コード例 #1
0
def norm(p, arg, dd=None):
    """
    :arg arg: is assumed to be a vector, i.e. have shape ``(n,)``.
    """
    sym = _sym()

    if dd is None:
        dd = sym.DD_VOLUME

    dd = sym.as_dofdesc(dd)

    if p == 2:
        norm_squared = sym.NodalSum(dd_in=dd)(
                sym.FunctionSymbol("fabs")(
                    arg * sym.MassOperator()(arg)))

        if isinstance(norm_squared, np.ndarray):
            norm_squared = norm_squared.sum()

        return sym.FunctionSymbol("sqrt")(norm_squared)

    elif p == np.Inf:
        result = sym.NodalMax(dd_in=dd)(sym.FunctionSymbol("fabs")(arg))
        from pymbolic.primitives import Max

        if isinstance(result, np.ndarray):
            from functools import reduce
            result = reduce(Max, result)

        return result

    else:
        raise ValueError("unsupported value of p")
コード例 #2
0
def integral(arg, dd=None):
    sym = _sym()

    if dd is None:
        dd = sym.DD_VOLUME

    dd = sym.as_dofdesc(dd)

    return sym.NodalSum(dd)(
            arg * sym.cse(
                sym.MassOperator(dd_in=dd)(sym.Ones(dd)),
                "mass_quad_weights",
                sym.cse_scope.DISCRETIZATION))
コード例 #3
0
ファイル: test_grudge_sym_old.py プロジェクト: sll2/grudge
def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False):
    r"""Check the surface divergence theorem.

        .. math::

            \int_Sigma \phi \nabla_i f_i =
            \int_\Sigma \nabla_i \phi f_i +
            \int_\Sigma \kappa \phi f_i n_i +
            \int_{\partial \Sigma} \phi f_i m_i

        where :math:`n_i` is the surface normal and :class:`m_i` is the
        face normal (which should be orthogonal to both the surface normal
        and the face tangent).
    """
    actx = actx_factory()

    # {{{ cases

    if mesh_name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
    elif mesh_name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
    elif mesh_name == "circle":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0)
    elif mesh_name == "starfish":
        from mesh_data import StarfishMeshBuilder
        builder = StarfishMeshBuilder()
    elif mesh_name == "sphere":
        from mesh_data import SphereMeshBuilder
        builder = SphereMeshBuilder(radius=1.0, mesh_order=16)
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    # }}}

    # {{{ convergene

    def f(x):
        return flat_obj_array(
            sym.sin(3 * x[1]) + sym.cos(3 * x[0]) + 1.0,
            sym.sin(2 * x[0]) + sym.cos(x[1]),
            3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
        )[:ambient_dim]

    from pytools.convergence import EOCRecorder
    eoc_global = EOCRecorder()
    eoc_local = EOCRecorder()

    theta = np.pi / 3.33
    ambient_dim = builder.ambient_dim
    if ambient_dim == 2:
        mesh_rotation = np.array([
            [np.cos(theta), -np.sin(theta)],
            [np.sin(theta), np.cos(theta)],
        ])
    else:
        mesh_rotation = np.array([
            [1.0, 0.0, 0.0],
            [0.0, np.cos(theta), -np.sin(theta)],
            [0.0, np.sin(theta), np.cos(theta)],
        ])

    mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim]

    for i, resolution in enumerate(builder.resolutions):
        from meshmode.mesh.processing import affine_map
        from meshmode.discretization.connection import FACE_RESTR_ALL

        mesh = builder.get_mesh(resolution, builder.mesh_order)
        mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset)

        from meshmode.discretization.poly_element import \
                QuadratureSimplexGroupFactory
        discr = DiscretizationCollection(actx,
                                         mesh,
                                         order=builder.order,
                                         discr_tag_to_group_factory={
                                             "product":
                                             QuadratureSimplexGroupFactory(
                                                 2 * builder.order)
                                         })

        volume = discr.discr_from_dd(dof_desc.DD_VOLUME)
        logger.info("ndofs:     %d", volume.ndofs)
        logger.info("nelements: %d", volume.mesh.nelements)

        dd = dof_desc.DD_VOLUME
        dq = dd.with_discr_tag("product")
        df = dof_desc.as_dofdesc(FACE_RESTR_ALL)
        ambient_dim = discr.ambient_dim
        dim = discr.dim

        # variables
        sym_f = f(sym.nodes(ambient_dim, dd=dd))
        sym_f_quad = f(sym.nodes(ambient_dim, dd=dq))
        sym_kappa = sym.summed_curvature(ambient_dim, dim=dim, dd=dq)
        sym_normal = sym.surface_normal(ambient_dim, dim=dim,
                                        dd=dq).as_vector()

        sym_face_normal = sym.normal(df, ambient_dim, dim=dim - 1)
        sym_face_f = sym.project(dd, df)(sym_f)

        # operators
        sym_stiff = sum(
            sym.StiffnessOperator(d)(f) for d, f in enumerate(sym_f))
        sym_stiff_t = sum(
            sym.StiffnessTOperator(d)(f) for d, f in enumerate(sym_f))
        sym_k = sym.MassOperator(dq,
                                 dd)(sym_kappa * sym_f_quad.dot(sym_normal))
        sym_flux = sym.FaceMassOperator()(sym_face_f.dot(sym_face_normal))

        # sum everything up
        sym_op_global = sym.NodalSum(dd)(sym_stiff - (sym_stiff_t + sym_k))
        sym_op_local = sym.ElementwiseSumOperator(dd)(sym_stiff -
                                                      (sym_stiff_t + sym_k +
                                                       sym_flux))

        # evaluate
        op_global = bind(discr, sym_op_global)(actx)
        op_local = bind(discr, sym_op_local)(actx)

        err_global = abs(op_global)
        err_local = bind(discr, sym.norm(np.inf, sym.var("x")))(actx,
                                                                x=op_local)
        logger.info("errors: global %.5e local %.5e", err_global, err_local)

        # compute max element size
        h_max = bind(
            discr,
            sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim,
                                  dd=dd))(actx)
        eoc_global.add_data_point(h_max, err_global)
        eoc_local.add_data_point(h_max, err_local)

        if visualize:
            from grudge.shortcuts import make_visualizer
            vis = make_visualizer(discr, vis_order=builder.order)

            filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu"
            vis.write_vtk_file(filename, [("r", actx.np.log10(op_local))],
                               overwrite=True)

    # }}}

    order = min(builder.order, builder.mesh_order) - 0.5
    logger.info("\n%s", str(eoc_global))
    logger.info("\n%s", str(eoc_local))

    assert eoc_global.max_error() < 1.0e-12 \
            or eoc_global.order_estimate() > order - 0.5

    assert eoc_local.max_error() < 1.0e-12 \
            or eoc_local.order_estimate() > order - 0.5
コード例 #4
0
ファイル: test_grudge_sym_old.py プロジェクト: sll2/grudge
def test_mass_surface_area(actx_factory, name):
    actx = actx_factory()

    # {{{ cases

    if name == "2-1-ellipse":
        from mesh_data import EllipseMeshBuilder
        builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0)
        surface_area = _ellipse_surface_area(builder.radius,
                                             builder.aspect_ratio)
    elif name == "spheroid":
        from mesh_data import SpheroidMeshBuilder
        builder = SpheroidMeshBuilder()
        surface_area = _spheroid_surface_area(builder.radius,
                                              builder.aspect_ratio)
    elif name == "box2d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=2)
        surface_area = 1.0
    elif name == "box3d":
        from mesh_data import BoxMeshBuilder
        builder = BoxMeshBuilder(ambient_dim=3)
        surface_area = 1.0
    else:
        raise ValueError("unknown geometry name: %s" % name)

    # }}}

    # {{{ convergence

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for resolution in builder.resolutions:
        mesh = builder.get_mesh(resolution, builder.mesh_order)
        discr = DiscretizationCollection(actx, mesh, order=builder.order)
        volume_discr = discr.discr_from_dd(dof_desc.DD_VOLUME)

        logger.info("ndofs:     %d", volume_discr.ndofs)
        logger.info("nelements: %d", volume_discr.mesh.nelements)

        # {{{ compute surface area

        dd = dof_desc.DD_VOLUME
        sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd)))
        approx_surface_area = bind(discr, sym_op)(actx)

        logger.info("surface: got {:.5e} / expected {:.5e}".format(
            approx_surface_area, surface_area))
        area_error = abs(approx_surface_area -
                         surface_area) / abs(surface_area)

        # }}}

        h_max = bind(
            discr,
            sym.h_max_from_volume(discr.ambient_dim, dim=discr.dim,
                                  dd=dd))(actx)
        eoc.add_data_point(h_max, area_error + 1.0e-16)

    # }}}

    logger.info("surface area error\n%s", str(eoc))

    assert eoc.max_error() < 1.0e-14 \
            or eoc.order_estimate() > builder.order