コード例 #1
0
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    dt = 0.04
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          nelements_per_axis=(16, ) * dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DiscretizationCollection(actx,
                                         local_mesh,
                                         order=order,
                                         mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import WeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = WeakWaveOperator(
        0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import flat_obj_array
    fields = flat_obj_array(
        vol_discr.zeros(actx),
        [vol_discr.zeros(actx) for i in range(vol_discr.dim)])

    # FIXME
    # dt = op.estimate_rk4_timestep(vol_discr, fields=fields)

    # FIXME: Should meshmode consider BTAG_PARTITION to be a boundary?
    #           Fails because: "found faces without boundary conditions"
    # op.check_bc_coverage(local_mesh)

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = "grudge_log.dat"
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    logger.debug("\n%s", sym.pretty(op.sym_operator()))
    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t / dt)
    logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)

    # from grudge.shortcuts import make_visualizer
    # vis = make_visualizer(vol_discr, vis_order=order)

    step = 0

    norm = bind(vol_discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            logger.debug("[%04d] t = %.5e |u| = %.5e ellapsed %.5e", step,
                         event.t, norm(u=event.state_component[0]),
                         time() - t_last_step)

            # if step % 10 == 0:
            #     vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step),
            #                        [("u", event.state_component[0]),
            #                         ("v", event.state_component[1:])])
            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        logger.info(
            """execute() for rank %d:\n
            \tInstruction Evaluation: %g\n
            \tFuture Evaluation: %g\n
            \tBusy Wait: %g\n
            \tTotal: %g seconds""", i_local_rank,
            data["insn_eval_time"] / data["total_time"] * 100,
            data["future_eval_time"] / data["total_time"] * 100,
            data["busy_wait_time"] / data["total_time"] * 100,
            data["total_time"])

    print_profile_data(rhs.profile_data)
    logmgr.close()
    logger.info("Rank %d exiting", i_local_rank)
コード例 #2
0
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue, force_device_scalars=True)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                          b=(0.5,)*dim,
                                          nelements_per_axis=(16,)*dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)

        del mesh
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    dcoll = DiscretizationCollection(actx, local_mesh, order=order,
                                     mpi_communicator=comm)

    def source_f(actx, dcoll, t=0):
        source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
        source_width = 0.05
        source_omega = 3
        nodes = thaw(dcoll.nodes(), actx)
        source_center_dist = flat_obj_array(
            [nodes[i] - source_center[i] for i in range(dcoll.dim)]
        )
        return (
            np.sin(source_omega*t)
            * actx.np.exp(
                -np.dot(source_center_dist, source_center_dist)
                / source_width**2
            )
        )

    from grudge.models.wave import WeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE

    wave_op = WeakWaveOperator(
        dcoll,
        0.1,
        source_f=source_f,
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind"
    )

    fields = flat_obj_array(
        dcoll.zeros(actx),
        [dcoll.zeros(actx) for i in range(dcoll.dim)]
    )

    dt = actx.to_numpy(
        2/3 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields))

    wave_op.check_bc_coverage(local_mesh)

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = "grudge_log.dat"
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)

    def rhs(t, w):
        return wave_op.operator(t, w)

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t/dt)
    logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)

    step = 0

    def norm(u):
        return op.norm(dcoll, u, 2)

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            logger.info("[%04d] t = %.5e |u| = %.5e ellapsed %.5e",
                        step, event.t,
                        norm(u=event.state_component[0]),
                        time() - t_last_step)

            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()

    logmgr.tick_after()
    logmgr.close()
    logger.info("Rank %d exiting", i_local_rank)
コード例 #3
0
ファイル: var-propagation-speed.py プロジェクト: sll2/grudge
def main(ctx_factory, dim=2, order=4, visualize=False):
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(
        queue,
        allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
        force_device_scalars=True,
    )

    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(20, ) * dim)

    dcoll = DiscretizationCollection(actx, mesh, order=order)

    def source_f(actx, dcoll, t=0):
        source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
        source_width = 0.05
        source_omega = 3
        nodes = thaw(dcoll.nodes(), actx)
        source_center_dist = flat_obj_array(
            [nodes[i] - source_center[i] for i in range(dcoll.dim)])
        return (np.sin(source_omega * t) * actx.np.exp(
            -np.dot(source_center_dist, source_center_dist) / source_width**2))

    x = thaw(dcoll.nodes(), actx)
    ones = dcoll.zeros(actx) + 1
    c = actx.np.where(np.dot(x, x) < 0.15, 0.1 * ones, 0.2 * ones)

    from grudge.models.wave import VariableCoefficientWeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE

    wave_op = VariableCoefficientWeakWaveOperator(dcoll,
                                                  c,
                                                  source_f=source_f,
                                                  dirichlet_tag=BTAG_NONE,
                                                  neumann_tag=BTAG_NONE,
                                                  radiation_tag=BTAG_ALL,
                                                  flux_type="upwind")

    fields = flat_obj_array(dcoll.zeros(actx),
                            [dcoll.zeros(actx) for i in range(dcoll.dim)])

    wave_op.check_bc_coverage(mesh)

    def rhs(t, w):
        return wave_op.operator(t, w)

    dt = 2 / 3 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields)
    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 1
    nsteps = int(final_t / dt) + 1

    logger.info("dt=%g nsteps=%d", dt, nsteps)

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(dcoll)

    step = 0

    def norm(u):
        return op.norm(dcoll, u, 2)

    from time import time
    t_last_step = time()

    if visualize:
        u = fields[0]
        v = fields[1:]
        vis.write_vtk_file(f"fld-var-propogation-speed-{step:04d}.vtu", [
            ("u", u),
            ("v", v),
            ("c", c),
        ])

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1

            if step % 10 == 0:
                logger.info(f"step: {step} t: {time()-t_last_step} "
                            f"L2: {norm(u=event.state_component[0])}")
                if visualize:
                    vis.write_vtk_file(
                        f"fld-var-propogation-speed-{step:04d}.vtu", [
                            ("u", event.state_component[0]),
                            ("v", event.state_component[1:]),
                            ("c", c),
                        ])
            t_last_step = time()

            # NOTE: These are here to ensure the solution is bounded for the
            # time interval specified
            assert norm(u=event.state_component[0]) < 1
コード例 #4
0
ファイル: wave-min-mpi.py プロジェクト: sll2/grudge
def main(ctx_factory, dim=2, order=4, visualize=False):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(
        queue,
        allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
        force_device_scalars=True,
    )

    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          nelements_per_axis=(16, ) * dim)

        logger.info("%d elements", mesh.nelements)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)

        del mesh

    else:
        local_mesh = mesh_dist.receive_mesh_part()

    dcoll = DiscretizationCollection(actx,
                                     local_mesh,
                                     order=order,
                                     mpi_communicator=comm)

    def source_f(actx, dcoll, t=0):
        source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
        source_width = 0.05
        source_omega = 3
        nodes = thaw(dcoll.nodes(), actx)
        source_center_dist = flat_obj_array(
            [nodes[i] - source_center[i] for i in range(dcoll.dim)])
        return (np.sin(source_omega * t) * actx.np.exp(
            -np.dot(source_center_dist, source_center_dist) / source_width**2))

    from grudge.models.wave import WeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE

    wave_op = WeakWaveOperator(dcoll,
                               0.1,
                               source_f=source_f,
                               dirichlet_tag=BTAG_NONE,
                               neumann_tag=BTAG_NONE,
                               radiation_tag=BTAG_ALL,
                               flux_type="upwind")

    fields = flat_obj_array(dcoll.zeros(actx),
                            [dcoll.zeros(actx) for i in range(dcoll.dim)])

    dt = 2 / 3 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields)

    wave_op.check_bc_coverage(local_mesh)

    def rhs(t, w):
        return wave_op.operator(t, w)

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 10
    nsteps = int(final_t / dt) + 1

    if comm.rank == 0:
        logger.info("dt=%g nsteps=%d", dt, nsteps)

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(dcoll)

    step = 0

    def norm(u):
        return op.norm(dcoll, u, 2)

    from time import time
    t_last_step = time()

    if visualize:
        u = fields[0]
        v = fields[1:]
        vis.write_parallel_vtk_file(
            comm, f"fld-wave-min-mpi-{{rank:03d}}-{step:04d}.vtu", [
                ("u", u),
                ("v", v),
            ])

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            l2norm = norm(u=event.state_component[0])

            if step % 10 == 0:
                if comm.rank == 0:
                    logger.info(f"step: {step} "
                                f"t: {time()-t_last_step} "
                                f"L2: {l2norm}")
                if visualize:
                    vis.write_parallel_vtk_file(
                        comm, f"fld-wave-min-mpi-{{rank:03d}}-{step:04d}.vtu",
                        [
                            ("u", event.state_component[0]),
                            ("v", event.state_component[1:]),
                        ])
            t_last_step = time()

            # NOTE: These are here to ensure the solution is bounded for the
            # time interval specified
            assert l2norm < 1
コード例 #5
0
def main(write_output=True, order=4):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    dims = 2
    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(
            a=(-0.5,)*dims,
            b=(0.5,)*dims,
            nelements_per_axis=(20,)*dims)

    discr = DiscretizationCollection(actx, mesh, order=order)

    source_center = np.array([0.1, 0.22, 0.33])[:mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")
    c = sym.If(sym.Comparison(
                np.dot(sym_x, sym_x), "<", 0.15),
                np.float32(0.1), np.float32(0.2))

    from grudge.models.wave import VariableCoefficientWeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = VariableCoefficientWeakWaveOperator(c,
            discr.dim,
            source_f=(
                sym.sin(source_omega*sym_t)
                * sym.exp(
                    -np.dot(sym_source_center_dist, sym_source_center_dist)
                    / source_width**2)),
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
            flux_type="upwind")

    from pytools.obj_array import flat_obj_array
    fields = flat_obj_array(discr.zeros(actx),
            [discr.zeros(actx) for i in range(discr.dim)])

    op.check_bc_coverage(mesh)

    c_eval = bind(discr, c)(actx)

    bound_op = bind(discr, op.sym_operator())

    def rhs(t, w):
        return bound_op(t=t, w=w)

    if mesh.dim == 2:
        dt = 0.04 * 0.3
    elif mesh.dim == 3:
        dt = 0.02 * 0.1

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 1
    nsteps = int(final_t/dt)
    print("dt=%g nsteps=%d" % (dt, nsteps))

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(discr)

    step = 0

    norm = bind(discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1

            print(step, event.t, norm(u=event.state_component[0]),
                    time()-t_last_step)
            if step % 10 == 0:
                vis.write_vtk_file("fld-var-propogation-speed-%04d.vtu" % step,
                        [
                            ("u", event.state_component[0]),
                            ("v", event.state_component[1:]),
                            ("c", c_eval),
                            ])
            t_last_step = time()
コード例 #6
0
def simple_wave_entrypoint(dim=2,
                           num_elems=256,
                           order=4,
                           num_steps=30,
                           log_filename="grudge.dat"):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()
    n = int(num_elems**(1. / dim))

    from meshmode.distributed import MPIMeshDistributor
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          n=(n, ) * dim)

        from pymetis import part_graph
        _, p = part_graph(num_parts,
                          xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
                          adjncy=mesh.nodal_adjacency.neighbors.tolist())
        part_per_element = np.array(p)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DiscretizationCollection(cl_ctx,
                                         local_mesh,
                                         order=order,
                                         mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(
        vol_discr.zeros(queue),
        [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    # NOTE: LogManager hangs when using a file on a shared directory.
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
                        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
                        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
                        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
                        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
                        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
                        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue,
                                         profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt = 0.04
    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=dt * num_steps):
        if isinstance(event, dt_stepper.StateComputed):
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
              (comm.Get_rank(), data['insn_eval_time'] / data['total_time'] *
               100, data['future_eval_time'] / data['total_time'] * 100,
               data['busy_wait_time'] / data['total_time'] * 100,
               data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()