コード例 #1
0
def h_min_from_volume(dcoll: DiscretizationCollection,
                      dim=None,
                      dd=None) -> float:
    """Returns a (minimum) characteristic length based on the volume of the
    elements. This length may not be representative if the elements have very
    high aspect ratios.

    :arg dim: an integer denoting topological dimension. If *None*, the
        spatial dimension specified by
        :attr:`grudge.DiscretizationCollection.dim` is used.
    :arg dd: a :class:`~grudge.dof_desc.DOFDesc`, or a value convertible to one.
        Defaults to the base volume discretization if not provided.
    :returns: a scalar denoting the minimum characteristic length.
    """
    from grudge.reductions import nodal_min, elementwise_sum

    if dd is None:
        dd = DD_VOLUME
    dd = as_dofdesc(dd)

    if dim is None:
        dim = dcoll.dim

    ones = dcoll.discr_from_dd(dd).zeros(dcoll._setup_actx) + 1.0
    return nodal_min(dcoll, dd, elementwise_sum(dcoll,
                                                op.mass(dcoll, dd,
                                                        ones)))**(1.0 / dim)
コード例 #2
0
def test_mass_operator_inverse(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    import mesh_data
    if name == "2-1-ellipse":
        # curve
        builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif name == "spheroid":
        # surface
        builder = mesh_data.SpheroidMeshBuilder()
    elif name.startswith("warped_rect"):
        builder = mesh_data.WarpedRectMeshBuilder(dim=int(name[-1]))

    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ inv(m) @ m == id

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        dcoll = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME)

        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute inverse mass

        def f(x):
            return actx.np.cos(4.0 * x[0])

        dd = dof_desc.DD_VOLUME
        x_volm = thaw(volume_discr.nodes(), actx)
        f_volm = f(x_volm)
        f_inv = op.inverse_mass(dcoll, op.mass(dcoll, dd, f_volm))

        inv_error = actx.to_numpy(
            op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2))

        # }}}

        # compute max element size
        from grudge.dt_utils import h_max_from_volume

        h_max = h_max_from_volume(dcoll)

        eoc.add_data_point(h_max, inv_error)

    logger.info("inverse mass error\n%s", str(eoc))

    # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the
    # safe side, choose a slightly larger tolerance
    assert eoc.max_error() < 1.0e-14
コード例 #3
0
ファイル: eager.py プロジェクト: VincentWells/grudge-1
 def mass(self, *args):
     return op.mass(self, *args)
コード例 #4
0
def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag):
    """Check the integral of some trig functions on an interval using the mass
    matrix.
    """
    actx = actx_factory()

    nel_1d = 16
    order = 4

    a = -4.0 * np.pi
    b = +9.0 * np.pi
    true_integral = 13 * np.pi / 2 * (b - a)**(ambient_dim - 1)

    from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory
    dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag)
    if discr_tag is dof_desc.DISCR_TAG_BASE:
        discr_tag_to_group_factory = {}
    else:
        discr_tag_to_group_factory = {
            discr_tag: QuadratureSimplexGroupFactory(order=2 * order)
        }

    mesh = mgen.generate_regular_rect_mesh(a=(a, ) * ambient_dim,
                                           b=(b, ) * ambient_dim,
                                           nelements_per_axis=(nel_1d, ) *
                                           ambient_dim,
                                           order=1)
    dcoll = DiscretizationCollection(
        actx,
        mesh,
        order=order,
        discr_tag_to_group_factory=discr_tag_to_group_factory)

    def f(x):
        return actx.np.sin(x[0])**2

    volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
    x_volm = thaw(volm_disc.nodes(), actx)
    f_volm = f(x_volm)
    ones_volm = volm_disc.zeros(actx) + 1

    quad_disc = dcoll.discr_from_dd(dd_quad)
    x_quad = thaw(quad_disc.nodes(), actx)
    f_quad = f(x_quad)
    ones_quad = quad_disc.zeros(actx) + 1

    mop_1 = op.mass(dcoll, dd_quad, f_quad)
    num_integral_1 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME, ones_volm * mop_1)

    err_1 = abs(num_integral_1 - true_integral)
    assert err_1 < 2e-9, err_1

    mop_2 = op.mass(dcoll, dd_quad, ones_quad)
    num_integral_2 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME, f_volm * mop_2)

    err_2 = abs(num_integral_2 - true_integral)
    assert err_2 < 2e-9, err_2

    if discr_tag is dof_desc.DISCR_TAG_BASE:
        # NOTE: `integral` always makes a square mass matrix and
        # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method.
        num_integral_3 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME,
                                      f_quad * mop_2)
        err_3 = abs(num_integral_3 - true_integral)
        assert err_3 < 5e-10, err_3
コード例 #5
0
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False):
    r"""Check the surface divergence theorem.

        .. math::

            \int_Sigma \phi \nabla_i f_i =
            \int_\Sigma \nabla_i \phi f_i +
            \int_\Sigma \kappa \phi f_i n_i +
            \int_{\partial \Sigma} \phi f_i m_i

        where :math:`n_i` is the surface normal and :class:`m_i` is the
        face normal (which should be orthogonal to both the surface normal
        and the face tangent).
    """
    actx = actx_factory()

    # {{{ cases

    if mesh_name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif mesh_name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    elif mesh_name == "circle":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
    elif mesh_name == "starfish":
        from mesh_data import StarfishMeshBuilder
        builder = StarfishMeshBuilder()
    elif mesh_name == "sphere":
        from mesh_data import SphereMeshBuilder
        builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    # }}}

    # {{{ convergence

    def f(x):
        return flat_obj_array(
            actx.np.sin(3 * x[1]) + actx.np.cos(3 * x[0]) + 1.0,
            actx.np.sin(2 * x[0]) + actx.np.cos(x[1]),
            3.0 * actx.np.cos(x[0] / 2) + actx.np.cos(x[1]),
        )[:ambient_dim]

    from pytools.convergence import EOCRecorder
    eoc_global = EOCRecorder()
    eoc_local = EOCRecorder()

    theta = np.pi / 3.33
    ambient_dim = builder.ambient_dim
    if ambient_dim == 2:
        mesh_rotation = np.array([
            [np.cos(theta), -np.sin(theta)],
            [np.sin(theta), np.cos(theta)],
        ])
    else:
        mesh_rotation = np.array([
            [1.0, 0.0, 0.0],
            [0.0, np.cos(theta), -np.sin(theta)],
            [0.0, np.sin(theta), np.cos(theta)],
        ])

    mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]

    for i, resolution in enumerate(builder.resolutions):
        from meshmode.mesh.processing import affine_map
        from meshmode.discretization.connection import FACE_RESTR_ALL

        mesh = builder.get_mesh(resolution, builder.mesh_order)
        mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)

        from meshmode.discretization.poly_element import \
                QuadratureSimplexGroupFactory

        qtag = dof_desc.DISCR_TAG_QUAD
        dcoll = DiscretizationCollection(actx,
                                         mesh,
                                         order=builder.order,
                                         discr_tag_to_group_factory={
                                             qtag:
                                             QuadratureSimplexGroupFactory(
                                                 2 * builder.order)
                                         })

        volume = dcoll.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume.ndofs)
        logger.info("nelements: %d", volume.mesh.nelements)

        dd = dof_desc.DD_VOLUME
        dq = dd.with_discr_tag(qtag)
        df = dof_desc.as_dofdesc(FACE_RESTR_ALL)
        ambient_dim = dcoll.ambient_dim

        # variables
        f_num = f(thaw(dcoll.nodes(dd=dd), actx))
        f_quad_num = f(thaw(dcoll.nodes(dd=dq), actx))

        from grudge.geometry import normal, summed_curvature

        kappa = summed_curvature(actx, dcoll, dd=dq)
        normal = normal(actx, dcoll, dd=dq)
        face_normal = thaw(dcoll.normal(df), actx)
        face_f = op.project(dcoll, dd, df, f_num)

        # operators
        stiff = op.mass(
            dcoll,
            sum(
                op.local_d_dx(dcoll, i, f_num_i)
                for i, f_num_i in enumerate(f_num)))
        stiff_t = sum(
            op.weak_local_d_dx(dcoll, i, f_num_i)
            for i, f_num_i in enumerate(f_num))
        kterm = op.mass(dcoll, dq, kappa * f_quad_num.dot(normal))
        flux = op.face_mass(dcoll, face_f.dot(face_normal))

        # sum everything up
        op_global = op.nodal_sum(dcoll, dd, stiff - (stiff_t + kterm))
        op_local = op.elementwise_sum(dcoll, dd,
                                      stiff - (stiff_t + kterm + flux))

        err_global = abs(op_global)
        err_local = op.norm(dcoll, op_local, np.inf)
        logger.info("errors: global %.5e local %.5e", err_global, err_local)

        # compute max element size
        from grudge.dt_utils import h_max_from_volume

        h_max = h_max_from_volume(dcoll)

        eoc_global.add_data_point(h_max, actx.to_numpy(err_global))
        eoc_local.add_data_point(h_max, err_local)

        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(dcoll)

            filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
            vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))],
                               overwrite=True)

    # }}}

    order = min(builder.order, builder.mesh_order) - 0.5
    logger.info("\n%s", str(eoc_global))
    logger.info("\n%s", str(eoc_local))

    assert eoc_global.max_error() < 1.0e-12 \
            or eoc_global.order_estimate() > order - 0.5

    assert eoc_local.max_error() < 1.0e-12 \
            or eoc_local.order_estimate() > order - 0.5