コード例 #1
0
ファイル: os4gl.py プロジェクト: tdegueul/scava
def add_filters_item(filters, es_url, es_in_index, es_out_index):

    elastic_in = ElasticSearch(es_url, es_in_index)
    elastic_out = ElasticSearch(es_url, es_out_index)

    # Time to just copy from in_index to our_index
    total = elastic_out.bulk_upload_sync(fetch(elastic_in, filters), "uuid")
コード例 #2
0
    def test_check_instance(self):
        """Test _check_instance function"""

        major = ElasticSearch._check_instance(self.url_es5, False)
        self.assertEqual(major, '5')
        major = ElasticSearch._check_instance(self.url_es6, False)
        self.assertEqual(major, '6')

        with self.assertRaises(ElasticConnectException):
            major = ElasticSearch._check_instance(self.url_es6_err, False)
コード例 #3
0
def create_search(elastic_url, dashboard, index_pattern, es_index=None):
    """ Create the base search for vis if used

        :param elastic_url: URL for ElasticSearch (ES) server
        :param dashboard: kibana dashboard to be used as template
        :param enrich_index: ES enriched index used in the new dashboard

    """

    search_id = None
    if not es_index:
        es_index = ".kibana"
    elastic = ElasticSearch(elastic_url, es_index)

    dash_data = get_dashboard_json(elastic, dashboard)

    # First vis
    if "panelsJSON" not in dash_data:
        logger.error("Can not find vis in dashboard: %s", dashboard)
        raise

    # Get the search from the first vis in the panel
    for panel in json.loads(dash_data["panelsJSON"]):
        panel_id = panel["id"]
        logger.debug("Checking search in %s vis", panel_id)

        search_id = get_search_from_vis(elastic, panel_id)
        if search_id:
            break

    # And now time to create the search found
    if not search_id:
        logger.info("Can't find search  %s", dashboard)
        return

    logger.debug("Found template search %s", search_id)

    search_json = get_search_json(elastic, search_id)
    search_source = search_json['kibanaSavedObjectMeta']['searchSourceJSON']
    new_search_source = json.loads(search_source)
    new_search_source['index'] = index_pattern
    new_search_source = json.dumps(new_search_source)
    search_json['kibanaSavedObjectMeta']['searchSourceJSON'] = \
        new_search_source

    search_json['title'] += " " + index_pattern
    new_search_id = search_id + "__" + index_pattern

    url = elastic.index_url + "/search/" + new_search_id
    headers = {"Content-Type": "application/json"}
    res = requests_ses.post(url,
                            data=json.dumps(search_json),
                            verify=False,
                            headers=headers)
    res.raise_for_status()

    logger.debug("New search created: %s", url)

    return new_search_id
コード例 #4
0
def exists_dashboard(elastic_url, dash_id, es_index=None):
    """ Check if a dashboard exists """
    exists = False

    if not es_index:
        es_index = ".kibana"
    elastic = ElasticSearch(elastic_url, es_index)
    dash_data = get_dashboard_json(elastic, dash_id)
    if 'panelsJSON' in dash_data:
        exists = True

    return exists
コード例 #5
0
def create_index_pattern(elastic_url, dashboard, enrich_index, es_index=None):
    """ Create a index pattern using as template the index pattern
        in dashboard template vis

        :param elastic_url: URL for ElasticSearch (ES) server
        :param dashboard: kibana dashboard to be used as template
        :param enrich_index: ES enriched index used in the new dashboard

    """

    index_pattern = None
    if not es_index:
        es_index = ".kibana"
    elastic = ElasticSearch(elastic_url, es_index)

    dash_data = get_dashboard_json(elastic, dashboard)

    # First vis
    if "panelsJSON" not in dash_data:
        logger.error("Can not find vis in dashboard: %s", dashboard)
        raise

    # Get the index pattern from the first vis in the panel
    # that as index pattern data
    for panel in json.loads(dash_data["panelsJSON"]):
        panel_id = panel["id"]
        logger.debug("Checking index pattern in %s vis", panel_id)

        index_pattern = get_index_pattern_from_vis(elastic, panel_id)
        if index_pattern:
            break

    # And now time to create the index pattern found
    if not index_pattern:
        logger.error("Can't find index pattern for %s", dashboard)
        raise

    logger.debug("Found %s template index pattern", index_pattern)

    new_index_pattern_json = get_index_pattern_json(elastic, index_pattern)

    new_index_pattern_json['title'] = enrich_index
    url = elastic.index_url + "/index-pattern/" + enrich_index
    headers = {"Content-Type": "application/json"}
    res = requests_ses.post(url,
                            data=json.dumps(new_index_pattern_json),
                            verify=False,
                            headers=headers)
    res.raise_for_status()
    logger.debug("New index pattern created: %s", url)

    return enrich_index
コード例 #6
0
ファイル: ocean.py プロジェクト: dfpy2332/GrimoireELK
def get_elastic():

    try:
        ocean_index = ConfOcean.get_index()
        elastic_ocean = ElasticSearch(args.elastic_url, ocean_index)

    except ElasticConnectException:
        logging.error("Can't connect to Elastic Search. Is it running?")
        sys.exit(1)

    except ElasticWriteException:
        logging.error("Can't write to Elastic Search.")
        sys.exit(1)

    return elastic_ocean
コード例 #7
0
def feed_dashboard(dashboard,
                   elastic_url,
                   es_index=None,
                   data_sources=None,
                   add_vis_studies=False):
    """ Import a dashboard. If data_sources are defined, just include items
        for this data source.
    """

    if not es_index:
        es_index = ".kibana"

    elastic = ElasticSearch(elastic_url, es_index)

    import_item_json(elastic, "dashboard", dashboard['dashboard']['id'],
                     dashboard['dashboard']['value'], data_sources,
                     add_vis_studies)

    if 'searches' in dashboard:
        for search in dashboard['searches']:
            import_item_json(elastic, "search", search['id'], search['value'],
                             data_sources)

    if 'index_patterns' in dashboard:
        for index in dashboard['index_patterns']:
            if not data_sources or \
                    is_index_pattern_from_data_sources(index, data_sources):
                import_item_json(elastic, "index-pattern", index['id'],
                                 index['value'])
            else:
                logger.debug("Index pattern %s not for %s. Not included.",
                             index['id'], data_sources)

    if 'visualizations' in dashboard:
        for vis in dashboard['visualizations']:
            if not add_vis_studies and is_vis_study(vis):
                logger.debug("Vis %s is for an study. Not included.",
                             vis['id'])
            elif not data_sources or is_vis_from_data_sources(
                    vis, data_sources):
                import_item_json(elastic, "visualization", vis['id'],
                                 vis['value'])
            else:
                logger.debug("Vis %s not for %s. Not included.", vis['id'],
                             data_sources)
コード例 #8
0
ファイル: os4gl.py プロジェクト: tdegueul/scava
def find_ossmeter_filters(elastic_url, ossmeter_index):

    filters_data = {}

    elastic = ElasticSearch(elastic_url, ossmeter_index)

    def build_query(filter_name):
        # ES query
        query = '''
        {
            "size": 0,
            "query": {
                "bool": {
                }
            },
            "aggs": {
                "2": {
                  "terms": {
                    "field": "%s.keyword",
                    "size": 1000,
                    "order": {
                      "_count": "desc"
                    }
                  }
                }
            }
        } ''' % (filter_name)

        return query

    for filter_name in OSS_FILTERS:
        query = build_query(filter_name)
        url = elastic.index_url + "/_search"
        res = requests.post(url, data=query, headers=HEADERS_JSON)
        res.raise_for_status()
        filter_data = [
            f['key'] for f in res.json()['aggregations']['2']['buckets']
            if not f['key'].find(":") > 0
        ]
        # print(filter_data)
        filters_data[filter_name] = filter_data

    return filters_data
コード例 #9
0
def search_dashboards(elastic_url, es_index=None):

    dashboards = []

    if not es_index:
        es_index = ".kibana"

    elastic = ElasticSearch(elastic_url, es_index)
    elastic_ver = find_elasticsearch_version(elastic)

    if elastic_ver < 6:
        dash_json_url = elastic.index_url + "/dashboard/_search?size=10000"
        res = requests_ses.get(dash_json_url, verify=False)
    else:
        items_json_url = elastic.index_url + "/_search?size=10000"
        query = '''
        {
            "query" : {
                "term" : { "type" : "dashboard"  }
             }
        }'''
        res = requests_ses.post(items_json_url,
                                data=query,
                                verify=False,
                                headers=HEADERS_JSON)
    res.raise_for_status()

    res_json = res.json()

    if "hits" not in res_json:
        logger.error("Can't find dashboards")
        raise RuntimeError("Can't find dashboards")

    for dash in res_json["hits"]["hits"]:
        if elastic_ver < 6:
            dash_json = dash["_source"]
        else:
            dash_json = dash["_source"]["dashboard"]

        dashboards.append({"_id": dash["_id"], "title": dash_json["title"]})

    return dashboards
コード例 #10
0
if __name__ == '__main__':

    args = get_params()

    if args.debug:
        logging.basicConfig(level=logging.DEBUG,
                            format='%(asctime)s %(message)s')
        logging.debug("Debug mode activated")
    else:
        logging.basicConfig(level=logging.INFO,
                            format='%(asctime)s %(message)s')

    logging.info("Importing tweets from %s to %s/%s", args.json_dir,
                 args.elastic_url, args.index)

    elastic = ElasticSearch(args.elastic_url, args.index)

    total = 0

    first_date = None
    last_date = None

    ids = []
    tweets = []

    for tweet in fetch_tweets(args.json_dir):
        # Check first and last dates
        tweet_date = parser.parse(tweet['created_at'])
        if not first_date or tweet_date <= first_date:
            first_date = tweet_date
        if not last_date or tweet_date >= last_date:
コード例 #11
0
if __name__ == '__main__':

    ARGS = get_params()

    if ARGS.debug:
        logging.basicConfig(level=logging.DEBUG,
                            format='%(asctime)s %(message)s')
        logging.debug("Debug mode activated")
    else:
        logging.basicConfig(level=logging.INFO,
                            format='%(asctime)s %(message)s')

    logging.info("Importing items from %s to %s/%s", ARGS.collection,
                 ARGS.elastic_url, ARGS.index)

    elastic = ElasticSearch(ARGS.elastic_url, ARGS.index)

    if ARGS.collection:
        mongo_items = fetch_mongodb_collection(ARGS.collection,
                                               ARGS.mongo_host,
                                               ARGS.mongo_port)
    elif ARGS.project:
        mongo_items = fetch_mongodb_project(ARGS.project, ARGS.mongo_host,
                                            ARGS.mongo_port)
    elif ARGS.all_collections:
        mongo_items = fetch_mongodb_all(ARGS.mongo_host, ARGS.mongo_port)
    else:
        raise RuntimeError('Collection to be processed not provided')

    if mongo_items:
        logging.info("Loading collections in Elasticsearch")
コード例 #12
0
ファイル: twitter2es.py プロジェクト: jgbarah/GrimoireELK
                yield tweet


if __name__ == '__main__':

    args = get_params()

    if args.debug:
        logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s')
        logging.debug("Debug mode activated")
    else:
        logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

    logging.info("Importing tweets from %s to %s/%s", args.json_dir, args.elastic_url, args.index)

    elastic = ElasticSearch(args.elastic_url, args.index)

    total = 0

    first_date = None
    last_date = None

    ids = []
    tweets = []

    for tweet in fetch_tweets(args.json_dir):
        # Check first and last dates
        tweet_date = parser.parse(tweet['created_at'])
        if not first_date or tweet_date <= first_date:
            first_date = tweet_date
        if not last_date or tweet_date >= last_date:
コード例 #13
0
ファイル: gelk.py プロジェクト: dfpy2332/GrimoireELK
    connector = get_connector_from_name(backend_name, connectors)
    backend = connector[0](**vars(args))
    ocean_backend = connector[1](backend, **vars(args))
    enrich_backend = connector[2](backend, **vars(args))

    es_index = backend.get_name() + "_" + backend.get_id()

    clean = args.no_incremental

    if args.cache:
        clean = True

    try:
        # Ocean
        elastic_state = ElasticSearch(args.elastic_url, es_index,
                                      ocean_backend.get_elastic_mappings(),
                                      clean)

        # Enriched ocean
        enrich_index = es_index + "_enrich"
        elastic = ElasticSearch(args.elastic_url, enrich_index,
                                enrich_backend.get_elastic_mappings(), clean)

    except ElasticConnectException:
        logging.error("Can't connect to Elastic Search. Is it running?")
        sys.exit(1)

    ocean_backend.set_elastic(elastic_state)
    enrich_backend.set_elastic(elastic)

    try:
コード例 #14
0
def export_items(elastic_url,
                 in_index,
                 out_index,
                 elastic_url_out=None,
                 search_after=False,
                 search_after_value=None,
                 limit=None,
                 copy=False):
    """ Export items from in_index to out_index using the correct mapping """

    if not limit:
        limit = DEFAULT_LIMIT

    if search_after_value:
        search_after_value_timestamp = int(search_after_value[0])
        search_after_value_uuid = search_after_value[1]
        search_after_value = [
            search_after_value_timestamp, search_after_value_uuid
        ]

    logging.info("Exporting items from %s/%s to %s", elastic_url, in_index,
                 out_index)

    count_res = requests.get('%s/%s/_count' % (elastic_url, in_index))
    try:
        count_res.raise_for_status()
    except requests.exceptions.HTTPError:
        if count_res.status_code == 404:
            logging.error("The index does not exists: %s", in_index)
        else:
            logging.error(count_res.text)
        sys.exit(1)

    logging.info("Total items to copy: %i", count_res.json()['count'])

    # Time to upload the items with the correct mapping
    elastic_in = ElasticSearch(elastic_url, in_index)
    if not copy:
        # Create the correct mapping for the data sources detected from in_index
        ds_mapping = find_mapping(elastic_url, in_index)
    else:
        logging.debug('Using the input index mapping')
        ds_mapping = extract_mapping(elastic_url, in_index)

    if not elastic_url_out:
        elastic_out = ElasticSearch(elastic_url,
                                    out_index,
                                    mappings=ds_mapping)
    else:
        elastic_out = ElasticSearch(elastic_url_out,
                                    out_index,
                                    mappings=ds_mapping)

    # Time to just copy from in_index to our_index
    uid_field = find_uuid(elastic_url, in_index)
    backend = find_perceval_backend(elastic_url, in_index)
    if search_after:
        total = elastic_out.bulk_upload_sync(
            fetch(elastic_in, backend, limit, search_after_value,
                  scroll=False), uid_field)
    else:
        total = elastic_out.bulk_upload_sync(fetch(elastic_in, backend, limit),
                                             uid_field)

    logging.info("Total items copied: %i", total)
コード例 #15
0
ファイル: dependencies2es.py プロジェクト: tdegueul/scava
        for dependency in dependencies:
            eitem = enrich_item(dependency)
            eitem['project'] = project
            yield eitem


if __name__ == '__main__':

    args = get_params()

    if args.debug:
        logging.basicConfig(level=logging.DEBUG,
                            format='%(asctime)s %(message)s')
        logging.debug("Debug mode activated")
    else:
        logging.basicConfig(level=logging.INFO,
                            format='%(asctime)s %(message)s')

    logging.info("Importing items from %s to %s/%s", args.file,
                 args.elastic_url, args.index)

    elastic = ElasticSearch(args.elastic_url, args.index)

    items = fetch_dependencies(args.file, args.project)

    if items:
        logging.info("Loading dependencies in Elasticsearch ...")
        elastic.bulk_upload_sync(items, "uuid")
        logging.info("Import completed.")
コード例 #16
0
    task_init = datetime.now()

    arthur_repos = {"repositories": []}

    args = get_params()

    config_logging(args.debug)

    total_repos = 0

    # enrich ocean
    index_enrich = OCEAN_INDEX + "_" + PERCEVAL_BACKEND + "_enrich"
    es_enrich = None
    try:
        es_enrich = ElasticSearch(args.elastic_url, index_enrich)
    except ElasticConnectException:
        logging.error("Can't connect to Elastic Search. Is it running?")

    # The owner could be an org or an user.
    for org in args.org:
        owner_url = get_owner_repos_url(org, args.token)
        try:
            repos = get_repositores(owner_url, args.token, args.nrepos)
        except requests.exceptions.HTTPError:
            logging.error("Can't get repos for %s" % (owner_url))
            continue
        if args.db_projects_map:
            insert_projects_mapping(args.db_projects_map, org, repos)

        for repo in repos:
コード例 #17
0
    def execute(self):
        cfg = self.config.get_conf()

        if 'gerrit' not in cfg or 'git' not in cfg:
            logger.error("gerrit and git are needed for track items.")
            return

        # We need to track the items in all git repositories from OPNFV
        git_repos = []
        repos_raw = TaskProjects.get_repos_by_backend_section("git")
        # git://git.opnfv.org/apex -> https://git.opnfv.org/apex/plain/UPSTREAM
        for repo in repos_raw:
            repo = repo.replace("git://", "https://")
            repo += "/plain/UPSTREAM"
            git_repos.append(repo)

        project = cfg['track_items']['project']
        elastic_url_enrich = cfg['es_enrichment']['url']

        # The raw data comes from upstream project
        elastic_url_raw = cfg['track_items']['upstream_raw_es_url']
        index_gerrit_raw = cfg['track_items']['raw_index_gerrit']
        index_git_raw = cfg['track_items']['raw_index_git']

        index_gerrit_enrich = cfg['gerrit']['enriched_index']
        index_git_enrich = cfg['git']['enriched_index']

        db_config = {
            "database": cfg['sortinghat']['database'],
            "user": cfg['sortinghat']['user'],
            "password": cfg['sortinghat']['password'],
            "host": cfg['sortinghat']['host']
        }

        logger.debug("Importing track items from %s ", git_repos)

        #
        # Gerrit Reviews
        #
        gerrit_uris = []
        for git_repo in git_repos:
            gerrit_uris += fetch_track_items(git_repo, self.ITEMS_DATA_SOURCE)

        gerrit_numbers = get_gerrit_numbers(gerrit_uris)
        logger.info("Total gerrit track items to be imported: %i", len(gerrit_numbers))
        enriched_items = enrich_gerrit_items(elastic_url_raw,
                                             index_gerrit_raw, gerrit_numbers,
                                             project, db_config)
        logger.info("Total gerrit track items enriched: %i", len(enriched_items))
        elastic = ElasticSearch(elastic_url_enrich, index_gerrit_enrich)
        total = elastic.bulk_upload(enriched_items, "uuid")

        #
        # Git Commits
        #
        commits_sha = get_commits_from_gerrit(elastic_url_raw,
                                              index_gerrit_raw, gerrit_numbers)
        logger.info("Total git track items to be checked: %i", len(commits_sha))
        enriched_items = enrich_git_items(elastic_url_raw,
                                          index_git_raw, commits_sha,
                                          project, db_config)
        logger.info("Total git track items enriched: %i", len(enriched_items))
        elastic = ElasticSearch(elastic_url_enrich, index_git_enrich)
        total = elastic.bulk_upload(enriched_items, "uuid")
コード例 #18
0
def create_dashboard(elastic_url,
                     dashboard,
                     enrich_index,
                     kibana_host,
                     es_index=None):
    """ Create a new dashboard using dashboard as template
        and reading the data from enriched_index """
    def new_panels(elastic, panels, search_id):
        """ Create the new panels and their vis for the dashboard from the
            panels in the template dashboard """

        dash_vis_ids = []
        new_panels = []
        for panel in panels:
            if panel['type'] in ['visualization', 'search']:
                if panel['type'] == 'visualization':
                    dash_vis_ids.append(panel['id'])
                panel['id'] += "__" + enrich_index
                if panel['type'] == 'search':
                    panel['id'] = search_id
            new_panels.append(panel)

        create_vis(elastic, dash_vis_ids, search_id)

        return new_panels

    def create_vis(elastic, dash_vis_ids, search_id):
        """ Create new visualizations for the dashboard """

        # Create visualizations for the new dashboard
        item_template_url = elastic.index_url + "/visualization"
        # Hack: Get all vis if they are <10000. Use scroll API to get all.
        # Better: use mget to get all vis in dash_vis_ids
        item_template_url_search = item_template_url + "/_search?size=10000"
        res = requests_ses.get(item_template_url_search, verify=False)
        res.raise_for_status()
        all_visualizations = res.json()['hits']['hits']

        visualizations = []
        for vis in all_visualizations:
            if vis['_id'] in dash_vis_ids:
                visualizations.append(vis)

        logger.info("Total template vis found: %i", len(visualizations))

        for vis in visualizations:
            vis_data = vis['_source']
            vis_name = vis['_id'].split("_")[-1]
            vis_id = vis_name + "__" + enrich_index
            vis_data['title'] = vis_id
            vis_meta = json.loads(
                vis_data['kibanaSavedObjectMeta']['searchSourceJSON'])
            vis_meta['index'] = enrich_index
            vis_data['kibanaSavedObjectMeta']['searchSourceJSON'] = \
                json.dumps(vis_meta)
            if "savedSearchId" in vis_data:
                vis_data["savedSearchId"] = search_id

            url = item_template_url + "/" + vis_id

            headers = {"Content-Type": "application/json"}
            res = requests_ses.post(url,
                                    data=json.dumps(vis_data),
                                    verify=False,
                                    headers=headers)
            res.raise_for_status()
            logger.debug("Created new vis %s", url)

    if not es_index:
        es_index = ".kibana"

    # First create always the index pattern as data source
    index_pattern = create_index_pattern(elastic_url, dashboard, enrich_index,
                                         es_index)
    # If search is used create a new search with the new index_pàttern
    search_id = create_search(elastic_url, dashboard, index_pattern, es_index)

    elastic = ElasticSearch(elastic_url, es_index)

    # Create the new dashboard from the template
    dash_data = get_dashboard_json(elastic, dashboard)
    dash_data['title'] = enrich_index
    # Load template panels to create the new ones with their new vis
    panels = json.loads(dash_data['panelsJSON'])
    dash_data['panelsJSON'] = json.dumps(new_panels(elastic, panels,
                                                    search_id))
    dash_path = "/dashboard/" + dashboard + "__" + enrich_index
    url = elastic.index_url + dash_path
    res = requests_ses.post(url,
                            data=json.dumps(dash_data),
                            verify=False,
                            headers=HEADERS_JSON)
    res.raise_for_status()
    dash_url = kibana_host + "/app/kibana#" + dash_path
    return dash_url
コード例 #19
0
ファイル: metrics2es.py プロジェクト: borisbaldassari/meditor
                        help="Get metrics for data source")

    return parser.parse_args()


if __name__ == '__main__':

    args = get_params()

    if args.debug:
        logging.basicConfig(level=logging.DEBUG,
                            format='[%(asctime)s] %(message)s')
        logging.debug("Debug mode activated")
    else:
        logging.basicConfig(level=logging.INFO,
                            format='%(asctime)s %(message)s')
    logging.getLogger("urllib3").setLevel(logging.WARNING)
    logging.getLogger("requests").setLevel(logging.WARNING)

    data_source = args.data_source
    index = "grimoirelab_metrics"

    elastic = ElasticSearch(args.elastic_url, index)
    if args.elastic_metrics_url:
        elastic = ElasticSearch(args.elastic_metrics_url, index)

    elastic.bulk_upload_sync(fetch_metric(args.elastic_url, data_source), "id")

    # for metric in fetch_metric(es_url, data_source):
    #    print(metric)
コード例 #20
0
def fetch_dashboard(elastic_url, dash_id, es_index=None):

    # Kibana dashboard fields
    kibana = {
        "dashboard": None,
        "visualizations": [],
        "index_patterns": [],
        "searches": []
    }

    # Used to avoid having duplicates
    search_ids_done = []
    index_ids_done = []

    logger.debug("Fetching dashboard %s", dash_id)
    if not es_index:
        es_index = ".kibana"

    elastic = ElasticSearch(elastic_url, es_index)

    kibana["dashboard"] = {
        "id": dash_id,
        "value": get_dashboard_json(elastic, dash_id)
    }

    if "panelsJSON" not in kibana["dashboard"]["value"]:
        # The dashboard is empty. No visualizations included.
        return kibana

    # Export all visualizations and the index patterns and searches in them
    for panel in json.loads(kibana["dashboard"]["value"]["panelsJSON"]):
        logger.debug("Analyzing panel %s (%s)", panel['id'], panel['type'])
        if panel['type'] in ['visualization']:
            vis_id = panel['id']
            vis_json = get_vis_json(elastic, vis_id)
            kibana["visualizations"].append({"id": vis_id, "value": vis_json})
            search_id = get_search_from_vis(elastic, vis_id)
            if search_id and search_id not in search_ids_done:
                search_ids_done.append(search_id)
                kibana["searches"].append({
                    "id":
                    search_id,
                    "value":
                    get_search_json(elastic, search_id)
                })
            index_pattern_id = get_index_pattern_from_vis(elastic, vis_id)
            if index_pattern_id and index_pattern_id not in index_ids_done:
                index_ids_done.append(index_pattern_id)
                kibana["index_patterns"].append({
                    "id":
                    index_pattern_id,
                    "value":
                    get_index_pattern_json(elastic, index_pattern_id)
                })
        elif panel['type'] in ['search']:
            # A search could be directly visualized inside a panel
            search_id = panel['id']
            kibana["searches"].append({
                "id":
                search_id,
                "value":
                get_search_json(elastic, search_id)
            })
            index_pattern_id = get_index_pattern_from_search(
                elastic, search_id)
            if index_pattern_id and index_pattern_id not in index_ids_done:
                index_ids_done.append(index_pattern_id)
                kibana["index_patterns"].append({
                    "id":
                    index_pattern_id,
                    "value":
                    get_index_pattern_json(elastic, index_pattern_id)
                })

    return kibana
コード例 #21
0
    def __create_arthur_json(self, repo, backend_args):
        """ Create the JSON for configuring arthur to collect data

        https://github.com/grimoirelab/arthur#adding-tasks
        Sample for git:

        {
        "tasks": [
            {
                "task_id": "arthur.git",
                "backend": "git",
                "backend_args": {
                    "gitpath": "/tmp/arthur_git/",
                    "uri": "https://github.com/grimoirelab/arthur.git"
                },
                "category": "commit",
                "archive_args": {
                    "archive_path": '/tmp/test_archives',
                    "fetch_from_archive": false,
                    "archive_after": None
                },
                "scheduler_args": {
                    "delay": 10
                }
            }
        ]
        }
        """

        backend_args = self._compose_arthur_params(self.backend_section, repo)
        if self.backend_section == 'git':
            backend_args['gitpath'] = os.path.join(self.REPOSITORY_DIR, repo)
        backend_args['tag'] = self.backend_tag(repo)

        ajson = {"tasks": [{}]}
        # This is the perceval tag
        ajson["tasks"][0]['task_id'] = self.backend_tag(repo)
        ajson["tasks"][0]['backend'] = self.backend_section
        ajson["tasks"][0]['backend_args'] = backend_args
        ajson["tasks"][0]['category'] = backend_args['category']
        ajson["tasks"][0]['archive'] = {}
        ajson["tasks"][0]['scheduler'] = {"delay": self.ARTHUR_TASK_DELAY}
        # from-date or offset param must be added
        es_col_url = self._get_collection_url()
        es_index = self.conf[self.backend_section]['raw_index']
        # Get the last activity for the data source
        es = ElasticSearch(es_col_url, es_index)
        connector = get_connector_from_name(self.backend_section)
        klass = connector[0]  # Backend for the connector
        signature = inspect.signature(klass.fetch)

        last_activity = None
        filter_ = {"name": "tag", "value": backend_args['tag']}
        if 'from_date' in signature.parameters:
            last_activity = es.get_last_item_field('metadata__updated_on',
                                                   [filter_])
            if last_activity:
                ajson["tasks"][0]['backend_args'][
                    'from_date'] = last_activity.isoformat()
        elif 'offset' in signature.parameters:
            last_activity = es.get_last_item_field('offset', [filter_])
            if last_activity:
                ajson["tasks"][0]['backend_args']['offset'] = last_activity

        if last_activity:
            logging.info("Getting raw item with arthur since %s",
                         last_activity)

        return (ajson)