def h_min_from_volume(dcoll: DiscretizationCollection, dim=None, dd=None) -> float: """Returns a (minimum) characteristic length based on the volume of the elements. This length may not be representative if the elements have very high aspect ratios. :arg dim: an integer denoting topological dimension. If *None*, the spatial dimension specified by :attr:`grudge.DiscretizationCollection.dim` is used. :arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value convertible to one. Defaults to the base volume discretization if not provided. :returns: a scalar denoting the minimum characteristic length. """ from grudge.reductions import nodal_min, elementwise_sum if dd is None: dd = DD_VOLUME dd = as_dofdesc(dd) if dim is None: dim = dcoll.dim ones = dcoll.discr_from_dd(dd).zeros(dcoll._setup_actx) + 1.0 return nodal_min(dcoll, dd, elementwise_sum(dcoll, op.mass(dcoll, dd, ones)))**(1.0 / dim)
def test_mass_operator_inverse(actx_factory, name): actx = actx_factory() # {{{ cases import mesh_data if name == "2-1-ellipse": # curve builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif name == "spheroid": # surface builder = mesh_data.SpheroidMeshBuilder() elif name.startswith("warped_rect"): builder = mesh_data.WarpedRectMeshBuilder(dim=int(name[-1])) else: raise ValueError("unknown geometry name: %s" % name) # }}} # {{{ inv(m) @ m == id from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # {{{ compute inverse mass def f(x): return actx.np.cos(4.0 * x[0]) dd = dof_desc.DD_VOLUME x_volm = thaw(volume_discr.nodes(), actx) f_volm = f(x_volm) f_inv = op.inverse_mass(dcoll, op.mass(dcoll, dd, f_volm)) inv_error = actx.to_numpy( op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2)) # }}} # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(dcoll) eoc.add_data_point(h_max, inv_error) logger.info("inverse mass error\n%s", str(eoc)) # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the # safe side, choose a slightly larger tolerance assert eoc.max_error() < 1.0e-14
def mass(self, *args): return op.mass(self, *args)
def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag): """Check the integral of some trig functions on an interval using the mass matrix. """ actx = actx_factory() nel_1d = 16 order = 4 a = -4.0 * np.pi b = +9.0 * np.pi true_integral = 13 * np.pi / 2 * (b - a)**(ambient_dim - 1) from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag) if discr_tag is dof_desc.DISCR_TAG_BASE: discr_tag_to_group_factory = {} else: discr_tag_to_group_factory = { discr_tag: QuadratureSimplexGroupFactory(order=2 * order) } mesh = mgen.generate_regular_rect_mesh(a=(a, ) * ambient_dim, b=(b, ) * ambient_dim, nelements_per_axis=(nel_1d, ) * ambient_dim, order=1) dcoll = DiscretizationCollection( actx, mesh, order=order, discr_tag_to_group_factory=discr_tag_to_group_factory) def f(x): return actx.np.sin(x[0])**2 volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME) x_volm = thaw(volm_disc.nodes(), actx) f_volm = f(x_volm) ones_volm = volm_disc.zeros(actx) + 1 quad_disc = dcoll.discr_from_dd(dd_quad) x_quad = thaw(quad_disc.nodes(), actx) f_quad = f(x_quad) ones_quad = quad_disc.zeros(actx) + 1 mop_1 = op.mass(dcoll, dd_quad, f_quad) num_integral_1 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME, ones_volm * mop_1) err_1 = abs(num_integral_1 - true_integral) assert err_1 < 2e-9, err_1 mop_2 = op.mass(dcoll, dd_quad, ones_quad) num_integral_2 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME, f_volm * mop_2) err_2 = abs(num_integral_2 - true_integral) assert err_2 < 2e-9, err_2 if discr_tag is dof_desc.DISCR_TAG_BASE: # NOTE: `integral` always makes a square mass matrix and # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method. num_integral_3 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME, f_quad * mop_2) err_3 = abs(num_integral_3 - true_integral) assert err_3 < 5e-10, err_3
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False): r"""Check the surface divergence theorem. .. math:: \int_Sigma \phi \nabla_i f_i = \int_\Sigma \nabla_i \phi f_i + \int_\Sigma \kappa \phi f_i n_i + \int_{\partial \Sigma} \phi f_i m_i where :math:`n_i` is the surface normal and :class:`m_i` is the face normal (which should be orthogonal to both the surface normal and the face tangent). """ actx = actx_factory() # {{{ cases if mesh_name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif mesh_name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() elif mesh_name == "circle": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0) elif mesh_name == "starfish": from mesh_data import StarfishMeshBuilder builder = StarfishMeshBuilder() elif mesh_name == "sphere": from mesh_data import SphereMeshBuilder builder = SphereMeshBuilder(radius=1.0, mesh_order=16) else: raise ValueError("unknown mesh name: %s" % mesh_name) # }}} # {{{ convergence def f(x): return flat_obj_array( actx.np.sin(3 * x[1]) + actx.np.cos(3 * x[0]) + 1.0, actx.np.sin(2 * x[0]) + actx.np.cos(x[1]), 3.0 * actx.np.cos(x[0] / 2) + actx.np.cos(x[1]), )[:ambient_dim] from pytools.convergence import EOCRecorder eoc_global = EOCRecorder() eoc_local = EOCRecorder() theta = np.pi / 3.33 ambient_dim = builder.ambient_dim if ambient_dim == 2: mesh_rotation = np.array([ [np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)], ]) else: mesh_rotation = np.array([ [1.0, 0.0, 0.0], [0.0, np.cos(theta), -np.sin(theta)], [0.0, np.sin(theta), np.cos(theta)], ]) mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim] for i, resolution in enumerate(builder.resolutions): from meshmode.mesh.processing import affine_map from meshmode.discretization.connection import FACE_RESTR_ALL mesh = builder.get_mesh(resolution, builder.mesh_order) mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory qtag = dof_desc.DISCR_TAG_QUAD dcoll = DiscretizationCollection(actx, mesh, order=builder.order, discr_tag_to_group_factory={ qtag: QuadratureSimplexGroupFactory( 2 * builder.order) }) volume = dcoll.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume.ndofs) logger.info("nelements: %d", volume.mesh.nelements) dd = dof_desc.DD_VOLUME dq = dd.with_discr_tag(qtag) df = dof_desc.as_dofdesc(FACE_RESTR_ALL) ambient_dim = dcoll.ambient_dim # variables f_num = f(thaw(dcoll.nodes(dd=dd), actx)) f_quad_num = f(thaw(dcoll.nodes(dd=dq), actx)) from grudge.geometry import normal, summed_curvature kappa = summed_curvature(actx, dcoll, dd=dq) normal = normal(actx, dcoll, dd=dq) face_normal = thaw(dcoll.normal(df), actx) face_f = op.project(dcoll, dd, df, f_num) # operators stiff = op.mass( dcoll, sum( op.local_d_dx(dcoll, i, f_num_i) for i, f_num_i in enumerate(f_num))) stiff_t = sum( op.weak_local_d_dx(dcoll, i, f_num_i) for i, f_num_i in enumerate(f_num)) kterm = op.mass(dcoll, dq, kappa * f_quad_num.dot(normal)) flux = op.face_mass(dcoll, face_f.dot(face_normal)) # sum everything up op_global = op.nodal_sum(dcoll, dd, stiff - (stiff_t + kterm)) op_local = op.elementwise_sum(dcoll, dd, stiff - (stiff_t + kterm + flux)) err_global = abs(op_global) err_local = op.norm(dcoll, op_local, np.inf) logger.info("errors: global %.5e local %.5e", err_global, err_local) # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(dcoll) eoc_global.add_data_point(h_max, actx.to_numpy(err_global)) eoc_local.add_data_point(h_max, err_local) if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll) filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu" vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))], overwrite=True) # }}} order = min(builder.order, builder.mesh_order) - 0.5 logger.info("\n%s", str(eoc_global)) logger.info("\n%s", str(eoc_local)) assert eoc_global.max_error() < 1.0e-12 \ or eoc_global.order_estimate() > order - 0.5 assert eoc_local.max_error() < 1.0e-12 \ or eoc_local.order_estimate() > order - 0.5