = np.abs(uOldFine)
        knonlinUFineIt = func.evaluateCQ1(NFine, knonlinU, xt)

        k2FineUfineIt = np.copy(k2Fine)
        k2FineUfineIt[indicesInEps] *= (
            1. + epsFine[indicesInEps] * knonlinUFineIt[indicesInEps]**2
        )  # update full coefficient, including nonlinearity

        k2MFineIt = fem.assemblePatchMatrix(NFine, fem.localMassMatrix(NFine),
                                            k2FineUfineIt)
        Ares = KFine - k2MFineIt + 1j * kBdFine
        residual = np.linalg.norm(Ares * xFullFine - fhQuad) / np.linalg.norm(
            Ares * xFullFine)
        print('---- residual = %.4e' % residual)

        if residual < 1e-12:
            break  # stopping criterion

    uSol = xFullFine  # final fine reference solution

    print('***reference solution computed***\n')

    ######################################################################################

    print('***computing multiscale approximations***')

    relErrEnergy = np.zeros([len(NList), maxit])

    counter = 0
    for N in NList:
        counter += 1
        print('H = %.4e' % (1. / N))
        NWorldCoarse = np.array([N, N])
        NCoarseElement = NFine // NWorldCoarse
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)
        NpCoarse = np.prod(NWorldCoarse + 1)

        uOldUps = np.zeros(NpFine, dtype='complex128')

        for it in np.arange(maxit):
            print('-- it = %d:' % it)
            knonlinUpre = np.abs(uOldUps)
            knonlinU = func.evaluateCQ1(NFine, knonlinUpre, xt)

            k2FineU = np.copy(k2Fine)
            k2FineU[indicesInEps] *= (
                1. + epsFine[indicesInEps] * knonlinU[indicesInEps]**2)

            print('---- starting computation of correctors')

            def computeLocalContribution(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch, k2Patch)
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch, k2Patch)
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def computeIndicators(TInd):
                k2FineUPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineU)
                k2FineUOldPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineUOld)

                E_vh = lod.computeErrorIndicatorCoarse_helmholtz(
                    patchT[TInd], muTPrime[TInd], k2FineUOldPatch,
                    k2FineUPatch)
                return E_vh

            def UpdateCorrectors(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch, k2Patch)
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch, k2Patch)
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def UpdateElements(tol, E, Kmsij_old, Mmsij_old, Bdmsij_old,
                               correctors_old, mu_old):
                print('---- apply tolerance')
                Elements_to_be_updated = []
                for (i, eps) in E.items():
                    if eps > tol:
                        Elements_to_be_updated.append(i)
                if len(E) > 0:
                    print(
                        '---- total percentage of element correctors to be updated: %.4f'
                        %
                        (100 * np.size(Elements_to_be_updated) / len(mu_old)),
                        flush=True)

                print('---- update local contributions')
                KmsijT_list = list(np.copy(Kmsij_old))
                MmsijT_list = list(np.copy(Mmsij_old))
                BdmsijT_list = list(np.copy(Bdmsij_old))
                muT_list = np.copy(mu_old)
                for T in np.setdiff1d(range(world.NtCoarse),
                                      Elements_to_be_updated):
                    patch = Patch(world, ell, T)
                    aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                    kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                    k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)
                    csi = lod.computeBasisCoarseQuantities_helmholtz(
                        patch, correctors_old[T], aPatch, kPatch, k2Patch)

                    KmsijT_list[T] = csi.Kmsij
                    MmsijT_list[T] = csi.Mmsij
                    BdmsijT_list[T] = csi.Bdmsij
                    muT_list[T] = csi.muTPrime

                if np.size(Elements_to_be_updated) != 0:
                    #print('---- update correctors')
                    patchT_irrelevant, correctorsListTNew, KmsijTNew, MmsijTNew, BdmsijTNew, muTPrimeNew = zip(
                        *mapper(UpdateCorrectors, Elements_to_be_updated))

                    #print('---- update correctorsList')
                    correctorsListT_list = list(np.copy(correctors_old))
                    i = 0
                    for T in Elements_to_be_updated:
                        KmsijT_list[T] = KmsijTNew[i]
                        correctorsListT_list[T] = correctorsListTNew[i]
                        MmsijT_list[T] = MmsijTNew[i]
                        BdmsijT_list[T] = BdmsijTNew[i]
                        muT_list[T] = muTPrimeNew[i]
                        i += 1

                    KmsijT = tuple(KmsijT_list)
                    correctorsListT = tuple(correctorsListT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime
                else:
                    KmsijT = tuple(KmsijT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctors_old, KmsijT, MmsijT, BdmsijT, muTPrime

            if it == 0:
                patchT, correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = zip(
                    *mapper(computeLocalContribution, range(world.NtCoarse)))
            else:
                E_vh = list(mapper(computeIndicators, range(world.NtCoarse)))
                print(
                    '---- maximal value error estimator for basis correctors {}'
                    .format(np.max(E_vh)))
                E = {i: E_vh[i] for i in range(np.size(E_vh)) if E_vh[i] > 0}

                # loop over elements with possible recomputation of correctors
                correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = UpdateElements(
                    tol * np.max(E_vh), E, KmsijT, MmsijT, BdmsijT,
                    correctorsListT,
                    muTPrime)  # tol scaled by maximal error indicator

            print('---- finished computation of correctors')

            KLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, KmsijT)  # ms stiffness matrix
            k2MLOD = pglod.assembleMsStiffnessMatrix(world, patchT,
                                                     MmsijT)  # ms mass matrix
            kBdLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, BdmsijT)  # ms boundary matrix
            MFEM = fem.assemblePatchMatrix(NWorldCoarse, world.MLocCoarse)
            BdFEM = fem.assemblePatchBoundaryMatrix(
                NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse))
            print('---- coarse matrices assembled')

            nodes = np.arange(world.NpCoarse)
            fix = util.boundarypIndexMap(NWorldCoarse, boundaryConditions == 0)
            free = np.setdiff1d(nodes, fix)
            assert (nodes.all() == free.all())

            # compute global interpolation matrix
            patchGlobal = Patch(world, NFine[0] + 2, 0)
            IH = interp.L2ProjectionPatchMatrix(patchGlobal,
                                                boundaryConditions)
            assert (IH.shape[0] == NpCoarse)

            basis = fem.assembleProlongationMatrix(NWorldCoarse,
                                                   NCoarseElement)

            fHQuad = basis.T * MFineFEM * f + basis.T * BdFineFEM * g

            print('---- solving coarse system')

            # coarse system
            lhsH = KLOD[free][:, free] - k2MLOD[
                free][:, free] + 1j * kBdLOD[free][:, free]
            rhsH = fHQuad[free]
            xFree = sparse.linalg.spsolve(lhsH, rhsH)

            basisCorrectors = pglod.assembleBasisCorrectors(
                world, patchT, correctorsListT)
            modifiedBasis = basis - basisCorrectors

            xFull = np.zeros(world.NpCoarse, dtype='complex128')
            xFull[free] = xFree
            uLodCoarse = basis * xFull
            uLodFine = modifiedBasis * xFull
            uOldUps = np.copy(uLodFine)
            k2FineUOld = np.copy(k2FineU)

            # visualization
            if it == maxit - 1 and N == 2**4:
                grid = uLodFine.reshape(NFine + 1, order='C')

                plt.figure(2)
                plt.title('LOD_ad, Hlvl=4 - Ex 2')
                plt.imshow(grid.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

                grid2 = uSol.reshape(NFine + 1, order='C')

                plt.figure(1)
                plt.title('reference solution - Ex 2')
                plt.imshow(grid2.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

                grid3 = uInc.reshape(NFine + 1, order='C')

                plt.figure(6)
                plt.title('incident beam - Ex 2')
                plt.imshow(grid3.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

            Err = np.sqrt(
                np.dot((uSol - uLodFine).conj(), KFineFEM *
                       (uSol - uLodFine)) + k**2 *
                np.dot((uSol - uLodFine).conj(), MFineFEM * (uSol - uLodFine)))
            ErrEnergy = Err / np.sqrt(
                np.dot((uSol).conj(), KFineFEM *
                       (uSol)) + k**2 * np.dot((uSol).conj(), MFineFEM *
                                               (uSol)))
            print('---- ', np.abs(ErrEnergy),
                  '\n***********************************************')

            # save errors in arrays
            relErrEnergy[counter - 1, it] = ErrEnergy

        print('\n')

######################################################################################

    print(
        '***computing multiscale approximations without updates of correctors***'
    )

    relErrEnergyNoUpdate = np.zeros([len(NList), maxit])

    counter = 0
    for N in NList:
        counter += 1
        print('H = %.4e' % (1. / N))
        NWorldCoarse = np.array([N, N])
        NCoarseElement = NFine // NWorldCoarse
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)
        NpCoarse = np.prod(NWorldCoarse + 1)

        uOldUps = np.zeros(NpFine, dtype='complex128')

        for it in np.arange(maxit):
            print('-- it = %d:' % it)
            knonlinUpre = np.abs(uOldUps)
            knonlinU = func.evaluateCQ1(NFine, knonlinUpre, xt)

            k2FineU = np.copy(k2Fine)
            k2FineU[indicesInEps] *= (
                1. + epsFine[indicesInEps] * knonlinU[indicesInEps]**2)

            print('---- starting computation of correctors')

            def computeLocalContribution(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def computeIndicators(TInd):
                k2FineUPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineU)
                k2FineUOldPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineUOld)

                E_vh = lod.computeErrorIndicatorCoarse_helmholtz(
                    patchT[TInd], muTPrime[TInd], k2FineUOldPatch,
                    k2FineUPatch)
                return E_vh

            def UpdateCorrectors(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch, k2Patch)
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def UpdateElements(tol, E, Kmsij_old, Mmsij_old, Bdmsij_old,
                               correctors_old, mu_old):
                print('---- apply tolerance')
                Elements_to_be_updated = []
                for (i, eps) in E.items():
                    if eps > tol:
                        Elements_to_be_updated.append(i)
                if len(E) > 0:
                    print(
                        '---- total percentage of element correctors to be updated: %.4f'
                        %
                        (100 * np.size(Elements_to_be_updated) / len(mu_old)),
                        flush=True)

                print('---- update local contributions')
                KmsijT_list = list(np.copy(Kmsij_old))
                MmsijT_list = list(np.copy(Mmsij_old))
                BdmsijT_list = list(np.copy(Bdmsij_old))
                muT_list = np.copy(mu_old)
                for T in np.setdiff1d(range(world.NtCoarse),
                                      Elements_to_be_updated):
                    patch = Patch(world, ell, T)
                    aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                    kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                    k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)
                    csi = lod.computeBasisCoarseQuantities_helmholtz(
                        patch, correctors_old[T], aPatch, kPatch, k2Patch)

                    KmsijT_list[T] = csi.Kmsij
                    MmsijT_list[T] = csi.Mmsij
                    BdmsijT_list[T] = csi.Bdmsij
                    muT_list[T] = csi.muTPrime

                if np.size(Elements_to_be_updated) != 0:
                    #print('---- update correctors')
                    patchT_irrelevant, correctorsListTNew, KmsijTNew, MmsijTNew, BdmsijTNew, muTPrimeNew = zip(
                        *mapper(UpdateCorrectors, Elements_to_be_updated))

                    #print('---- update correctorsList')
                    correctorsListT_list = list(np.copy(correctors_old))
                    i = 0
                    for T in Elements_to_be_updated:
                        KmsijT_list[T] = KmsijTNew[i]
                        correctorsListT_list[T] = correctorsListTNew[i]
                        MmsijT_list[T] = MmsijTNew[i]
                        BdmsijT_list[T] = BdmsijTNew[i]
                        muT_list[T] = muTPrimeNew[i]
                        i += 1

                    KmsijT = tuple(KmsijT_list)
                    correctorsListT = tuple(correctorsListT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime
                else:
                    KmsijT = tuple(KmsijT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctors_old, KmsijT, MmsijT, BdmsijT, muTPrime

            if it == 0:
                patchT, correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = zip(
                    *mapper(computeLocalContribution, range(world.NtCoarse)))
            else:
                E_vh = list(mapper(computeIndicators, range(world.NtCoarse)))
                print(
                    '---- maximal value error estimator for basis correctors {}'
                    .format(np.max(E_vh)))
                E = {i: E_vh[i] for i in range(np.size(E_vh)) if E_vh[i] > 0}

                # loop over elements with possible recomputation of correctors
                correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = UpdateElements(
                    2. * np.max(E_vh), E, KmsijT, MmsijT, BdmsijT,
                    correctorsListT, muTPrime)  # no updates

            print('---- finished computation of correctors')

            KLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, KmsijT)  # ms stiffness matrix
            k2MLOD = pglod.assembleMsStiffnessMatrix(world, patchT,
                                                     MmsijT)  # ms mass matrix
            kBdLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, BdmsijT)  # ms boundary matrix
            MFEM = fem.assemblePatchMatrix(NWorldCoarse, world.MLocCoarse)
            BdFEM = fem.assemblePatchBoundaryMatrix(
                NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse))
            print('---- coarse matrices assembled')

            nodes = np.arange(world.NpCoarse)
            fix = util.boundarypIndexMap(NWorldCoarse, boundaryConditions == 0)
            free = np.setdiff1d(nodes, fix)
            assert (nodes.all() == free.all())

            # compute global interpolation matrix
            patchGlobal = Patch(world, NFine[0] + 2, 0)
            IH = interp.L2ProjectionPatchMatrix(patchGlobal,
                                                boundaryConditions)
            assert (IH.shape[0] == NpCoarse)

            basis = fem.assembleProlongationMatrix(NWorldCoarse,
                                                   NCoarseElement)

            fHQuad = basis.T * MFineFEM * f + basis.T * BdFineFEM * g

            print('---- solving coarse system')

            # coarse system
            lhsH = KLOD[free][:, free] - k2MLOD[
                free][:, free] + 1j * kBdLOD[free][:, free]
            rhsH = fHQuad[free]
            xFree = sparse.linalg.spsolve(lhsH, rhsH)

            basisCorrectors = pglod.assembleBasisCorrectors(
                world, patchT, correctorsListT)
            modifiedBasis = basis - basisCorrectors

            xFull = np.zeros(world.NpCoarse, dtype='complex128')
            xFull[free] = xFree
            uLodCoarse = basis * xFull
            uLodFine = modifiedBasis * xFull
            uOldUps = np.copy(uLodFine)
            k2FineUOld = np.copy(k2FineU)

            # visualization
            if it == maxit - 1 and N == 2**4:
                grid = uLodFine.reshape(NFine + 1, order='C')

                plt.figure(3)
                plt.title('LOD_inf, Hlvl=4 - Ex 2')
                plt.imshow(grid.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

            Err = np.sqrt(
                np.dot((uSol - uLodFine).conj(), KFineFEM *
                       (uSol - uLodFine)) + k**2 *
                np.dot((uSol - uLodFine).conj(), MFineFEM * (uSol - uLodFine)))
            ErrEnergy = Err / np.sqrt(
                np.dot((uSol).conj(), KFineFEM *
                       (uSol)) + k**2 * np.dot((uSol).conj(), MFineFEM *
                                               (uSol)))
            print('---- ', np.abs(ErrEnergy),
                  '\n***********************************************')

            # save errors in arrays
            relErrEnergyNoUpdate[counter - 1, it] = ErrEnergy

        print('\n')

######################################################################################

    print(
        '***computing multiscale approximations where all correctors in the part of the domain with active nonlinearity are recomputed***'
    )

    relErrEnergyFullUpdate = np.zeros([len(NList), maxit])

    counter = 0
    for N in NList:
        counter += 1
        print('H = %.4e' % (1. / N))
        NWorldCoarse = np.array([N, N])
        NCoarseElement = NFine // NWorldCoarse
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)
        NpCoarse = np.prod(NWorldCoarse + 1)

        uOldUps = np.zeros(NpFine, dtype='complex128')

        for it in np.arange(maxit):
            print('-- it = %d:' % it)
            knonlinUpre = np.abs(uOldUps)
            knonlinU = func.evaluateCQ1(NFine, knonlinUpre, xt)

            k2FineU = np.copy(k2Fine)
            k2FineU[indicesInEps] *= (
                1. + epsFine[indicesInEps] * knonlinU[indicesInEps]**2)

            print('---- starting computation of correctors')

            def computeLocalContribution(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def computeIndicators(TInd):
                k2FineUPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineU)
                k2FineUOldPatch = lambda: coef.localizeCoefficient(
                    patchT[TInd], k2FineUOld)

                E_vh = lod.computeErrorIndicatorCoarse_helmholtz(
                    patchT[TInd], muTPrime[TInd], k2FineUOldPatch,
                    k2FineUPatch)
                return E_vh

            def UpdateCorrectors(TInd):
                patch = Patch(world, ell, TInd)
                IPatch = lambda: interp.L2ProjectionPatchMatrix(
                    patch, boundaryConditions)
                aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)

                correctorsList = lod.computeBasisCorrectors_helmholtz(
                    patch, IPatch, aPatch, kPatch, k2Patch)
                csi = lod.computeBasisCoarseQuantities_helmholtz(
                    patch, correctorsList, aPatch, kPatch,
                    k2Patch)  # adapted for Helmholtz setting
                return patch, correctorsList, csi.Kmsij, csi.Mmsij, csi.Bdmsij, csi.muTPrime

            def UpdateElements(tol, E, Kmsij_old, Mmsij_old, Bdmsij_old,
                               correctors_old, mu_old):
                print('---- apply tolerance')
                Elements_to_be_updated = []
                for (i, eps) in E.items():
                    if eps > tol:
                        Elements_to_be_updated.append(i)
                if len(E) > 0:
                    print(
                        '---- total percentage of element correctors to be updated: %.4f'
                        %
                        (100 * np.size(Elements_to_be_updated) / len(mu_old)),
                        flush=True)

                print('---- update local contributions')
                KmsijT_list = list(np.copy(Kmsij_old))
                MmsijT_list = list(np.copy(Mmsij_old))
                BdmsijT_list = list(np.copy(Bdmsij_old))
                muT_list = np.copy(mu_old)
                for T in np.setdiff1d(range(world.NtCoarse),
                                      Elements_to_be_updated):
                    patch = Patch(world, ell, T)
                    aPatch = lambda: coef.localizeCoefficient(patch, aFine)
                    kPatch = lambda: coef.localizeCoefficient(patch, kFine)
                    k2Patch = lambda: coef.localizeCoefficient(patch, k2FineU)
                    csi = lod.computeBasisCoarseQuantities_helmholtz(
                        patch, correctors_old[T], aPatch, kPatch, k2Patch)

                    KmsijT_list[T] = csi.Kmsij
                    MmsijT_list[T] = csi.Mmsij
                    BdmsijT_list[T] = csi.Bdmsij
                    muT_list[T] = csi.muTPrime

                if np.size(Elements_to_be_updated) != 0:
                    #print('---- update correctors')
                    patchT_irrelevant, correctorsListTNew, KmsijTNew, MmsijTNew, BdmsijTNew, muTPrimeNew = zip(
                        *mapper(UpdateCorrectors, Elements_to_be_updated))

                    #print('---- update correctorsList')
                    correctorsListT_list = list(np.copy(correctors_old))
                    i = 0
                    for T in Elements_to_be_updated:
                        KmsijT_list[T] = KmsijTNew[i]
                        correctorsListT_list[T] = correctorsListTNew[i]
                        MmsijT_list[T] = MmsijTNew[i]
                        BdmsijT_list[T] = BdmsijTNew[i]
                        muT_list[T] = muTPrimeNew[i]
                        i += 1

                    KmsijT = tuple(KmsijT_list)
                    correctorsListT = tuple(correctorsListT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime
                else:
                    KmsijT = tuple(KmsijT_list)
                    MmsijT = tuple(MmsijT_list)
                    BdmsijT = tuple(BdmsijT_list)
                    muTPrime = tuple(muT_list)
                    return correctors_old, KmsijT, MmsijT, BdmsijT, muTPrime

            if it == 0:
                patchT, correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = zip(
                    *mapper(computeLocalContribution, range(world.NtCoarse)))
            else:
                E_vh = list(mapper(computeIndicators, range(world.NtCoarse)))
                print(
                    '---- maximal value error estimator for basis correctors {}'
                    .format(np.max(E_vh)))
                E = {i: E_vh[i] for i in range(np.size(E_vh)) if E_vh[i] > 0}

                # loop over elements with possible recomputation of correctors
                correctorsListT, KmsijT, MmsijT, BdmsijT, muTPrime = UpdateElements(
                    0., E, KmsijT, MmsijT, BdmsijT, correctorsListT,
                    muTPrime)  # no updates

            print('---- finished computation of correctors')

            KLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, KmsijT)  # ms stiffness matrix
            k2MLOD = pglod.assembleMsStiffnessMatrix(world, patchT,
                                                     MmsijT)  # ms mass matrix
            kBdLOD = pglod.assembleMsStiffnessMatrix(
                world, patchT, BdmsijT)  # ms boundary matrix
            MFEM = fem.assemblePatchMatrix(NWorldCoarse, world.MLocCoarse)
            BdFEM = fem.assemblePatchBoundaryMatrix(
                NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse))
            print('---- coarse matrices assembled')

            nodes = np.arange(world.NpCoarse)
            fix = util.boundarypIndexMap(NWorldCoarse, boundaryConditions == 0)
            free = np.setdiff1d(nodes, fix)
            assert (nodes.all() == free.all())

            # compute global interpolation matrix
            patchGlobal = Patch(world, NFine[0] + 2, 0)
            IH = interp.L2ProjectionPatchMatrix(patchGlobal,
                                                boundaryConditions)
            assert (IH.shape[0] == NpCoarse)

            basis = fem.assembleProlongationMatrix(NWorldCoarse,
                                                   NCoarseElement)

            fHQuad = basis.T * MFineFEM * f + basis.T * BdFineFEM * g

            print('---- solving coarse system')

            # coarse system
            lhsH = KLOD[free][:, free] - k2MLOD[
                free][:, free] + 1j * kBdLOD[free][:, free]
            rhsH = fHQuad[free]
            xFree = sparse.linalg.spsolve(lhsH, rhsH)

            basisCorrectors = pglod.assembleBasisCorrectors(
                world, patchT, correctorsListT)
            modifiedBasis = basis - basisCorrectors

            xFull = np.zeros(world.NpCoarse, dtype='complex128')
            xFull[free] = xFree
            uLodCoarse = basis * xFull
            uLodFine = modifiedBasis * xFull
            uOldUps = np.copy(uLodFine)
            k2FineUOld = np.copy(k2FineU)

            # visualization
            if it == maxit - 1 and N == 2**4:
                grid = uLodFine.reshape(NFine + 1, order='C')

                plt.figure(7)
                plt.title('LOD_inf, Hlvl=4 - Ex 2')
                plt.imshow(grid.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

            Err = np.sqrt(
                np.dot((uSol - uLodFine).conj(), KFineFEM *
                       (uSol - uLodFine)) + k**2 *
                np.dot((uSol - uLodFine).conj(), MFineFEM * (uSol - uLodFine)))
            ErrEnergy = Err / np.sqrt(
                np.dot((uSol).conj(), KFineFEM *
                       (uSol)) + k**2 * np.dot((uSol).conj(), MFineFEM *
                                               (uSol)))
            print('---- ', np.abs(ErrEnergy),
                  '\n***********************************************')

            # save errors in arrays
            relErrEnergyFullUpdate[counter - 1, it] = ErrEnergy

        print('\n')

######################################################################################

    print('***computing FEM approximations***')

    FEMrelErrEnergy = np.zeros([len(NList), maxit])

    counter = 0
    for N in NList:
        counter += 1
        print('H = %.4e' % (1. / N))
        NWorldCoarse = np.array([N, N])
        NCoarseElement = NFine // NWorldCoarse
        world = World(NWorldCoarse, NCoarseElement, boundaryConditions)
        NpCoarse = np.prod(NWorldCoarse + 1)

        xT = util.tCoordinates(NWorldCoarse)
        xP = util.pCoordinates(NWorldCoarse)

        uOld = np.zeros(NpCoarse, dtype='complex128')

        # compute coarse coefficients by averaging
        NtC = np.prod(NWorldCoarse)
        aCoarse = np.zeros(NtC)
        kCoarse = k * np.ones(xT.shape[0])
        k2Coarse = np.zeros(NtC)
        epsCoarse = np.zeros(NtC)
        for Q in range(NtC):
            patch = Patch(world, 0, Q)
            aPatch = coef.localizeCoefficient(patch, aFine)
            epsPatch = coef.localizeCoefficient(patch, epsFine)
            k2Patch = coef.localizeCoefficient(patch, k2Fine)

            aCoarse[Q] = np.sum(aPatch) / (len(aPatch))
            k2Coarse[Q] = np.sum(k2Patch) / (len(k2Patch))
            epsCoarse[Q] = np.sum(epsPatch) / (len(epsPatch))

        # coarse matrices
        KFEM = fem.assemblePatchMatrix(NWorldCoarse,
                                       fem.localStiffnessMatrix(NWorldCoarse),
                                       aCoarse)
        kBdFEM = fem.assemblePatchBoundaryMatrix(
            NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse),
            kCoarse)
        MFEM = fem.assemblePatchMatrix(NWorldCoarse, world.MLocCoarse)
        BdFEM = fem.assemblePatchBoundaryMatrix(
            NWorldCoarse, fem.localBoundaryMassMatrixGetter(NWorldCoarse))

        for it in np.arange(maxit):
            print('-- it = %d:' % it)
            knonlinUpre = np.abs(uOld)
            knonlinU = func.evaluateCQ1(NWorldCoarse, knonlinUpre, xT)

            k2CoarseU = np.copy(k2Coarse)
            k2CoarseU *= (1. + epsCoarse * knonlinU**2)

            # update weighted mass matrix
            k2MFEM = fem.assemblePatchMatrix(NWorldCoarse,
                                             fem.localMassMatrix(NWorldCoarse),
                                             k2CoarseU)

            nodes = np.arange(world.NpCoarse)
            fix = util.boundarypIndexMap(NWorldCoarse, boundaryConditions == 0)
            free = np.setdiff1d(nodes, fix)
            assert (nodes.all() == free.all())

            basis = fem.assembleProlongationMatrix(NWorldCoarse,
                                                   NCoarseElement)

            fHQuad = basis.T * MFineFEM * f + basis.T * BdFineFEM * g

            print('---- solving coarse system')

            # coarse system
            lhsH = KFEM[free][:, free] - k2MFEM[
                free][:, free] + 1j * kBdFEM[free][:, free]
            rhsH = fHQuad[free]
            xFree = sparse.linalg.spsolve(lhsH, rhsH)

            xFull = np.zeros(world.NpCoarse, dtype='complex128')
            xFull[free] = xFree
            uCoarseInt = basis * xFull
            uOld = np.copy(xFull)

            # visualization
            if it == maxit - 1 and N == 2**4:
                grid = uCoarseInt.reshape(NFine + 1, order='C')

                plt.figure(4)
                plt.title('FEM, Hlvl=4 - Ex 2')
                plt.imshow(grid.real,
                           extent=(xC.min(), xC.max(), yC.min(), yC.max()),
                           cmap=plt.cm.hot,
                           origin='lower',
                           vmin=-.6,
                           vmax=.6)
                plt.colorbar()

            Err = np.sqrt(
                np.dot((uSol -
                        uCoarseInt).conj(), KFineFEM * (uSol - uCoarseInt)) +
                k**2 * np.dot(
                    (uSol - uCoarseInt).conj(), MFineFEM *
                    (uSol - uCoarseInt)))
            ErrEnergy = Err / np.sqrt(
                np.dot((uSol).conj(), KFineFEM *
                       (uSol)) + k**2 * np.dot((uSol).conj(), MFineFEM *
                                               (uSol)))
            print('---- ', np.abs(ErrEnergy),
                  '\n***********************************************')

            # save errors in arrays
            FEMrelErrEnergy[counter - 1, it] = ErrEnergy

        print('\n')

    # error plots
    errLOD_2 = np.min(relErrEnergy, 1)
    errLOD0_2 = np.min(relErrEnergyNoUpdate, 1)
    errLODall_2 = np.min(relErrEnergyFullUpdate, 1)
    errFEM_2 = np.min(FEMrelErrEnergy, 1)

    Hs = 0.5**np.arange(1, maxCoarseLvl + 1)

    plt.figure(5)
    plt.title('Relative energy errors w.r.t H - Ex 2')
    plt.plot(Hs, errLOD_2, 'x-', color='blue', label='LOD_ad')
    plt.plot(Hs, errLOD0_2, 'x-', color='green', label='LOD_inf')
    plt.plot(Hs, errLODall_2, 'x-', color='orange', label='LOD_0')
    plt.plot(Hs, errFEM_2, 'x-', color='red', label='FEM')
    plt.plot([0.5, 0.0078125], [0.75, 0.01171875],
             color='black',
             linestyle='dashed',
             label='order 1')
    plt.yscale('log')
    plt.xscale('log')
    plt.legend()

    plt.show()