コード例 #1
0
 def __init__(
     self,
     filepath_Y,
     num_params,
     gsa_func,
     gsa_label,
     write_dir,
     num_steps=10,
     **kwargs,
 ):
     self.filepath_Y = filepath_Y
     self.Y = read_hdf5_array(filepath_Y).flatten()
     self.iterations = self.Y.shape[0]
     self.num_params = num_params
     self.gsa_func = gsa_func
     self.gsa_label = gsa_label
     self.write_dir = write_dir
     self.make_dirs()
     self.num_steps = num_steps
     self.iterations_order = self.generate_iterations_order()
     (
         self.iterations_min,
         self.iterations_least_common_multiple,
     ) = self.generate_iterations_min_and_least_common_multiple(
         self.gsa_label, **kwargs
     )  # depends on gsa method
     (
         self.iterations_step,
         self.iterations_for_convergence,
     ) = self.generate_iterations_for_convergence()
     self.sampling_label = str(self.filepath_Y).split(".")[
         1
     ]  # TODO there must be a better way
     self.seed = str(self.filepath_Y).split(".")[-2]
コード例 #2
0
    def get_influential_Y_from_gsa(self, gsa_indices, num_influential, tag=None):
        """Run model when only influential inputs vary based on sensitivity indices values.

        Parameters
        ----------
        gsa_indices : array
            Array with sensitivity indices values for all model inputs.
        num_influential : int
            Number of first most influential inputs to vary.
        tag : str
            Tag to save results.

        Returns
        -------
        influential_Y : array
            Model outputs when only influential inputs vary.

        """
        assert num_influential <= self.num_params
        assert len(gsa_indices) == self.num_params
        filepath = self.create_model_output_inf_filepath(num_influential, tag)
        if filepath.exists():
            print("{} already exists".format(filepath.name))
            influential_Y = read_hdf5_array(filepath).flatten()
        else:
            non_influential_inds = np.argsort(gsa_indices)[::-1][num_influential:]
            non_influential_inds.sort()
            X_rescaled_inf = deepcopy(self.X_rescaled)
            X_rescaled_inf[:, non_influential_inds] = np.tile(
                self.default_x_rescaled[non_influential_inds], (self.iterations, 1)
            )
            influential_Y = self.model(X_rescaled_inf)
            write_hdf5_array(influential_Y, filepath)
        return influential_Y
コード例 #3
0
 def generate_Y_all_inputs_vary(self):
     """Run model when all inputs vary."""
     # Model output
     if not self.filepath_Y_all.exists():
         Y = self.model(self.X_rescaled)
         write_hdf5_array(Y, self.filepath_Y_all)
     else:
         # print("{} already exists".format(self.filepath_Y_all.name))
         Y = read_hdf5_array(self.filepath_Y_all).flatten()
     return Y
コード例 #4
0
 def generate_X_rescaled_all_inputs_vary(self):
     """Rescale unitcube samples when all model inputs vary."""
     if not self.filepath_X_rescaled_all.exists():
         # Unitcube samples
         np.random.seed(self.seed)
         X = np.random.rand(self.iterations, self.num_params)
         X_rescaled = self.model.rescale(X)
         write_hdf5_array(X_rescaled, self.filepath_X_rescaled_all)
     else:
         X_rescaled = read_hdf5_array(self.filepath_X_rescaled_all)
     return X_rescaled
コード例 #5
0
 def get_influential_Y_from_parameter_choice(self, influential_inputs, tag=None):
     """Run model when only influential inputs vary based on chosen influential inputs."""
     num_influential = len(influential_inputs)
     assert num_influential <= self.num_params
     filepath = self.create_model_output_inf_filepath(num_influential, tag)
     if filepath.exists():
         print("{} already exists".format(filepath.name))
         influential_Y = read_hdf5_array(filepath).flatten()
     else:
         non_influential_inds = np.setdiff1d(
             np.arange(self.num_params), influential_inputs
         )
         non_influential_inds.sort()
         X_rescaled_inf = deepcopy(self.X_rescaled)
         X_rescaled_inf[:, non_influential_inds] = np.tile(
             self.default_x_rescaled[non_influential_inds], (self.iterations, 1)
         )
         influential_Y = self.model(X_rescaled_inf)
         write_hdf5_array(influential_Y, filepath)
     return influential_Y
コード例 #6
0
        "cf": uncertain_cf_params[uncertain_params_selected_where_dict["cf"]],
    }

    num_params = (len(uncertain_params["tech"]) +
                  len(uncertain_params["bio"]) + len(uncertain_params["cf"]))

    filepath_Y = (write_dir / "arrays" /
                  "si.Y.{}inf.{}.{}.lognormal{}.hdf5".format(
                      num_params,
                      iterations,
                      seed,
                      n_use_lognormal,
                  ))
    print(filepath_Y.name)
    if filepath_Y.exists():
        Y = read_hdf5_array(filepath_Y).flatten()
    else:
        model = LCAModelBase(
            demand,
            uncertain_method,
            uncertain_params,
            # uncertain_params_selected_where_dict,
        )
        np.random.seed(seed)
        X = np.random.rand(iterations, num_params)
        Xr = model.rescale(X)
        Y = model(Xr)
        write_hdf5_array(Y, filepath_Y)
    Y_dict[n_use_lognormal] = Y
    if n_use_lognormal == -1:
        subplot_titles.append(r"$\text{All 408'741 inputs vary}$")
コード例 #7
0
    filepath_val_delt = (write_dir_arr /
                         "validation.Y.60inf.2000.23467.DeltaIndexNr0.hdf5")
    filepath_val_gain = write_dir_arr / "validation.Y.60inf.2000.23467.TotalGain.hdf5"
    filepath_val_dict = {
        "all": filepath_val_all,
        "corr": filepath_val_corr,
        "salt": filepath_val_salt,
        "delt": filepath_val_delt,
        "xgbo": filepath_val_gain,
    }

    Y_dict, S_dict = {}, {}
    Y_arr, S_arr = np.zeros((0, iterations)), np.zeros((0, num_params))
    stability_dicts = []
    for k in filepath_val_dict.keys():
        Y_dict[k] = read_hdf5_array(filepath_val_dict[k]).flatten()
        if k != "all":
            Y_arr = np.vstack([Y_arr, Y_dict[k]])
            S_dict[k] = read_pickle(
                filepath_gsa_dict[k][0])[filepath_gsa_dict[k][1]]
            S_arr = np.vstack([S_arr, S_dict[k]])
            stability_dict = read_pickle(filepath_stability_dict[k][0])
            stability_dicts.append(stability_dict)

    S_sorted = np.sort(np.abs(S_dict["xgbo"]))[-1::-1]
    th = (S_sorted[99] - S_sorted[1000]) / 4

    bootstrap_ranking_tag = "paper1"
    st = Robustness(
        stability_dicts,
        write_dir,
コード例 #8
0
demand_act = [act for act in co if "Food" in act["name"]][0]
demand = {demand_act: 1}
method = ("IPCC 2013", "climate change", "GTP 100a")
lca = bw.LCA(demand, method)
lca.lci()
lca.lcia()

num_params = len(lca.tech_params[lca.tech_params["uncertainty_type"] > 1])
print(num_params)

seed = 923458
filename_Y_narrow = "validation.narrow.Y.{}.{}.{}.hdf5".format(
    iterations, num_params, seed)
filepath_Y_narrow = path_setac / "arrays" / filename_Y_narrow
if filepath_Y_narrow.exists():
    narrow_Y = read_hdf5_array(filepath_Y_narrow).flatten()
else:
    tech_params_narrow = deepcopy(lca.tech_params)
    # Read params_yes from xgboost model
    filepath_params_yes_0 = path_merlin / "params_yes_0.pickle"
    with open(filepath_params_yes_0, "rb") as f:
        params_yes_0 = pickle.load(f)
    model_seed = 3333
    path_model_dir = path_setac / "regression" / "{}_model".format(model_seed)
    model, params_yes_xgboost, importance_dict = get_xgboost_params(
        path_model_dir, params_yes_0)
    params_yes = params_yes_xgboost[:num_params_narrow]
    tech_params_narrow[params_yes]["scale"] = (
        tech_params_narrow[params_yes]["scale"] / 2)

    lca_model = LCAModelSetac(demand, method, tech_params_narrow)
コード例 #9
0
    # --> So I have to hardcode....
    # tag = 60
    # filepath_influential_Y = (
    #     write_dir / "arrays" / validation.create_influential_model_output_filepath(tag)
    # )
    # influential_Y = read_hdf5_array(filepath_influential_Y).flatten() - diff_mean[tag]
    #
    # validation.plot_histogram_base_Y_influential_Y(
    #     influential_Y, tag=tag, save_fig=True, bin_min=bin_min, bin_max=bin_max
    # )
    #
    tag = 60
    filepath_influential_Y = (
        write_dir / "arrays" /
        validation.create_influential_model_output_filepath(tag))
    influential_Y = read_hdf5_array(
        filepath_influential_Y).flatten() - diff_mean[tag]

    # validation.plot_histogram_base_Y_influential_Y(
    #     influential_Y, tag=tag, save_fig=True, bin_min=bin_min, bin_max=bin_max
    # )
    validation.plot_correlation_base_Y_influential_Y(influential_Y,
                                                     tag=tag,
                                                     save_fig=True)

    # Narrow
    # iterations = 2000
    # num_params_narrow = 60
    # scaling_factor = 8
    # tag = "{}.div{}".format(num_params_narrow, scaling_factor)
    # filename_Y_narrow = "validation.narrow.Y.{}.{}.div{}.{}.hdf5".format(
    #     iterations, num_params_narrow, scaling_factor, seed