def sym_operator(self, w=None): from grudge.tools import count_subset fld_cnt = count_subset(self.get_eh_subset()) if w is None: from grudge.symbolic import make_sym_vector w = make_sym_vector("w", fld_cnt + 2 * self.dimensions) from grudge.tools import join_fields return join_fields(MaxwellOperator.sym_operator(self, w[:fld_cnt]), numpy.zeros((2 * self.dimensions, ), dtype=object)) + self.pml_local_op(w)
def main(dims, write_output=True, order=4): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0.0, ) * dims, b=(1.0, ) * dims, nelements_per_axis=(4, ) * dims) discr = DiscretizationCollection(actx, mesh, order=order) if 0: epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4 * np.pi * 1e-7 # N/A**2. epsilon = 1 * epsilon0 mu = 1 * mu0 else: epsilon = 1 mu = 1 from grudge.models.em import MaxwellOperator op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims) if dims == 3: sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2)) fields = bind(discr, sym_mode)(actx, t=0, epsilon=epsilon, mu=mu) else: sym_mode = get_rectangular_cavity_mode(1, (2, 3)) fields = bind(discr, sym_mode)(actx, t=0) # FIXME #dt = op.estimate_rk4_timestep(discr, fields=fields) op.check_bc_coverage(mesh) # print(sym.pretty(op.sym_operator())) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(t=t, w=w) if mesh.dim == 2: dt = 0.004 elif mesh.dim == 3: dt = 0.002 dt_stepper = set_up_rk4("w", dt, fields, rhs) final_t = dt * STEPS nsteps = int(final_t / dt) print("dt=%g nsteps=%d" % (dt, nsteps)) from grudge.shortcuts import make_visualizer vis = make_visualizer(discr) step = 0 norm = bind(discr, sym.norm(2, sym.var("u"))) from time import time t_last_step = time() e, h = op.split_eh(fields) if 1: vis.write_vtk_file("fld-cavities-%04d.vtu" % step, [ ("e", e), ("h", h), ]) for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 print(step, event.t, norm(u=e[0]), norm(u=e[1]), norm(u=h[0]), norm(u=h[1]), time() - t_last_step) if step % 10 == 0: e, h = op.split_eh(event.state_component) vis.write_vtk_file("fld-cavities-%04d.vtu" % step, [ ("e", e), ("h", h), ]) t_last_step = time()
def test_convergence_maxwell(ctx_factory, order): """Test whether 3D Maxwell's actually converges""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() dims = 3 ns = [4, 6, 8] for n in ns: from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0.0, ) * dims, b=(1.0, ) * dims, n=(n, ) * dims) discr = DGDiscretizationWithBoundaries(actx, mesh, order=order) epsilon = 1 mu = 1 from grudge.models.em import get_rectangular_cavity_mode sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2)) analytic_sol = bind(discr, sym_mode) fields = analytic_sol(actx, t=0, epsilon=epsilon, mu=mu) from grudge.models.em import MaxwellOperator op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims) op.check_bc_coverage(mesh) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(t=t, w=w) dt = 0.002 final_t = dt * 5 nsteps = int(final_t / dt) from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("w", dt, fields, rhs) logger.info("dt %.5e nsteps %5d", dt, nsteps) norm = bind(discr, sym.norm(2, sym.var("u"))) step = 0 for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" esc = event.state_component step += 1 logger.debug("[%04d] t = %.5e", step, event.t) sol = analytic_sol(actx, mu=mu, epsilon=epsilon, t=step * dt) vals = [norm(u=(esc[i] - sol[i])) / norm(u=sol[i]) for i in range(5)] # noqa E501 total_error = sum(vals) eoc_rec.add_data_point(1.0 / n, total_error) logger.info( "\n%s", eoc_rec.pretty_print(abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order
def main(ctx_factory, dim=3, order=4, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), force_device_scalars=True, ) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0.0, ) * dim, b=(1.0, ) * dim, nelements_per_axis=(4, ) * dim) dcoll = DiscretizationCollection(actx, mesh, order=order) if 0: epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4 * np.pi * 1e-7 # N/A**2. epsilon = 1 * epsilon0 mu = 1 * mu0 else: epsilon = 1 mu = 1 from grudge.models.em import MaxwellOperator maxwell_operator = MaxwellOperator(dcoll, epsilon, mu, flux_type=0.5, dimensions=dim) def cavity_mode(x, t=0): if dim == 3: return get_rectangular_cavity_mode(actx, x, t, 1, (1, 2, 2)) else: return get_rectangular_cavity_mode(actx, x, t, 1, (2, 3)) fields = cavity_mode(thaw(dcoll.nodes(), actx), t=0) maxwell_operator.check_bc_coverage(mesh) def rhs(t, w): return maxwell_operator.operator(t, w) dt = maxwell_operator.estimate_rk4_timestep(actx, dcoll, fields=fields) dt_stepper = set_up_rk4("w", dt, fields, rhs) target_steps = 60 final_t = dt * target_steps nsteps = int(final_t / dt) + 1 logger.info("dt = %g nsteps = %d", dt, nsteps) from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll) step = 0 def norm(u): return op.norm(dcoll, u, 2) e, h = maxwell_operator.split_eh(fields) if visualize: vis.write_vtk_file(f"fld-cavities-{step:04d}.vtu", [ ("e", e), ("h", h), ]) for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 e, h = maxwell_operator.split_eh(event.state_component) norm_e0 = actx.to_numpy(norm(u=e[0])) norm_e1 = actx.to_numpy(norm(u=e[1])) norm_h0 = actx.to_numpy(norm(u=h[0])) norm_h1 = actx.to_numpy(norm(u=h[1])) logger.info( "[%04d] t = %.5f |e0| = %.5e, |e1| = %.5e, |h0| = %.5e, |h1| = %.5e", step, event.t, norm_e0, norm_e1, norm_h0, norm_h1) if step % 10 == 0: if visualize: vis.write_vtk_file(f"fld-cavities-{step:04d}.vtu", [ ("e", e), ("h", h), ]) # NOTE: These are here to ensure the solution is bounded for the # time interval specified assert norm_e0 < 0.5 assert norm_e1 < 0.5 assert norm_h0 < 0.5 assert norm_h1 < 0.5
def main(write_output=True, allow_features=None): from grudge.timestep import RK4TimeStepper from grudge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh from grudge.visualization import \ VtkVisualizer, \ SiloVisualizer, \ get_rank_partition from math import sqrt, pi from grudge.backends import guess_run_context rcon = guess_run_context(allow_features) epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4 * pi * 1e-7 # N/A**2. epsilon = 1 * epsilon0 mu = 1 * mu0 dims = 3 if rcon.is_head_rank: if dims == 2: from grudge.mesh import make_rect_mesh mesh = make_rect_mesh(a=(-10.5, -1.5), b=(10.5, 1.5), max_area=0.1) elif dims == 3: from grudge.mesh import make_box_mesh mesh = make_box_mesh(a=(-10.5, -1.5, -1.5), b=(10.5, 1.5, 1.5), max_volume=0.1) if rcon.is_head_rank: mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() #for order in [1,2,3,4,5,6]: discr = rcon.make_discretization(mesh_data, order=3) if write_output: vis = VtkVisualizer(discr, rcon, "dipole") from analytic_solutions import DipoleFarField, SphericalFieldAdapter from grudge.data import ITimeDependentGivenFunction sph_dipole = DipoleFarField( q=1, #C d=1 / 39, omega=2 * pi * 1e8, epsilon=epsilon0, mu=mu0, ) cart_dipole = SphericalFieldAdapter(sph_dipole) class PointDipoleSource(ITimeDependentGivenFunction): def __init__(self): from pyrticle.tools import CInfinityShapeFunction sf = CInfinityShapeFunction(0.1 * sph_dipole.wavelength, discr.dimensions) self.num_sf = discr.interpolate_volume_function( lambda x, el: sf(x)) self.vol_0 = discr.volume_zeros() def volume_interpolant(self, t, discr): from grudge.tools import make_obj_array return make_obj_array([ self.vol_0, self.vol_0, sph_dipole.source_modulation(t) * self.num_sf ]) from grudge.mesh import BTAG_ALL, BTAG_NONE if dims == 2: from grudge.models.em import TMMaxwellOperator as MaxwellOperator else: from grudge.models.em import MaxwellOperator op = MaxwellOperator( epsilon, mu, flux_type=1, pec_tag=BTAG_NONE, absorb_tag=BTAG_ALL, current=PointDipoleSource(), ) fields = op.assemble_eh(discr=discr) if rcon.is_head_rank: print("#elements=", len(mesh.elements)) stepper = RK4TimeStepper() # diagnostics setup --------------------------------------------------- from pytools.log import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info if write_output: log_file_name = "dipole.dat" else: log_file_name = None logmgr = LogManager(log_file_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) from pytools.log import IntervalTimer vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) from grudge.log import EMFieldGetter, add_em_quantities field_getter = EMFieldGetter(discr, op, lambda: fields) add_em_quantities(logmgr, op, field_getter) from pytools.log import PushLogQuantity relerr_e_q = PushLogQuantity("relerr_e", "1", "Relative error in masked E-field") relerr_h_q = PushLogQuantity("relerr_h", "1", "Relative error in masked H-field") logmgr.add_quantity(relerr_e_q) logmgr.add_quantity(relerr_h_q) logmgr.add_watches([ "step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max", "relerr_e", "relerr_h" ]) if write_output: point_timeseries = [(open("b-x%d-vs-time.dat" % i, "w"), open("b-x%d-vs-time-true.dat" % i, "w"), discr.get_point_evaluator( numpy.array([i, 0, 0][:dims], dtype=discr.default_scalar_type))) for i in range(1, 5)] # timestep loop ------------------------------------------------------- mask = discr.interpolate_volume_function(sph_dipole.far_field_mask) def apply_mask(field): from grudge.tools import log_shape ls = log_shape(field) result = discr.volume_empty(ls) from pytools import indices_in_shape for i in indices_in_shape(ls): result[i] = mask * field[i] return result rhs = op.bind(discr) t = 0 try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=1e-8, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep( discr, stepper=stepper, t=t, fields=fields)) for step, t, dt in step_it: if write_output and step % 10 == 0: sub_timer = vis_timer.start_sub_timer() e, h = op.split_eh(fields) sph_dipole.set_time(t) true_e, true_h = op.split_eh( discr.interpolate_volume_function(cart_dipole)) visf = vis.make_file("dipole-%04d" % step) mask_e = apply_mask(e) mask_h = apply_mask(h) mask_true_e = apply_mask(true_e) mask_true_h = apply_mask(true_h) from pyvisfile.silo import DB_VARTYPE_VECTOR vis.add_data(visf, [("e", e), ("h", h), ("true_e", true_e), ("true_h", true_h), ("mask_e", mask_e), ("mask_h", mask_h), ("mask_true_e", mask_true_e), ("mask_true_h", mask_true_h)], time=t, step=step) visf.close() sub_timer.stop().submit() from grudge.tools import relative_error relerr_e_q.push_value( relative_error(discr.norm(mask_e - mask_true_e), discr.norm(mask_true_e))) relerr_h_q.push_value( relative_error(discr.norm(mask_h - mask_true_h), discr.norm(mask_true_h))) if write_output: for outf_num, outf_true, evaluator in point_timeseries: for outf, ev_h in zip([outf_num, outf_true], [h, true_h]): outf.write("%g\t%g\n" % (t, op.mu * evaluator(ev_h[1]))) outf.flush() fields = stepper(fields, t, dt, rhs) finally: if write_output: vis.close() logmgr.save() discr.close()
def __init__(self, *args, **kwargs): self.add_decay = kwargs.pop("add_decay", True) MaxwellOperator.__init__(self, *args, **kwargs)
def bind(self, discr, coefficients): return MaxwellOperator.bind(self, discr, sigma=coefficients.sigma, sigma_prime=coefficients.sigma_prime, tau=coefficients.tau)
def test_convergence_maxwell(actx_factory, order): """Test whether 3D Maxwell's actually converges""" actx = actx_factory() from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() dims = 3 ns = [4, 6, 8] for n in ns: mesh = mgen.generate_regular_rect_mesh(a=(0.0, ) * dims, b=(1.0, ) * dims, nelements_per_axis=(n, ) * dims) dcoll = DiscretizationCollection(actx, mesh, order=order) epsilon = 1 mu = 1 from grudge.models.em import get_rectangular_cavity_mode def analytic_sol(x, t=0): return get_rectangular_cavity_mode(actx, x, t, 1, (1, 2, 2)) nodes = thaw(dcoll.nodes(), actx) fields = analytic_sol(nodes, t=0) from grudge.models.em import MaxwellOperator maxwell_operator = MaxwellOperator(dcoll, epsilon, mu, flux_type=0.5, dimensions=dims) maxwell_operator.check_bc_coverage(mesh) def rhs(t, w): return maxwell_operator.operator(t, w) dt = maxwell_operator.estimate_rk4_timestep(actx, dcoll) final_t = dt * 5 nsteps = int(final_t / dt) from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("w", dt, fields, rhs) logger.info("dt %.5e nsteps %5d", dt, nsteps) step = 0 for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" esc = event.state_component step += 1 logger.debug("[%04d] t = %.5e", step, event.t) sol = analytic_sol(nodes, t=step * dt) total_error = op.norm(dcoll, esc - sol, 2) eoc_rec.add_data_point(1.0 / n, actx.to_numpy(total_error)) logger.info( "\n%s", eoc_rec.pretty_print(abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order