コード例 #1
0
    def generate_analysis_time_series_diff(self):

        exec_str = ('''
                    DROP TABLE IF EXISTS analysis_time_series_diff CASCADE;
                    WITH tb_1 AS (
                        SELECT * FROM analysis_time_series
                        WHERE run_id = {run_id_1}
                    ), tb_2 AS (
                        SELECT
                            bool_out, ca_id, pp_id, sy,
                            value_posneg AS value_other
                        FROM analysis_time_series
                        WHERE run_id = {run_id_2}
                    )
                    SELECT tb_1.*,
                        tb_1.value_posneg - tb_2.value_other AS value_diff
                    INTO analysis_time_series_diff{sff}
                    FROM tb_1
                    LEFT JOIN tb_2
                    ON tb_1.bool_out = tb_2.bool_out
                        AND tb_1.ca_id = tb_2.ca_id
                        AND tb_1.pp_id = tb_2.pp_id
                        AND tb_1.sy = tb_2.sy;
                    ''').format(run_id_1=self.run_id[0],
                                run_id_2=self.run_id[1],
                                sff=self._suffix)
        aql.exec_sql(exec_str, db=self.db)
        return exec_str
コード例 #2
0
    def analysis_cf_comparison(self):

        exec_str = '''
                   DROP TABLE IF EXISTS {sc_out}.analysis_cf_comparison CASCADE;

                   SELECT mt_id, pp_id, ca_id, run_id,
                       'var'::VARCHAR AS var_par,
                       value / NULLIF(cap * 8760, 0) AS cf
                   INTO {sc_out}.analysis_cf_comparison
                   FROM {sc_out}.var_mt_erg_mt
                   NATURAL LEFT JOIN (
                       SELECT pp_id, ca_id, run_id, value AS cap
                       FROM {sc_out}.par_cap_pwr_leg) AS cap
                   UNION ALL
                   SELECT mt_id, pp_id, ca_id, run_id,
                       'par'::VARCHAR AS var_par, value AS cf
                   FROM {sc_out}.par_cf_max
                   '''.format(**self.format_kw)
        aql.exec_sql(exec_str, db=self.db)

        aql.joinon(self.db, self.sw_columns, ['run_id'],
                   [self.sc_out, 'analysis_cf_comparison'],
                   [self.sc_out, 'def_run'])
        aql.joinon(self.db, ['pp', 'nd_id', 'pt_id', 'fl_id'], ['pp_id'],
                   [self.sc_out, 'analysis_cf_comparison'],
                   [self.sc_out, 'def_plant'])
        aql.joinon(self.db, ['nd'], ['nd_id'],
                   [self.sc_out, 'analysis_cf_comparison'],
                   [self.sc_out, 'def_node'])
        aql.joinon(self.db, ['pt'], ['pt_id'],
                   [self.sc_out, 'analysis_cf_comparison'],
                   [self.sc_out, 'def_pp_type'])
        aql.joinon(self.db, ['fl'], ['fl_id'],
                   [self.sc_out, 'analysis_cf_comparison'],
                   [self.sc_out, 'def_fuel'])
コード例 #3
0
    def generate_analysis_time_series_chp_comparison(self):
        ''' Filters production data by CHP plants and appends exogenous CHP
            profile for comparison '''

        exec_str = ('''
                    /* Extension to analysis_time_series */
                    DROP TABLE IF EXISTS analysis_time_series_chp_comparison
                    CASCADE;
                    WITH output AS (
                        SELECT sy, wk_id, how, mt_id, doy, hom,
                               weight, nd, run_id, pt,
                            SUM(value) AS value
                        FROM analysis_time_series
                        WHERE pp_broad_cat = 'CHP'
                        GROUP BY pt, sy, wk_id, how, mt_id, doy,
                                 hom, weight, nd, run_id
                    ), profile AS (
                        SELECT prf.sy, wk_id, how, mt_id, doy, hom,
                               weight, nd, prf.run_id,
                            CAST('profile' AS VARCHAR) AS pt,
                            cap_pwr_tot_chp * value AS value
                        FROM {sc_out}.par_chpprof AS prf
                        LEFT JOIN (SELECT sy, wk_id, how, mt_id,
                                          doy, hom, weight
                                   FROM timemap) AS tm
                        ON prf.sy = tm.sy
                        LEFT JOIN {sc_out}.def_node AS dfnd
                        ON prf.nd_id = dfnd.nd_id
                        LEFT JOIN (
                            SELECT
                                run_id, nd_id,
                                SUM(cap.value) AS cap_pwr_tot_chp
                            FROM {sc_out}.var_yr_cap_pwr_tot AS cap
                            LEFT JOIN {sc_out}.def_plant AS dfpp
                            ON cap.pp_id = dfpp.pp_id
                            WHERE pp LIKE '%CHP%'
                            GROUP BY run_id, nd_id
                            ORDER BY nd_id, run_id
                            ) AS cap
                        ON prf.nd_id = cap.nd_id AND prf.run_id = cap.run_id
                        ORDER BY run_id, nd, sy
                    )
                    SELECT * INTO analysis_time_series_chp_comparison{sff}
                    FROM output
                    UNION ALL
                    SELECT * FROM profile
                    ''').format(sc_out=self.sc_out, sff=self._suffix)
        aql.exec_sql(exec_str, db=self.db)
        return exec_str
コード例 #4
0
    def merge_location_profiles_sql(self):

        exec_str = '''
                   INSERT INTO {sc}.{tb}("DateTime", pt_id, value,
                                         proftype, hy, year, nd_id, location)
                   SELECT "DateTime", pt_id, AVG(value) AS value, proftype,
                          hy, year, nd_id, 'national'::VARCHAR AS location
                   FROM profiles_raw.ninja
                   WHERE proftype = 'location' AND NOT location = 'national'
                   GROUP BY "DateTime", pt_id, proftype, hy, year, nd_id;

                   DELETE FROM {sc}.{tb}
                   WHERE proftype = 'location' AND NOT location = 'national';
                   '''.format(**self.dict_sql)
        aql.exec_sql(exec_str, db=self.dict_sql['db'])
コード例 #5
0
    def generate_complete_dual_supply(self):
        ''' Adds loop and sy columns to the dual_supply table.'''
        print(self.in_run_id)

        tb_name = 'analysis_time_series_dual_supply'
        aql.init_table(
            tb_name,
            (['sy', 'nd_id', 'ca_id', 'run_id', 'value', 'nd', *self.tm_cols] +
             [(c, 'VARCHAR') for c in self.sw_columns] + [('mc', 'DECIMAL')]),
            schema=self.sc_out,
            ref_schema=self.sc_out,
            pk=['sy', 'nd_id', 'run_id'],
            db=self.db)

        exec_str_0 = ('''
                      INSERT INTO {sc_out}.{tb_name} (sy, nd_id, ca_id, value, run_id)
                      SELECT *
                      FROM {sc_out}.dual_supply
                      WHERE run_id in {in_run_id}
                      ''').format(tb_name=tb_name,
                                  sc_out=self.sc_out,
                                  in_run_id=self.in_run_id)
        aql.exec_sql(exec_str_0, db=self.db)

        # add timemap indices
        aql.joinon(self.db, [c for c in self.tm_cols if not c == 'sy'], ['sy'],
                   [self.sc_out, 'analysis_time_series_dual_supply'],
                   [self.sc_out, 'tm_soy_full'],
                   new_columns=False)

        exec_str_1 = ('''
                      UPDATE {sc_out}.analysis_time_series_dual_supply
                      SET mc = value / weight;
                      '''.format(sc_out=self.sc_out))
        aql.exec_sql(exec_str_1, db=self.db)

        return (exec_str_0 + exec_str_1)
コード例 #6
0
    def generate_analysis_time_series(self, energy_only=False):
        ''' Generates basic (full time resolution) x (pp_type) x (run_id) table. '''
        print(self.in_run_id)

        tb_name = 'analysis_time_series'

        self.generate_view_time_series_subset()

        aql.init_table(tb_name, ([
            'sy', 'ca_id', 'pp_id', 'bool_out', 'run_id',
            'pwrerg_cat', 'nd_id', 'fl_id', 'pt_id', *self.tm_cols,
            ('value', 'DECIMAL'), 'fl', 'nd', 'pt', ('value_posneg', 'DECIMAL')
        ] + [(c, 'VARCHAR') for c in self.sw_columns]),
                       schema=self.sc_out,
                       ref_schema=self.sc_out,
                       db=self.db)

        if not energy_only:
            print('Inserting power...')
            exec_str = ('''
                        INSERT INTO {sc_out}.{tb_name}
                            (sy, ca_id, pp_id, bool_out, value, run_id, pwrerg_cat, value_posneg)
                        SELECT * FROM {sc_out}.analysis_time_series_view_power
                        WHERE run_id IN {in_run_id};
                        ''').format(tb_name=tb_name, **self.format_kw)
            aql.exec_sql(exec_str, db=self.db)

            print('Inserting cross-sector consumption...')
            exec_str = ('''
                        INSERT INTO {sc_out}.{tb_name}
                            (sy, ca_id, pp_id, bool_out, value, run_id, pwrerg_cat, value_posneg)
                        SELECT * FROM {sc_out}.analysis_time_series_view_crosssector
                        WHERE run_id IN {in_run_id};
                        ''').format(tb_name=tb_name, **self.format_kw)
            aql.exec_sql(exec_str, db=self.db)

        if 'var_sy_erg_st' in aql.get_sql_tables(self.sc_out, self.db):
            print('Inserting energy...')
            exec_str = ('''
                        INSERT INTO {sc_out}.{tb_name}
                            (sy, ca_id, pp_id, bool_out, value, run_id, pwrerg_cat, value_posneg)
                        SELECT * FROM {sc_out}.analysis_time_series_view_energy
                        WHERE run_id IN {in_run_id};

                        ''').format(tb_name=tb_name, **self.format_kw)
            aql.exec_sql(exec_str, db=self.db)

        # add timemap indices
        aql.joinon(self.db, [c for c in self.tm_cols if (not c == 'sy')],
                   ['sy'], [self.sc_out, tb_name],
                   [self.sc_out, 'tm_soy_full'],
                   new_columns=False)

        return exec_str
コード例 #7
0
    def generate_analysis_time_series_transmission(self):
        exec_str = ('''
                    DROP VIEW IF EXISTS
                        analysis_time_series_transmission_0 CASCADE;
                    DROP TABLE IF EXISTS
                        {sc_out}.analysis_time_series_transmission CASCADE;

                    CREATE VIEW analysis_time_series_transmission_0 AS
                    WITH trrv AS (
                        SELECT sy, run_id, dfnd.nd AS nd,
                            CAST('IMPORT_FROM_' AS VARCHAR) || dfnd_2.nd AS pt,
                            False AS bool_out,
                            CAST('TRANSMISSION' AS VARCHAR) AS pp_broad_cat,
                            CAST('import' AS VARCHAR) AS fl,
                            value,
                            value AS value_posneg
                        FROM {sc_out}.var_tr_trm_rv AS tr
                        LEFT JOIN {sc_out}.def_node AS dfnd
                            ON dfnd.nd_id = tr.nd_id
                        LEFT JOIN {sc_out}.def_node AS dfnd_2
                            ON dfnd_2.nd_id = tr.nd_2_id
                        WHERE run_id IN {in_run_id}
                    ), trsd AS (
                        SELECT sy, run_id, dfnd.nd AS nd,
                            CAST('EXPORT_TO_' AS VARCHAR) || dfnd_2.nd AS pt,
                            True AS bool_out,
                            CAST('TRANSMISSION' AS VARCHAR) AS pp_broad_cat,
                            CAST('export' AS VARCHAR) AS fl,
                            value, - value AS value_posneg
                            FROM {sc_out}.var_tr_trm_sd AS tr
                        LEFT JOIN {sc_out}.def_node AS dfnd
                            ON dfnd.nd_id = tr.nd_id
                        LEFT JOIN {sc_out}.def_node AS dfnd_2
                            ON dfnd_2.nd_id = tr.nd_2_id
                        WHERE run_id IN {in_run_id}
                    ), tm AS (
                        SELECT *
                        FROM profiles_raw.timestamp_template
                        WHERE year = 2015
                    ), trall AS (
                        SELECT * FROM trrv
                        UNION ALL
                        SELECT * FROM trsd
                    )
                    SELECT 0::SMALLINT AS bool_out,
                           trall.value, trall.run_id, tm.*,
                           trall.pt, trall.pp_broad_cat, trall.nd,
                           trall.fl, trall.value_posneg
                    FROM trall
                    LEFT JOIN tm ON tm.slot = trall.sy;

                    SELECT *
                    INTO {sc_out}.analysis_time_series_transmission{sff}
                    FROM {sc_out}.analysis_time_series
                    WHERE NOT pp LIKE '%TRNS%'
                    UNION ALL
                    SELECT * FROM analysis_time_series_transmission_0;
                    ''').format(sc_out=self.sc_out,
                                in_run_id=self.in_run_id,
                                sff=self._suffix)
        aql.exec_sql(exec_str, db=self.db)

        # add timemap indices
        aql.joinon(
            self.db, [c for c in self.tm_cols if (not c == 'sy')], ['sy'],
            ['public', 'analysis_time_series_transmission' + self._suffix],
            ['public', 'timemap_' + str(self.time_res)])

        return exec_str
コード例 #8
0
    exec_str = '''
               ALTER TABLE profiles_raw.ninja
               ADD COLUMN IF NOT EXISTS scale DOUBLE PRECISION,
               ADD COLUMN IF NOT EXISTS value_sc DOUBLE PRECISION;

               UPDATE profiles_raw.ninja AS tbnn
               SET scale = COALESCE((tbsc.scale_end - tbsc.scale_beg) / (8760 - 1) * hy + tbsc.scale_beg, 1)
               FROM temp_add_column AS tbsc
               WHERE tbnn.year = tbsc.year
                   AND tbnn.pt_id = tbsc.pt_id
                   AND tbnn.nd_id = tbsc.nd_id;

               UPDATE profiles_raw.ninja
               SET value_sc = scale * value;
               '''
    aql.exec_sql(exec_str, db=dict_sql['db'])

    aql.read_sql(dict_sql['db'], 'profiles_raw', 'ninja', filt=[('year', [2016])])


    filt=[('pt_id', ['WIN_OFF']), ('nd_id', ['DE0']), ('year', [2015])]
    df = aql.read_sql('storage2', 'profiles_raw', 'ninja', filt=filt)
    dfcap = aql.read_sql('storage2', 'public', 'temp_add_column', filt=filt)

    exec_strg = '''
                SELECT pt_id, proftype, year, nd_id, location, AVG(value_sc), AVG(value)
                FROM profiles_raw.ninja
                GROUP BY pt_id, proftype, year, nd_id, location
                '''
    cfnn = pd.DataFrame(aql.exec_sql(exec_strg, db='storage2'),
                 columns=['pt_id', 'proftype', 'year', 'nd_id', 'location', 'cfsc', 'cf'])
コード例 #9
0
    def analysis_price_comparison(self, valmin=-20, valmax=150, nbins=170):
        '''
        Merge the supply constraint shadow prices with the historic electricity
        prices and bin them.
        Output tables are
         -- analysis_price_comparison: Complete hourly model and historic
                 electricity prices with corresponding bins.
        '''

        self.format_kw.update(dict(valmin=valmin, valmax=valmax, nbins=nbins))

        exec_str = '''
                   DROP TABLE IF EXISTS
                       {sc_out}.analysis_price_comparison CASCADE;
                   DROP VIEW IF EXISTS
                       {sc_out}._view_analysis_prices_complete CASCADE;
                   DROP VIEW IF EXISTS
                       {sc_out}._view_analysis_prices_stats_0 CASCADE;
                   DROP VIEW IF EXISTS
                       {sc_out}._view_analysis_prices_stats_at CASCADE;



                   CREATE VIEW {sc_out}._view_analysis_prices_stats_0 AS
                   SELECT hy, nd_id, ca_id,
                     price_eur_mwh AS price,
                     volume_mwh AS volume,
                     price_eur_mwh * volume_mwh AS price_volume,
                     -1 AS run_id, 'stats' AS sta_mod
                   FROM {sc_out}.profprice_comp
                   NATURAL LEFT JOIN {sc_out}.def_run
                   WHERE swhy_vl = 'yr2015';

                   /* Double Germany for Austria */
                   CREATE VIEW {sc_out}._view_analysis_prices_stats_at AS
                   SELECT hy,
                       (SELECT nd_id
                        FROM {sc_out}.def_node
                        WHERE nd = 'AT0') AS nd_id,
                        ca_id, price, volume, price_volume, run_id, sta_mod
                   FROM  {sc_out}._view_analysis_prices_stats_0
                   WHERE nd_id IN (SELECT nd_id
                                   FROM {sc_out}.def_node
                                   WHERE nd = 'DE0');

                   CREATE VIEW {sc_out}._view_analysis_prices_complete AS
                   SELECT hy, nd_id, ca_id,
                       value / weight AS price,
                       volume * weight AS volume,
                       value * volume AS price_volume,
                       run_id, 'model' AS sta_mod
                   FROM {sc_out}.hoy_soy
                   NATURAL LEFT JOIN {sc_out}.dual_supply
                   NATURAL LEFT JOIN {sc_out}.tm_soy
                   NATURAL LEFT JOIN (
                       SELECT sy, nd_id, run_id, SUM(value) AS volume
                       FROM {sc_out}.var_sy_pwr
                       NATURAL LEFT JOIN {sc_out}.def_plant
                       WHERE bool_out=False
                       GROUP BY sy, nd_id, run_id) AS tb_volume

                   UNION ALL

                   SELECT * FROM {sc_out}._view_analysis_prices_stats_0

                   UNION ALL

                   SELECT * FROM {sc_out}._view_analysis_prices_stats_at
                   ;

                   WITH table_complete_binned AS (
                       SELECT tb_complete.*,
                       WIDTH_BUCKET(tb_complete.price, {valmin},
                                        {valmax}, {nbins}) AS bucket
                       FROM {sc_out}._view_analysis_prices_complete
                           AS tb_complete
                   ), bucket_list AS (
                   SELECT
                       {valmin} + (bucket - 1)
                                   * ({valmax} - {valmin})::FLOAT
                                   / {nbins}::FLOAT AS low,
                       {valmin} + (bucket)
                                   * ({valmax} - {valmin})::FLOAT
                                   / {nbins}::FLOAT AS high,
                       ({valmax} - {valmin}) / {nbins} AS bin_width, bucket
                   FROM (SELECT generate_series(0, {nbins} + 1)
                         AS bucket, 1 AS dummy) AS bcks
                   )
                   SELECT *,
                   0.5 * (low + high) AS bin_center,
                   CASE WHEN price < low THEN 1 ELSE 0 END AS check_low,
                   CASE WHEN price > high THEN 1 ELSE 0 END AS check_high
                   INTO {sc_out}.analysis_price_comparison
                   FROM table_complete_binned
                   NATURAL LEFT JOIN bucket_list
                   '''.format(**self.format_kw)
        aql.exec_sql(exec_str, db=self.db)

        aql.joinon(self.db, self.sw_columns, ['run_id'],
                   [self.sc_out, 'analysis_price_comparison'],
                   [self.sc_out, 'def_run'])
        aql.joinon(self.db, ['nd'], ['nd_id'],
                   [self.sc_out, 'analysis_price_comparison'],
                   [self.sc_out, 'def_node'])
        aql.joinon(self.db, ['ca', 'fl_id'], ['ca_id'],
                   [self.sc_out, 'analysis_price_comparison'],
                   [self.sc_out, 'def_encar'])
        aql.joinon(self.db, ['fl'], ['fl_id'],
                   [self.sc_out, 'analysis_price_comparison'],
                   [self.sc_out, 'def_fuel'])
        exec_strg = '''
                     ALTER TABLE {sc_out}.analysis_price_comparison
                     ADD COLUMN IF NOT EXISTS season VARCHAR(20),
                     ADD COLUMN IF NOT EXISTS dow_name VARCHAR(10),
                     ADD COLUMN IF NOT EXISTS hour SMALLINT,
                     ADD COLUMN IF NOT EXISTS wom SMALLINT,
                     ADD COLUMN IF NOT EXISTS hom SMALLINT,
                     ADD COLUMN IF NOT EXISTS mt_id SMALLINT,
                     ADD COLUMN IF NOT EXISTS how SMALLINT;

                     UPDATE {sc_out}.analysis_price_comparison AS prc
                     SET season = tm.season,
                         dow_name = tm.dow_name,
                         hour = tm.hour,
                         wom = tm.wom,
                         hom = tm.hom,
                         mt_id = tm.mt_id,
                         how = tm.how
                     FROM {sc_out}.tm_soy_full AS tm
                     WHERE prc.hy = tm.sy;
                     '''.format(**self.format_kw)
        aql.exec_sql(exec_strg, db=self.db)

        exec_str = '''
                   DROP TABLE IF EXISTS {sc_out}.analysis_price_weighted;

                   SELECT nd_id, ca_id, run_id, sta_mod,
                       SUM(price * volume) / SUM(volume) AS price_weighted,
                       AVG(price) AS price_averaged
                   INTO {sc_out}.analysis_price_weighted
                   FROM {sc_out}._view_analysis_prices_complete
                   GROUP BY nd_id, ca_id, run_id, sta_mod;
                   '''.format(**self.format_kw)
        aql.exec_sql(exec_str, db=self.db)

        aql.joinon(self.db, self.sw_columns, ['run_id'],
                   [self.sc_out, 'analysis_price_weighted'],
                   [self.sc_out, 'def_run'])
        aql.joinon(self.db, ['nd'], ['nd_id'],
                   [self.sc_out, 'analysis_price_weighted'],
                   [self.sc_out, 'def_node'])
コード例 #10
0
    op = CREMProfileReader(kw_dict)

    self = op

    fn = self.fn_list[0]

    sys.exit()

    op.read_all()

    exec_strg = '''
                ALTER TABLE {sc}.{tb}
                ADD PRIMARY KEY (nd_id, hy);
                '''.format(**self.dict_sql)
    aql.exec_sql(exec_strg, db=self.dict_sql['db'])

#    self.append_to_sql(self.df_tot)

# %%


class SwissLocationSolarReader(ProfileReader):
    ''' '''

    dict_sql_default = dict(sc='profiles_raw', tb='swiss_location_solar')
    data_dir = os.path.normpath('PV_CANTONS_SYNTHETIC')

    tb_cols = [
        ('"DateTime"', 'TIMESTAMP'),
        ('value', 'DOUBLE PRECISION'),
コード例 #11
0
    def analysis_production_comparison(self):
        '''
        This merges the model results from sc_out.var_yr_erg_yr with the
        input data erg_inp from sc_out.fuel_node_encar as well as the
        inter-node transmission from lp_input.imex_comp with for
        comparison and calibration.
        TODO: Copy imex_comp to the output schema!!!
        '''

        # get model results
        exec_str = '''
                    DROP TABLE IF EXISTS {sc_out}.analysis_production_comparison CASCADE;
                    SELECT fl_id, nd_id, ca_id, value, bool_out,
                        'model'::VARCHAR AS sta_mod, run_id
                    INTO {sc_out}.analysis_production_comparison
                    FROM {sc_out}.var_yr_erg_yr AS erg
                    NATURAL LEFT JOIN {sc_out}.def_run AS dflp
                    NATURAL LEFT JOIN {sc_out}.def_plant AS dfpp
                    WHERE run_id IN (0, -1)
                    ;
                    '''.format(**self.format_kw)

        aql.exec_sql(exec_str, db=self.db)

        # add stats
        df_erg_inp = aql.read_sql(self.db, self.sc_out,
                                  'fuel_node_encar').set_index(
                                      ['fl_id', 'nd_id', 'ca_id'])
        df_erg_inp = df_erg_inp[[
            c for c in df_erg_inp.columns if 'erg_inp' in c
        ]]
        df_erg_inp = df_erg_inp.stack().reset_index().rename(columns={
            'level_3': 'swhy_vl',
            0: 'value'
        })
        df_erg_inp['swhy_vl'] = df_erg_inp['swhy_vl'].replace({
            'erg_inp':
            'erg_inp_yr2015'
        }).map(lambda x: x[-6:])
        df_erg_inp['sta_mod'] = 'stats'
        df_erg_inp['run_id'] = -1
        df_erg_inp['bool_out'] = False

        # add imex stats
        #        if 'export' in self.mps.dict_fl_id.keys():
        #
        #            df_imex = aql.read_sql(self.db, self.sc_out, 'imex_comp')
        #
        #            df_imex = df_imex.set_index(['nd_id', 'nd_2_id']).stack().reset_index()
        #            df_imex = df_imex.rename(columns={'level_2': 'swhy_vl', 0: 'value'})
        #
        #            df_imex['value'] *= 1000
        #
        #            df_imex['swhy_vl'] = df_imex['swhy_vl'].replace({'erg_trm': 'erg_trm_yr2015'}).map(lambda x: x[-6:])
        #            df_imex['sta_mod'] = 'stats'
        #            df_imex['ca_id'] = self.mps.dict_ca_id['EL']
        #            df_imex = df_imex.join(df_swhy, on=df_swhy.index.names)
        #            df_imex = df_imex.loc[-df_imex.run_id.apply(np.isnan)].drop('swhy_vl', axis=1)
        #
        #            df_imex_exp = df_imex.groupby(['nd_id', 'sta_mod', 'ca_id', 'run_id'])['value'].sum().reset_index()
        #            df_imex_exp['fl_id'] = self.mps.dict_fl_id['export']
        #            df_imex_exp['bool_out'] = True
        #            df_imex_imp = df_imex.groupby(['nd_2_id', 'sta_mod', 'ca_id', 'run_id'])['value'].sum().reset_index()
        #            df_imex_imp['fl_id'] = self.mps.dict_fl_id['import']
        #            df_imex_imp['bool_out'] = False
        #            df_imex_imp = df_imex_imp.rename(columns={'nd_2_id': 'nd_id'})
        #        else:
        #            df_imex_imp = pd.DataFrame()
        #            df_imex_exp = pd.DataFrame()

        df_erg_inp = pd.concat([df_erg_inp])

        aql.write_sql(df_erg_inp, self.db, self.sc_out,
                      'analysis_production_comparison', 'append')

        aql.joinon(self.db, self.sw_columns, ['run_id'],
                   [self.sc_out, 'analysis_production_comparison'],
                   [self.sc_out, 'def_run'])
        aql.joinon(self.db, ['fl'], ['fl_id'],
                   [self.sc_out, 'analysis_production_comparison'],
                   [self.sc_out, 'def_fuel'])
        aql.joinon(self.db, ['nd'], ['nd_id'],
                   [self.sc_out, 'analysis_production_comparison'],
                   [self.sc_out, 'def_node'])
コード例 #12
0
    def analysis_monthly_comparison(self):

        tb_name = 'analysis_monthly_comparison'
        cols = [
            ('fl', 'VARCHAR'),
            ('mt_id', 'SMALLINT'),
            ('nd', 'VARCHAR'),
            ('run_id', 'SMALLINT'),
            ('erg', 'DOUBLE PRECISION'),
            ('input', 'VARCHAR'),
            ('input_simple', 'VARCHAR'),
        ]
        pk = ['fl', 'mt_id', 'nd', 'run_id', 'input']
        aql.init_table(tb_name=tb_name,
                       cols=cols,
                       schema=self.sc_out,
                       pk=pk,
                       db=self.db)

        exec_strg = '''
        WITH map_input AS (
            SELECT input::VARCHAR, input_simple::VARCHAR
            FROM (VALUES ('agora_month_sum', 'stats'), ('rte_month_sum', 'stats'),
                         ('econtrol_betriebsstatistik', 'stats'),
                         ('ch_elektrizitaetsstatistik', 'stats'),
                         ('model_erg_max_from_cf', 'model_max'),
                         ('model_var_sy_pwr', 'model'), ('model_tr', 'model'),
                         ('entsoe_cross_border', 'stats'),
                         ('entsoe_commercial_exchange', 'stats'),
                         ('terna', 'stats'))
            AS temp (input, input_simple)
/*        ), tb_model_erg_max_from_cf AS (
            SELECT fl, tbcf.mt_id, nd, tbcf.run_id,
                SUM(cap.value * tbcf.value * month_weight) AS erg,
                'model_erg_max_from_cf'::VARCHAR AS input
            FROM {sc_out}.par_cf_max AS tbcf
            NATURAL LEFT JOIN (SELECT pp_id, pp, fl_id, nd_id FROM {sc_out}.def_plant) AS dfpp
            NATURAL LEFT JOIN (SELECT fl_id, fl FROM {sc_out}.def_fuel) AS dffl
            NATURAL LEFT JOIN (SELECT nd_id, nd FROM {sc_out}.def_node) AS dfnd
            LEFT JOIN (SELECT mt_id, month_weight FROM {sc_out}.def_month) AS dfmt ON dfmt.mt_id = tbcf.mt_id
            LEFT JOIN (SELECT pp_id, value, run_id FROM {sc_out}.par_cap_pwr_leg) AS cap ON tbcf.run_id = cap.run_id AND tbcf.pp_id = cap.pp_id
            GROUP BY fl, tbcf.mt_id, nd, tbcf.run_id
 */       ), tb_model_var_sy_pwr AS (
            SELECT fl, mt_id, nd, run_id,
                SUM(value * weight) AS erg,
                'model_var_sy_pwr'::VARCHAR AS input
            FROM {sc_out}.var_sy_pwr AS ergsy
            NATURAL LEFT JOIN (SELECT pp_id, pp, fl_id, nd_id FROM {sc_out}.def_plant) AS dfpp
            NATURAL LEFT JOIN (SELECT fl_id, fl FROM {sc_out}.def_fuel) AS dffl
            NATURAL LEFT JOIN (SELECT nd_id, nd FROM {sc_out}.def_node) AS dfnd
            LEFT JOIN (SELECT mt_id, weight, sy FROM {sc_out}.tm_soy) AS tm ON tm.sy = ergsy.sy
            GROUP BY fl, mt_id, nd, run_id
        ), tb_agora_month_sum AS (
            SELECT fl_id AS fl, mt_id, nd_id AS nd, 0 AS run_id, SUM(value) * 1000 AS erg, 'agora_month_sum'::VARCHAR AS input
            FROM profiles_raw.agora_profiles AS ag
            LEFT JOIN (SELECT mt_id, datetime FROM profiles_raw.timestamp_template) AS ts ON ts.datetime = ag."DateTime"
            WHERE year = 2015
            GROUP BY fl_id, mt_id, nd_id, run_id
        ), tb_rte_month_sum AS (
            SELECT fl_id AS fl, mt_id, nd_id AS nd, 0 AS run_id, SUM(value) AS erg, 'rte_month_sum'::VARCHAR AS input
            FROM profiles_raw.rte_production_eco2mix AS rte
            WHERE year = 2015
            GROUP BY fl_id, mt_id, nd_id, run_id
        ), tb_entsoe_xborder AS (
            SELECT fl, mt_id, nd, 0::SMALLINT AS run_id, SUM(value) AS erg,
                'entsoe_cross_border'::VARCHAR AS input
            FROM {sc_out}.analysis_time_series
            WHERE sta_mod = 'stats_imex_entsoe'
            GROUP BY fl, mt_id, nd, run_id
        ), tb_rte_eco2mix AS (
            SELECT fl, mt_id, nd, 0::SMALLINT AS run_id, SUM(value) AS erg,
                'rte_eco2mix'::VARCHAR AS input
            FROM {sc_out}.analysis_time_series
            WHERE sta_mod = 'stats_rte_eco2mix'
            GROUP BY fl, mt_id, nd, run_id
        ), tb_model_tr AS (
            SELECT
                CASE WHEN bool_out = True THEN 'export_' || nd2 ELSE 'import_' || nd2 END AS fl,
                mt_id, nd, run_id,
                SUM((CASE WHEN bool_out = True THEN -1 ELSE +1 END) * value * weight) AS erg,
                'model_tr'::VARCHAR AS input
            FROM {sc_out}.var_tr_trm AS tbtr
            LEFT JOIN (SELECT nd_id, nd FROM {sc_out}.def_node) AS dfnd ON dfnd.nd_id = tbtr.nd_id
            LEFT JOIN (SELECT nd_id, nd AS nd2 FROM {sc_out}.def_node) AS dfnd2 ON dfnd2.nd_id = tbtr.nd_2_id
            LEFT JOIN (SELECT sy, mt_id, weight FROM {sc_out}.tm_soy) AS dftm ON dftm.sy = tbtr.sy
            GROUP BY fl, mt_id, nd, run_id
        ), tb_model_tr_cap_imp AS (
            SELECT 'import_' || nd2 AS fl, mt_id, nd, run_id, value AS erg, 'model_cap_tr'
            FROM {sc_out}.par_cap_trmi_leg AS tbrv
            LEFT JOIN (SELECT nd_id, nd AS nd2 FROM {sc_out}.def_node) AS dfnd2 ON dfnd2.nd_id = tbrv.nd_id
            LEFT JOIN (SELECT nd_id, nd AS nd FROM {sc_out}.def_node) AS dfnd ON dfnd.nd_id = tbrv.nd_2_id
            ORDER BY nd, nd2
        ), tb_model_tr_cap_exp AS (
            SELECT 'export_' || nd2 AS fl, mt_id, nd, run_id, value AS erg, 'model_cap_tr'
            FROM {sc_out}.par_cap_trme_leg AS tbrv
            LEFT JOIN (SELECT nd_id, nd AS nd FROM {sc_out}.def_node) AS dfnd2 ON dfnd2.nd_id = tbrv.nd_id
            LEFT JOIN (SELECT nd_id, nd AS nd2 FROM {sc_out}.def_node) AS dfnd ON dfnd.nd_id = tbrv.nd_2_id
            ORDER BY nd, nd2
        ), tb_entsoe_comm AS (
            WITH tb_raw AS (
                SELECT nd_to, nd_from, mt_id, tb.year, SUM(value) AS erg
                FROM profiles_raw.entsoe_commercial_exchange AS tb
                LEFT JOIN (SELECT mt_id, year, datetime
                           FROM profiles_raw.timestamp_template) AS ts
                ON ts.datetime = tb."DateTime"
                GROUP BY nd_to, nd_from, mt_id, tb.year
            ), tb AS (
                SELECT 'export_comm_'::VARCHAR || LOWER(nd_to) AS fl,  nd_from AS nd, *
                FROM tb_raw WHERE nd_from IN (SELECT nd FROM {sc_out}.def_node)
                UNION ALL
                SELECT 'import_comm_'::VARCHAR || LOWER(nd_from) AS fl, nd_to AS nd, *
                FROM tb_raw WHERE nd_to IN (SELECT nd FROM {sc_out}.def_node)
            )
            SELECT fl, mt_id, nd, 0::SMALLINT AS run_id,
                erg, 'entsoe_commercial_exchange'::VARCHAR AS input
            FROM tb
        ), tb_monthly AS (
            SELECT fl, mt_id, nd, 0::SMALLINT AS run_id, erg, input
            FROM profiles_raw.monthly_production
            WHERE year = 2015
        ), tb_all AS (
        SELECT * FROM tb_agora_month_sum
        UNION ALL
        SELECT * FROM tb_rte_month_sum
        UNION ALL
        SELECT * FROM tb_model_var_sy_pwr
        UNION ALL
        SELECT * FROM tb_entsoe_xborder
        UNION ALL
        SELECT * FROM tb_model_tr
        UNION ALL
        SELECT * FROM tb_model_tr_cap_imp
        UNION ALL
        SELECT * FROM tb_model_tr_cap_exp
        UNION ALL
        SELECT * FROM tb_monthly
        UNION ALL
        SELECT * FROM tb_entsoe_comm
        UNION ALL
        SELECT * FROM tb_rte_eco2mix
        )
        INSERT INTO {sc_out}.analysis_monthly_comparison (fl, mt_id, nd, run_id,
                                                          erg, input, input_simple)
        SELECT fl, mt_id, nd, run_id, erg, input, input_simple
        FROM tb_all
        NATURAL LEFT JOIN map_input;

/*
        /* ADD CAPACITY FACTORS CROSS-BORDER TRANSMISSION */
        INSERT INTO {sc_out}.analysis_monthly_comparison (
                        fl, mt_id, nd, run_id, erg, input, input_simple)
        SELECT
            dfnd2.fl, tbrv.mt_id, dfnd.nd, tbrv.run_id,
            erg / (value * month_weight) AS erg,
            'model_tr_cf'::VARCHAR AS input, 'model'::VARCHAR AS input_simple
        FROM {sc_out}.par_cap_trm_leg AS tbrv
        LEFT JOIN (SELECT nd_id, nd AS nd FROM {sc_out}.def_node) AS dfnd
            ON dfnd.nd_id = tbrv.nd_2_id
        LEFT JOIN (SELECT nd_id, 'import_' || nd AS fl
                   FROM {sc_out}.def_node) AS dfnd2
            ON dfnd2.nd_id = tbrv.nd_id
        LEFT JOIN (SELECT mt_id, month_weight FROM {sc_out}.def_month) AS dfmt
            ON dfmt.mt_id = tbrv.mt_id
        LEFT JOIN (SELECT fl, mt_id, nd, run_id, erg
                   FROM {sc_out}.analysis_monthly_comparison
                   WHERE input = 'model_tr' AND fl LIKE 'import_%') AS tban
            ON tban.mt_id = tbrv.mt_id AND tban.run_id = tbrv.run_id
                AND tban.fl = dfnd2.fl AND tban.nd = dfnd.nd;

        INSERT INTO {sc_out}.analysis_monthly_comparison (
                        fl, mt_id, nd, run_id, erg, input, input_simple)
        SELECT
            dfnd2.fl, tbrv.mt_id, dfnd.nd, tbrv.run_id,
            erg / (value * month_weight) AS erg,
            'model_tr_cf'::VARCHAR AS input, 'model'::VARCHAR AS input_simple
        FROM {sc_out}.par_cap_trm_leg AS tbrv
        LEFT JOIN (SELECT nd_id, nd AS nd FROM {sc_out}.def_node) AS dfnd
            ON dfnd.nd_id = tbrv.nd_id
        LEFT JOIN (SELECT nd_id, 'export_' || nd AS fl
                   FROM {sc_out}.def_node) AS dfnd2
            ON dfnd2.nd_id = tbrv.nd_2_id
        LEFT JOIN (SELECT mt_id, month_weight FROM {sc_out}.def_month) AS dfmt
            ON dfmt.mt_id = tbrv.mt_id
        LEFT JOIN (SELECT fl, mt_id, nd, run_id, erg
                   FROM {sc_out}.analysis_monthly_comparison
                   WHERE input = 'model_tr' AND fl LIKE 'export_%') AS tban
            ON tban.mt_id = tbrv.mt_id AND tban.run_id = tbrv.run_id
                AND tban.fl = dfnd2.fl AND tban.nd = dfnd.nd;

*/

        ALTER TABLE {sc_out}.analysis_monthly_comparison
        ADD COLUMN fl2 VARCHAR;

        UPDATE {sc_out}.analysis_monthly_comparison
        SET fl2 = fl;
        '''.format(**self.format_kw)
        aql.exec_sql(exec_strg, db=self.db)
コード例 #13
0
    def analysis_production_comparison_hourly(self,
                                              stats_years=['2015'],
                                              sy_only=False):

        # generating model data time series
        self.generate_analysis_time_series(False)

        # rename original table to _soy and expand to hours
        exec_strg = '''
                    DROP TABLE IF EXISTS {sc_out}.analysis_time_series_soy
                    CASCADE;

                    ALTER TABLE {sc_out}.analysis_time_series
                    RENAME TO analysis_time_series_soy;
                    '''.format(**self.format_kw)
        aql.exec_sql(exec_strg, db=self.db)

        if not sy_only:

            exec_strg = '''
                        SELECT
                        run_id, bool_out, fl, nd, {sw_year_col}, hy AS sy, value,
                        value_posneg,
                        dow, dow_type, hom, hour, how, mt_id,
                        season, wk_id, wom, 'model'::VARCHAR AS sta_mod, pwrerg_cat
                        INTO {sc_out}.analysis_time_series
                        FROM {sc_out}.hoy_soy AS hs
                        LEFT JOIN {sc_out}.analysis_time_series_soy AS ts
                        ON hs.sy = ts.sy;
                        '''.format(**self.format_kw)
            aql.exec_sql(exec_strg, db=self.db)

            # insert rows of entsoe data after adding some convenience columns
            exec_strg = '''
                        ALTER TABLE {sc_out}.analysis_time_series
                        DROP CONSTRAINT IF EXISTS analysis_time_series_fl_fkey;

                        DELETE FROM {sc_out}.analysis_time_series
                        WHERE sta_mod <> 'model';

                        INSERT INTO
                            {sc_out}.analysis_time_series(run_id, bool_out, fl, nd,
                                                         {sw_year_col}, sy, value,
                                                         value_posneg, dow,
                                                         dow_type, hom, hour,
                                                         how, mt_id, season, wk_id,
                                                         wom, sta_mod, pwrerg_cat)
                        SELECT -1::SMALLINT AS run_id, False::BOOLEAN AS bool_out, --'EL' AS ca,
                            fl_id AS fl, nd_id AS nd,
                            'yr' || tm.year::VARCHAR AS {sw_year_col},
                            tm.hy AS sy, value, value AS value_posneg,
                            dow, dow_type, hom, hour, how, mt_id,
                            season, wk_id, wom, 'stats_entsoe'::VARCHAR AS sta_mod,
                            'pwr'::VARCHAR AS pwrerg_cat
                        FROM profiles_raw.entsoe_generation AS ent
                        LEFT JOIN {sc_out}.tm_soy_full AS tm ON tm.sy = ent.hy
                        WHERE ent.year IN ({st_yr})
                            AND ent.nd_id IN {in_nd};

                        INSERT INTO
                            {sc_out}.analysis_time_series(run_id, bool_out, fl, nd,
                                                         {sw_year_col}, sy, value,
                                                         value_posneg, dow,
                                                         dow_type, hom, hour,
                                                         how, mt_id, season, wk_id,
                                                         wom, sta_mod, pwrerg_cat)
                        SELECT -1::SMALLINT AS run_id, False::BOOLEAN AS bool_out, --'EL' AS ca,
                            fl_id AS fl, nd_id AS nd,
                            'yr' || tm.year::VARCHAR AS {sw_year_col},
                            tm.hy AS sy, value, value AS value_posneg,
                            dow, dow_type, hom, hour, how, ent.mt_id,
                            season, wk_id, wom, 'stats_rte_eco2mix'::VARCHAR AS sta_mod,
                            'pwr'::VARCHAR AS pwrerg_cat
                        FROM profiles_raw.rte_production_eco2mix AS ent
                        LEFT JOIN {sc_out}.tm_soy_full AS tm ON tm.sy = ent.hy
                        WHERE ent.year IN ({st_yr});

                        INSERT INTO
                            {sc_out}.analysis_time_series(run_id, bool_out, fl, nd,
                                                         {sw_year_col}, sy, value,
                                                         value_posneg, dow,
                                                         dow_type, hom, hour,
                                                         how, mt_id, season, wk_id,
                                                         wom, sta_mod, pwrerg_cat)
                        SELECT -1::SMALLINT AS run_id,
                            False::BOOLEAN AS bool_out, --'EL' AS ca,
                            fl_id AS fl, nd_id AS nd,
                            'yr' || tb.year::VARCHAR AS {sw_year_col},
                            ts.slot AS sy,
                            CASE WHEN fl_id = 'dmnd' THEN -1 ELSE 1 END * 1000 * value,
                            CASE WHEN fl_id = 'dmnd' THEN -1 ELSE 1 END * 1000 * value AS value_posneg,
                            dow, dow_type, hom, hour, how, mt_id,
                            season, wk_id, wom, 'stats_agora'::VARCHAR AS sta_mod,
                            'pwr'::VARCHAR AS pwrerg_cat
                        FROM profiles_raw.agora_profiles AS tb
                        LEFT JOIN (SELECT datetime, slot
                                   FROM profiles_raw.timestamp_template
                                   WHERE year IN ({st_yr})) AS ts
                        ON ts.datetime = tb."DateTime"
                        LEFT JOIN {sc_out}.tm_soy_full AS tm ON tm.sy = ts.slot
                        WHERE tb.year IN ({st_yr});

                        WITH tb_raw AS (
                            SELECT nd_to AS nd, 'import_' || nd_from AS fl,
                                    False::BOOLEAN AS bool_out, value, year, hy
                            FROM profiles_raw.entsoe_cross_border
                            UNION ALL
                            SELECT nd_from AS nd, 'export_' || nd_to AS fl,
                                True::BOOLEAN AS bool_out, -value AS value,
                                year, hy
                            FROM profiles_raw.entsoe_cross_border
                        )
                        INSERT INTO
                            {sc_out}.analysis_time_series(run_id, bool_out, fl, nd,
                                                         {sw_year_col}, sy, value,
                                                         value_posneg, dow,
                                                         dow_type, hom, hour,
                                                         how, mt_id, season, wk_id,
                                                         wom, sta_mod, pwrerg_cat)
                        SELECT
                        -1::SMALLINT AS run_is, bool_out, fl, nd,
                                        'yr2015'::VARCHAR AS {sw_year_col}, tb_raw.hy AS sy,
                                        value, value AS value_posneg,
                                        dow, 'NONE'::VARCHAR AS dow_type, hom, hour, how, mt_id, season,
                                        EXTRACT(week FROM datetime)::SMALLINT - 1 AS wk_id,
                                        wom, 'stats_imex_entsoe'::VARCHAR AS sta_mod,
                                        'pwr'::VARCHAR AS pwrerg_cat
                        FROM (SELECT * FROM profiles_raw.timestamp_template WHERE year = 2015) AS ts
                        LEFT  JOIN tb_raw ON tb_raw.year = ts.year AND tb_raw.hy = ts.slot
                        '''.format(**self.format_kw,
                                   st_yr=', '.join(stats_years))
            aql.exec_sql(exec_strg, db=self.db)

            aql.joinon(self.db, self.sw_columns, ['run_id'],
                       [self.sc_out, 'analysis_time_series'],
                       [self.sc_out, 'def_run'])

            for col in self.sw_columns:
                exec_strg = '''
                            UPDATE {sc_out}.analysis_time_series
                            SET {col} = 'none'
                            WHERE {col} IS NULL;
                            '''.format(**self.format_kw, col=col)
                aql.exec_sql(exec_strg, db=self.db)
コード例 #14
0
#            ), tb_price AS (
#                SELECT sy, nd_id, value AS price, swyr_vl AS year FROM out_marg_store.par_priceprof
#                NATURAL LEFT JOIN (SELECT swyr_vl, run_id FROM out_marg_store.def_loop) AS dflp
#                NATURAL LEFT JOIN (SELECT nd_id, nd FROM out_marg_store.def_node) AS dfnd
#                WHERE nd = 'DE0' AND swyr_vl = 'yr2016'
#            )
#            SELECT sy, year, dmnd, price, nd_id FROM tb_dmnd
#            NATURAL LEFT JOIN tb_price
#           ''', db='storage2'), columns=['hy', 'year', 'value_0', 'value_1', 'nd_id'])

dfcomp = pd.DataFrame(aql.exec_sql('''
WITH tb1 AS (
    SELECT hy, year, value AS val1 FROM profiles_raw.rte_production_eco2mix
    WHERE year = 2015 AND fl_id = 'photovoltaics'
), tb0 AS (
    SELECT hy, year, value AS val0 FROM profiles_raw.entsoe_generation
    WHERE fl_id = 'photovoltaics' AND year = 2015 AND nd_id = 'FR0'
)
SELECT * FROM tb1
NATURAL LEFT JOIN tb0
''', db='storage2'), columns=['hy', 'year', 'value_0', 'value_1'])
#
#dfcomp = df_full_all[['slot', 'year', 'dmnd', 'DE_DMND_ag']].rename(columns={'slot': 'hy', 'dmnd': 'value_0', 'DE_DMND_ag': 'value_1'})
#dfcomp = dfcomp.loc[dfcomp.year.isin([2015])]



dfcomp = dfcomp.dropna(axis=0)

val_0 = dfcomp.value_0.values
val_1 = dfcomp.value_1.values
コード例 #15
0
 def make_pp_id_col(self):
     aql.exec_sql('''
                  UPDATE {sc}.{tb}
                  SET pp_id = SUBSTRING(nd_id FROM 1 FOR 2) || '_' || pt_id;
                  '''.format(**self.dict_sql), db=self.dict_sql['db'])
コード例 #16
0
    def chgdch_filtered_difference(self, use_views_only):
        '''
        This query applies a binary filter charging for charging/discharging
        and subtracts the zero-storage case for each hour.
        '''

        list_sw_not_st = [c for c in self.sw_columns if not c == 'swst_vl']
        sw_not_st = ', '.join(list_sw_not_st) + (
            ', ' if len(list_sw_not_st) > 0 else '')

        join_ref = ' AND ' + '\nAND '.join(
            ['tbrel.{} = tbrf.{}'.format(c, c) for c in list_sw_not_st])

        slct_pp_id_st = aql.read_sql(self.db,
                                     self.sc_out,
                                     'def_plant',
                                     filt=[('pp', ['%STO%'], ' LIKE '),
                                           ('nd_id', self._nd_id)])['pp_id']
        lst_pp_id_st = self.list_to_str(slct_pp_id_st)

        slct_pp_id_non_st = [
            pp for pp in self.slct_pp_id if not pp in slct_pp_id_st.tolist()
        ]
        lst_pp_id_non_st = self.list_to_str(slct_pp_id_non_st)

        run_id_zero_st = self.list_to_str(
            aql.read_sql(self.db,
                         self.sc_out,
                         'def_loop',
                         filt=[('swst', [0]),
                               ('run_id', self.slct_run_id)])['run_id'])
        run_id_nonzero_st = self.list_to_str(
            aql.read_sql(self.db,
                         self.sc_out,
                         'def_loop',
                         filt=[('swst', [0], ' <> '),
                               ('run_id', self.slct_run_id)])['run_id'])

        self.format_kw.update({
            'sw_not_st': sw_not_st,
            'join_ref': join_ref,
            'lst_pp_id_st': lst_pp_id_st,
            'lst_pp_id_non_st': lst_pp_id_non_st,
            'run_id_zero_st': run_id_zero_st,
            'run_id_nonzero_st': run_id_nonzero_st
        })

        if use_views_only:
            self.format_kw[
                'out_tb'] = 'analysis_agg_filtdiff_views' + self._suffix
        else:
            self.format_kw[
                'out_tb'] = 'analysis_agg_filtdiff_tables' + self._suffix

        if not use_views_only:

            aql.init_table(
                'temp_analysis_time_series_subset',
                [
                    'sy',
                    'ca_id',
                    'pp_id',
                    'bool_out',
                    'value',
                    'run_id',
                    ('value_posneg', 'DECIMAL'),
                    ('value_diff', 'DECIMAL'),
                    #                        ('value_ref', 'DECIMAL')
                ],
                ref_schema=self.sc_out)
            exec_str = '''
                        /* FILTER TIME SERIES TABLE */
                        INSERT INTO temp_analysis_time_series_subset
                            (sy, ca_id, pp_id, bool_out, value, run_id, value_posneg)
                        SELECT sy, ca_id, ts.pp_id, bool_out, value, ts.run_id, value_posneg
                        FROM {sc_out}.analysis_time_series_view_power AS ts
                        LEFT JOIN {sc_out}.def_plant AS dfpp ON dfpp.pp_id = ts.pp_id
                        LEFT JOIN {sc_out}.def_loop AS dflp ON dflp.run_id = ts.run_id
                        LEFT JOIN {sc_out}.def_pp_type AS dfpt ON dfpt.pt_id = dfpp.pt_id
                        WHERE (ts.pp_id NOT IN {lst_pp_id_st} or pp LIKE '%HYD_STO'
                              OR pt LIKE swtc_vl||'_STO')
                              AND dfpp.pp_id IN {list_slct_pp_id};
                        '''.format(**self.format_kw)
            #        print(exec_str)
            aql.exec_sql(exec_str,
                         time_msg='Filter var_sy_pwr and write to table')

            aql.init_table('temp_tbrf', [
                'sy', 'pp_id', 'bool_out', 'run_id', ('value_ref', 'DECIMAL')
            ],
                           ref_schema=self.sc_out)
            exec_str = '''
                        /* CREATE TABLE WITH NO-STORAGE REFERENCE VALUES */
                        INSERT INTO temp_tbrf (sy, pp_id, bool_out, run_id, value_ref)
                        SELECT sy, pp_id, bool_out, run_id, value AS value_ref
                        FROM temp_analysis_time_series_subset
                        WHERE run_id IN {run_id_zero_st};
                        '''.format(**self.format_kw)
            aql.exec_sql(exec_str, time_msg='Write data to ref table')
            aql.exec_sql('''ALTER TABLE temp_tbrf
                            ADD PRIMARY KEY(sy, pp_id, bool_out, run_id)''',
                         time_msg='Add pk to temp_tbrf')

            aql.init_table('temp_map_run_id_ref', [
                'run_id',
                ('run_id_ref', 'SMALLINT', self.sc_out + '.def_loop(run_id)')
            ],
                           ref_schema=self.sc_out,
                           pk=['run_id'])
            exec_str = '''
                        /* CREATE MAP BETWEEN run_ids and reference run_ids */
                        INSERT INTO temp_map_run_id_ref (run_id, run_id_ref)
                        WITH ref_st AS (
                            SELECT {sw_not_st}run_id AS run_id_rf FROM {sc_out}.def_loop
                            WHERE swst_vl = '0.0%'
                        )
                        SELECT dflp.run_id, ref_st.run_id_rf FROM {sc_out}.def_loop AS dflp
                        NATURAL JOIN ref_st
                        ORDER BY run_id;
                        '''.format(**self.format_kw)
            aql.exec_sql(exec_str, time_msg='Create reference run_id map')

            aql.joinon(['run_id_ref'], ['run_id'],
                       ['public', 'temp_analysis_time_series_subset'],
                       ['public', 'temp_map_run_id_ref'])

            exec_str = '''
                        UPDATE temp_analysis_time_series_subset AS ts
                        SET value_diff = ts.value - rf.value_ref
                          --  ,value_ref = rf.value_ref
                        FROM temp_tbrf AS rf
                        WHERE rf.run_id = ts.run_id_ref AND rf.sy = ts.sy
                            AND rf.pp_id = ts.pp_id
                            AND rf.bool_out = ts.bool_out
                        '''.format(**self.format_kw)
            #        print(exec_str)
            aql.exec_sql(exec_str,
                         time_msg='Add difference column to ts table')

            aql.init_table('temp_tbst', [
                'run_id', 'sy', ('pp_id_st', 'SMALLINT'),
                ('bool_out_st', 'BOOLEAN'), ('value_mask', 'DECIMAL')
            ],
                           ref_schema=self.sc_out,
                           pk=['run_id', 'pp_id_st', 'sy', 'bool_out_st'])
            exec_str = '''IF EXISTS
                        /* GET CHARGING/DISCHARGING MASK */
                        INSERT INTO temp_tbst
                            (run_id, sy, pp_id_st, bool_out_st, value_mask)
                        SELECT run_id, sy, pp_id AS pp_id_st,
                            bool_out AS bool_out_st, value AS value_mask
                        FROM temp_analysis_time_series_subset
                        WHERE pp_id IN {lst_pp_id_st}
                        AND run_id IN {run_id_nonzero_st}
                        ORDER BY sy, run_id, pp_id, bool_out;
                        '''.format(**self.format_kw)
            print(exec_str)
            aql.exec_sql(exec_str)

            aql.exec_sql('''ALTER TABLE temp_analysis_time_series_subset
                            ADD PRIMARY KEY(sy, ca_id, pp_id, bool_out, run_id)''',
                         time_msg='Add pk to temp_analysis_time_series_subset')

            # expand temp_analysis_time_series_subset to (bool_out_st = True/False)

            # expand temp_tbst to pp_id, bool_out, best on creation/insertion

            aql.init_table(
                self.format_kw['out_tb'], [
                    'pp_id', ('pp_id_st', 'SMALLINT'), 'bool_out',
                    ('bool_out_st', 'BOOLEAN'), 'run_id',
                    ('run_id_ref', 'SMALLINT'),
                    ('swst_vl_ref', 'VARCHAR(5)'), 'value'
                ],
                schema=self.sc_out,
                ref_schema=self.sc_out,
                pk=['pp_id', 'pp_id_st', 'bool_out', 'bool_out_st', 'run_id'])
            exec_str = '''
                        INSERT INTO {sc_out}.{out_tb}
                            (pp_id, pp_id_st, bool_out, bool_out_st, run_id, run_id_ref, value)
                        WITH tb AS (
                            SELECT * FROM temp_analysis_time_series_subset AS tb
                            CROSS JOIN (SELECT DISTINCT pp_id_st, bool_out_st FROM temp_tbst) AS exp_bool_out_st
                            WHERE run_id IN {run_id_nonzero_st}
                        ), st AS (
                            SELECT * FROM temp_tbst
                            CROSS JOIN (SELECT DISTINCT tb.pp_id, bool_out FROM tb) AS exp_pp
                        )
                        SELECT pp_id, pp_id_st, bool_out, bool_out_st, run_id, run_id_ref,
                        SUM(value_diff) AS value FROM tb
                        NATURAL LEFT JOIN st
                        WHERE value_mask <> 0
                        GROUP BY pp_id, pp_id_st, bool_out, bool_out_st, run_id, run_id_ref;
                        '''.format(**self.format_kw)
            print(exec_str)
            aql.exec_sql(exec_str)


#
#            exec_str = '''
#                        UPDATE {sc_out}.analysis_agg_filtdiff AS tb
#                        SET swst_vl_ref = dflp.swst_vl
#                        FROM {sc_out}.def_loop AS dflp
#                        WHERE dflp.run_id = tb.run_id_ref
#                        '''.format(**format_kw)
#            print(exec_str)
#            aql.exec_sql(exec_str)
#
#
#        aql.exec_sql('''
#                     DROP TABLE IF EXISTS temp_analysis_time_series_subset CASCADE;
#                     DROP TABLE IF EXISTS temp_tbrf CASCADE;
#                     DROP TABLE IF EXISTS temp_tbst CASCADE;
#                     DROP TABLE IF EXISTS temp_map_run_id_ref CASCADE;
#                     ''')

        else:

            aql.init_table(
                self.format_kw['out_tb'], [
                    'pp_id', ('pp_id_st', 'SMALLINT'), 'bool_out',
                    ('bool_out_st', 'BOOLEAN'), 'run_id',
                    ('run_id_ref', 'SMALLINT'),
                    ('swst_vl_ref', 'VARCHAR(5)'), 'value'
                ],
                schema=self.sc_out,
                ref_schema=self.sc_out,
                pk=['pp_id', 'pp_id_st', 'bool_out', 'bool_out_st', 'run_id'],
                db=self.db)

            exec_str = '''
                        /* CREATE MAP BETWEEN run_ids and reference run_ids */
                        DROP VIEW IF EXISTS temp_map_run_id_ref CASCADE;
                        CREATE VIEW temp_map_run_id_ref AS
                        WITH ref_st AS (
                            SELECT {sw_not_st}run_id AS run_id_rf FROM {sc_out}.def_loop
                            WHERE swst_vl = '0.00%'
                        )
                        SELECT dflp.run_id, ref_st.run_id_rf FROM {sc_out}.def_loop AS dflp
                        NATURAL JOIN ref_st
                        ORDER BY run_id;

                        /* FILTER TIME SERIES TABLE */
                        DROP TABLE IF EXISTS temp_analysis_time_series_subset CASCADE;
                        SELECT sy, ca_id, nd_id, ts.pp_id, bool_out, value, ts.run_id, value_posneg, run_id_rf
                        INTO temp_analysis_time_series_subset
                        FROM {sc_out}.analysis_time_series_view_power AS ts
                        LEFT JOIN {sc_out}.def_plant AS dfpp ON dfpp.pp_id = ts.pp_id
                        LEFT JOIN {sc_out}.def_loop AS dflp ON dflp.run_id = ts.run_id
                        LEFT JOIN {sc_out}.def_pp_type AS dfpt ON dfpt.pt_id = dfpp.pt_id
                        LEFT JOIN temp_map_run_id_ref AS run_id_ref ON run_id_ref.run_id = ts.run_id
                        WHERE dfpp.pp_id IN {list_slct_pp_id};

                        /* CREATE TABLE WITH NO-STORAGE REFERENCE VALUES */
                        DROP VIEW IF EXISTS temp_tbrf CASCADE;
                        CREATE VIEW temp_tbrf AS
                        SELECT sy, pp_id, bool_out, run_id, value AS value_ref
                        FROM temp_analysis_time_series_subset
                        WHERE run_id IN {run_id_zero_st};

                        /* GET CHARGING/DISCHARGING MASK */
                        DROP VIEW IF EXISTS temp_tbst CASCADE;
                        CREATE VIEW temp_tbst AS
                        SELECT run_id, sy, nd_id AS nd_id_st, pp_id AS pp_id_st,
                            bool_out AS bool_out_st, value AS value_mask
                        FROM temp_analysis_time_series_subset
                        WHERE pp_id IN {lst_pp_id_st}
                        AND run_id IN {run_id_nonzero_st};

                        DROP TABLE IF EXISTS temp_analysis_time_series_subset_ref CASCADE;
                        SELECT ts.*, ts.value - rf.value_ref AS value_diff
                        INTO temp_analysis_time_series_subset_ref
                        FROM temp_analysis_time_series_subset AS ts
                        LEFT JOIN temp_tbrf AS rf
                        ON rf.run_id = ts.run_id_rf AND rf.sy = ts.sy
                            AND rf.pp_id = ts.pp_id
                            AND rf.bool_out = ts.bool_out;

                        DROP VIEW IF EXISTS temp_analysis_time_series_subset_reffilt CASCADE;
                        CREATE VIEW temp_analysis_time_series_subset_reffilt AS
                        WITH tb AS (
                            SELECT * FROM temp_analysis_time_series_subset_ref AS tb
                            FULL OUTER JOIN (SELECT DISTINCT pp_id_st, nd_id_st, bool_out_st FROM temp_tbst) AS exp_bool_out_st
                            ON exp_bool_out_st.nd_id_st = tb.nd_id
                            WHERE run_id IN {run_id_nonzero_st}
                        ), st AS (
                            SELECT * FROM temp_tbst
                            CROSS JOIN (SELECT DISTINCT tb.pp_id, bool_out FROM tb) AS exp_pp
                        ), mt_map AS (
                            SELECT sy, mt_id FROM {sc_out}.tm_soy
                        )
                        SELECT pp_id, pp_id_st, bool_out, bool_out_st, run_id, mt_id, run_id_rf,
--                        SELECT pp_id, pp_id_st, bool_out, bool_out_st, run_id, run_id_rf,
                        SUM(value_diff) AS value FROM tb
                        NATURAL LEFT JOIN st
                        LEFT JOIN mt_map ON mt_map.sy = tb.sy
                        WHERE value_mask <> 0
                        GROUP BY
                            pp_id, pp_id_st, bool_out, bool_out_st,
                            run_id, mt_id, run_id_rf;
--                            run_id, run_id_rf;

                        DROP TABLE IF EXISTS {sc_out}.{out_tb} CASCADE;
                        SELECT *
                        INTO {sc_out}.{out_tb}
                        FROM temp_analysis_time_series_subset_reffilt
                        '''.format(**self.format_kw)
            aql.exec_sql(exec_str, db=self.db)

        aql.exec_sql('''
                     DROP VIEW IF EXISTS temp_map_run_id_ref CASCADE;
                     DROP TABLE IF EXISTS temp_analysis_time_series_subset CASCADE;
                     DROP VIEW IF EXISTS temp_tbrf CASCADE;
                     DROP VIEW IF EXISTS temp_tbst CASCADE;
                     DROP TABLE IF EXISTS temp_analysis_time_series_subset_ref CASCADE;
                     ''',
                     db=self.db)

        aql.exec_sql('''
                     /* ADD PP_TYPE COLUMN FOR STORAGE FILTER PLANTS */
                     ALTER TABLE {sc_out}.{out_tb}
                             DROP COLUMN IF EXISTS pt_st,
                             DROP COLUMN IF EXISTS pp_st,
                             ADD COLUMN pp_st VARCHAR(15),
                             ADD COLUMN pt_st VARCHAR(15);
                     UPDATE {sc_out}.{out_tb} AS tb
                     SET pt_st = map_pt.pt, pp_st = map_pt.pp
                     FROM (
                         SELECT pp_id AS pp_id, pt, pp
                             FROM {sc_out}.def_plant AS dfpp
                         LEFT JOIN {sc_out}.def_pp_type AS dfpt
                        ON dfpp.pt_id = dfpt.pt_id
                     ) AS map_pt
                     WHERE map_pt.pp_id = tb.pp_id_st;
                     '''.format(**self.format_kw),
                     db=self.db)

        # add loop indices
        aql.joinon(self.db, self.sw_columns, ['run_id'],
                   [self.sc_out, self.format_kw['out_tb']],
                   [self.sc_out, 'def_loop'])
        # add pp indices
        aql.joinon(self.db, ['pt_id', 'fl_id', 'nd_id'], ['pp_id'],
                   [self.sc_out, self.format_kw['out_tb']],
                   [self.sc_out, 'def_plant'])
        # add pt indices
        aql.joinon(self.db, ['pt'], ['pt_id'],
                   [self.sc_out, self.format_kw['out_tb']],
                   [self.sc_out, 'def_pp_type'])
        # add fl indices
        aql.joinon(self.db, ['fl'], ['fl_id'],
                   [self.sc_out, self.format_kw['out_tb']],
                   [self.sc_out, 'def_fuel'])
        # add nd indices
        aql.joinon(self.db, ['nd'], ['nd_id'],
                   [self.sc_out, self.format_kw['out_tb']],
                   [self.sc_out, 'def_node'])
コード例 #17
0
    def analysis_agg_filtdiff(self):
        '''
        New style.
        '''

        list_sw_not_st = [c for c in self.sw_columns if not c == 'swst_vl']
        sw_not_st = (', '.join(list_sw_not_st) +
                     (', ' if len(list_sw_not_st) > 0 else ''))

        join_ref = ' AND ' + '\nAND '.join(
            ['tbrel.{} = tbrf.{}'.format(c, c) for c in list_sw_not_st])

        slct_pp_id_st = aql.read_sql(self.db,
                                     self.sc_out,
                                     'def_plant',
                                     filt=[('pp', ['%STO%'], ' LIKE '),
                                           ('pp_id', self.slct_pp_id),
                                           ('nd_id', self._nd_id)
                                           ])['pp_id'].tolist()
        lst_pp_id_st = self.list_to_str(slct_pp_id_st)

        slct_pp_id_non_st = [
            pp for pp in self.slct_pp_id if not pp in slct_pp_id_st
        ]
        lst_pp_id_non_st = self.list_to_str(slct_pp_id_non_st)

        run_id_zero_st = self.list_to_str(
            aql.read_sql(self.db,
                         self.sc_out,
                         'def_loop',
                         filt=[('swst', [0]),
                               ('run_id', self.slct_run_id)])['run_id'])
        run_id_nonzero_st = self.list_to_str(
            aql.read_sql(self.db,
                         self.sc_out,
                         'def_loop',
                         filt=[('swst', [0], ' <> '),
                               ('run_id', self.slct_run_id)])['run_id'])

        self.format_kw.update({
            'sw_not_st': sw_not_st,
            'join_ref': join_ref,
            'lst_pp_id_st': lst_pp_id_st,
            'lst_pp_id_non_st': lst_pp_id_non_st,
            'run_id_zero_st': run_id_zero_st,
            'run_id_nonzero_st': run_id_nonzero_st,
            'out_tb': 'analysis_agg_filtdiff'
        })

        cols = aql.init_table('analysis_agg_filtdiff', [
            ('sy', 'SMALLINT'),
            ('pp_id', 'SMALLINT'),
            ('bool_out', 'BOOLEAN'),
            ('run_id', 'SMALLINT'),
            ('run_id_rf', 'SMALLINT'),
            ('pp_id_st', 'SMALLINT'),
            ('bool_out_st', 'BOOLEAN'),
            ('value_st', 'DOUBLE PRECISION'),
            ('value', 'DOUBLE PRECISION'),
            ('value_ref', 'DOUBLE PRECISION'),
            ('value_diff', 'DOUBLE PRECISION'),
        ],
                              schema=self.sc_out,
                              ref_schema=self.sc_out,
                              pk=[
                                  'sy', 'pp_id', 'bool_out', 'run_id',
                                  'run_id_rf', 'pp_id_st', 'bool_out_st'
                              ],
                              db=self.db)

        exec_strg = '''
        /* CREATE MAP BETWEEN run_ids and reference run_ids */
        DROP VIEW IF EXISTS temp_map_run_id_ref CASCADE;
        CREATE VIEW temp_map_run_id_ref AS
        WITH ref_st AS (
            SELECT swvr_vl, swtc_vl, swpt_vl, swyr_vl, swco_vl, run_id AS run_id_rf
            FROM {sc_out}.def_loop
            WHERE swst_vl = '0.00%' AND run_id IN {run_id_zero_st}
        )
        SELECT dflp.run_id, ref_st.run_id_rf FROM {sc_out}.def_loop AS dflp
        NATURAL JOIN ref_st
        WHERE run_id IN {run_id_nonzero_st}
        ORDER BY run_id;
        '''.format(**self.format_kw)
        aql.exec_sql(exec_strg, db=self.db)

        exec_strg = '''
        /* FILTER TIME SERIES TABLE */
        DROP TABLE IF EXISTS temp_analysis_time_series_subset CASCADE;
        SELECT sy, ca_id, nd_id, ts.pp_id, pp, bool_out, value, ts.run_id, value_posneg, run_id_rf
        INTO temp_analysis_time_series_subset
        FROM {sc_out}.analysis_time_series_view_power AS ts
        LEFT JOIN {sc_out}.def_plant AS dfpp ON dfpp.pp_id = ts.pp_id
        LEFT JOIN {sc_out}.def_loop AS dflp ON dflp.run_id = ts.run_id
        LEFT JOIN {sc_out}.def_pp_type AS dfpt ON dfpt.pt_id = dfpp.pt_id
        LEFT JOIN temp_map_run_id_ref AS run_id_ref ON run_id_ref.run_id = ts.run_id
        WHERE dfpp.pp_id IN {list_slct_pp_id} AND ts.run_id IN {in_run_id};
        '''.format(**self.format_kw)
        aql.exec_sql(exec_strg, db=self.db)

        exec_strg = '''
        WITH mask_st AS (
            SELECT sy, pp_id AS pp_id_st, bool_out AS bool_out_st, value AS value_st, run_id
            FROM temp_analysis_time_series_subset
            WHERE pp_id IN {lst_pp_id_st}
                AND run_id IN (SELECT DISTINCT run_id FROM temp_map_run_id_ref
                               WHERE NOT run_id
                               IN (SELECT DISTINCT run_id_rf FROM temp_map_run_id_ref))
        ), tb_pp AS (
            SELECT sy, pp_id, bool_out, value AS value, run_id, run_id_rf
            FROM temp_analysis_time_series_subset
            WHERE pp_id IN {lst_pp_id_non_st}
                AND run_id IN (SELECT DISTINCT run_id FROM temp_map_run_id_ref
                               WHERE NOT run_id
                               IN (SELECT DISTINCT run_id_rf FROM temp_map_run_id_ref))
        ), tb_pp_ref AS (
            SELECT sy, pp_id, bool_out, value AS value_ref, run_id_rf
            FROM temp_analysis_time_series_subset
            WHERE pp_id IN {lst_pp_id_non_st}
                AND run_id IN (SELECT DISTINCT run_id_rf FROM temp_map_run_id_ref)
        )
        INSERT INTO {sc_out}.{out_tb} ({cols})
        SELECT tb_pp.sy, tb_pp.pp_id, tb_pp.bool_out, tb_pp.run_id, tb_pp.run_id_rf,
            pp_id_st, bool_out_st, value_st,
            value, value_ref, value - value_ref AS value_diff
        FROM tb_pp
        LEFT JOIN tb_pp_ref
            ON tb_pp.sy = tb_pp_ref.sy
            AND tb_pp.pp_id = tb_pp_ref.pp_id
            AND tb_pp.bool_out = tb_pp_ref.bool_out
            AND tb_pp.run_id_rf = tb_pp_ref.run_id_rf
        FULL OUTER JOIN mask_st ON mask_st.sy = tb_pp.sy
                                AND mask_st.run_id = tb_pp.run_id
        WHERE ABS(value_st) > 1;
        '''.format(**self.format_kw, cols=cols)
        aql.exec_sql(exec_strg, db=self.db)

        aql.joinon(self.db, ['mt_id', 'season'], ['sy'],
                   [self.sc_out, 'analysis_agg_filtdiff'],
                   [self.sc_out, 'tm_soy_full'])

        # aggregated table
        cols = aql.init_table('analysis_agg_filtdiff_agg', [
            ('pp_id', 'SMALLINT'),
            ('bool_out', 'BOOLEAN'),
            ('run_id', 'SMALLINT'),
            ('run_id_rf', 'SMALLINT'),
            ('pp_id_st', 'SMALLINT'),
            ('bool_out_st', 'BOOLEAN'),
            ('value_diff_agg', 'DOUBLE PRECISION'),
        ],
                              schema=self.sc_out,
                              ref_schema=self.sc_out,
                              pk=[
                                  'pp_id', 'bool_out', 'run_id', 'run_id_rf',
                                  'pp_id_st', 'bool_out_st'
                              ],
                              db=self.db)

        exec_strg = '''
        INSERT INTO {sc_out}.analysis_agg_filtdiff_agg ({cols})
        SELECT pp_id, bool_out, run_id, run_id_rf, pp_id_st, bool_out_st,
        SUM(value_diff) AS value_diff_agg
        FROM {sc_out}.analysis_agg_filtdiff
        GROUP BY pp_id, bool_out, run_id, run_id_rf, pp_id_st, bool_out_st
        '''.format(**self.format_kw, cols=cols)
        aql.exec_sql(exec_strg, db=self.db)

        for tb in ['analysis_agg_filtdiff_agg', 'analysis_agg_filtdiff']:

            aql.joinon(self.db, {
                'pp': 'pp_st',
                'pt_id': 'pt_id_st'
            }, {'pp_id': 'pp_id_st'}, [self.sc_out, tb],
                       [self.sc_out, 'def_plant'])

            aql.joinon(self.db, {'pt': 'pt_st'}, {'pt_id': 'pt_id_st'},
                       [self.sc_out, tb], [self.sc_out, 'def_pp_type'])
コード例 #18
0
    def init_schema(self):

        exec_str = '''
                   CREATE SCHEMA IF NOT EXISTS {sc};
                   '''.format(**self.dict_sql)
        aql.exec_sql(exec_str, db=self.dict_sql['db'])
コード例 #19
0
ファイル: build_input_data.py プロジェクト: mcsoini/grimsel
sqlc = aql.sql_connector(db)

reload(aql)
def init_table(*args, **kwargs):
    return aql.init_table(*args, **kwargs, con_cur=sqlc.get_pg_con_cur())

sys.exit()

# %%

exec_str = ('''
            DROP SCHEMA IF EXISTS {sc} CASCADE;
            CREATE SCHEMA IF NOT EXISTS {sc};
            ''').format(sc=sc, )
aql.exec_sql(exec_str, db=db)

def yr_getter(par, data_type=False, rnge=range(2015, 2050 + 1, 5)):
    return [par + i if not data_type else (par + i, data_type)
            for i in [''] + ['_yr' + str(ii) for ii
            in rnge if not ii == 2015]]

# <codecell>
tb_name = 'def_pp_type'
cols = [('pt_id',' SMALLINT'),
        ('pt',' varchar(20)'),
        ('pp_broad_cat', 'varchar(100)'),
        ('color', 'VARCHAR(7)')]
pk = ['pt_id']
unique = ['pt']
init_table(tb_name=tb_name, cols=cols, schema=sc, ref_schema=sc,