def cubical_persistence(images, title, plot_diagrams=False, betti_curves=False, scaled=False): homology_dimensions = (0, 1, 2) cp = CubicalPersistence( homology_dimensions=homology_dimensions, coeff=2, periodic_dimensions=None, infinity_values=None, reduced_homology=True, n_jobs=N_JOBS, ) diagrams_cubical_persistence = cp.fit_transform(images) if scaled: sc = Scaler(metric="bottleneck") diagrams_cubical_persistence = sc.fit_transform( diagrams_cubical_persistence) else: scaled_diagrams_cubical_persistence = diagrams_cubical_persistence if plot_diagrams: fig = cp.plot(diagrams_cubical_persistence) fig.update_layout(title=title) fig.show() if betti_curves: BC = BettiCurve() X_betti_curves = BC.fit_transform(diagrams_cubical_persistence) fig = BC.plot(X_betti_curves) fig.update_layout(title=title) fig.show() if title is not None: print(f"Computed CP for {title}") return diagrams_cubical_persistence
def vr_persistent_homology(patch_pc): homology_dimensions = (0, 1, 2) VR = VietorisRipsPersistence( metric="euclidean", max_edge_length=5, homology_dimensions=homology_dimensions, n_jobs=N_JOBS, ) diagrams_VietorisRips = VR.fit_transform(np.asarray(patch_pc)) VR.plot(diagrams_VietorisRips).show() BC = BettiCurve() X_betti_curves = BC.fit_transform(diagrams_VietorisRips) BC.plot(X_betti_curves).show() return diagrams_VietorisRips
def extract_feature_(self, persistence_diagram): betti_curve = BettiCurve(n_jobs=-1).fit_transform( [persistence_diagram])[0] return np.array([ np.sum(betti_curve[i, :]) for i in range(int(np.max(persistence_diagram[:, 2])) + 1) ])
def extract_feature_(self, persistence_diagram, n_bins=100): betti_curve = BettiCurve(n_jobs=-1, n_bins=n_bins).fit_transform( [persistence_diagram])[0] max_dim = int(np.max(persistence_diagram[:, 2])) + 1 max_bettis = np.array( [np.max(betti_curve[i, :]) for i in range(max_dim)]) return np.array([ np.where(betti_curve[i, :] == max_bettis[i])[0][0] / (n_bins * max_dim) for i in range(max_dim) ])
def bettiCurve_pipe2(img_file): """ Pipeline 2: Cubical Perisitance --> Betti Curve """ img = cv2.imread(img_file) img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # blur the image to reduce noise figure_size = 9 # the dimension of the x and y axis of the kernal. # img = cv2.blur(img,(figure_size, figure_size)) shape = img.shape images = np.zeros((1, *shape)) images[0] = img p = make_pipeline(CubicalPersistence(), BettiCurve(n_bins=50)) return p.fit_transform(images)
def test_not_fitted(): with pytest.raises(NotFittedError): PersistenceEntropy().transform(X) with pytest.raises(NotFittedError): BettiCurve().transform(X) with pytest.raises(NotFittedError): PersistenceLandscape().transform(X) with pytest.raises(NotFittedError): HeatKernel().transform(X) with pytest.raises(NotFittedError): PersistenceImage().transform(X) with pytest.raises(NotFittedError): Silhouette().transform(X)
def bettiCurve_pipe1(img_file): """ Pipeline 1: Binarizer --> Height Filtration --> Cubical Persistance --> Betti Curve """ img = cv2.imread(img_file) img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # blur the image to reduce noise figure_size = 9 # the dimension of the x and y axis of the kernal. img = cv2.blur(img, (figure_size, figure_size)) shape = img.shape images = np.zeros((1, *shape)) images[0] = img bz = Binarizer(threshold=40 / 255) binned = bz.fit_transform(images) p = make_pipeline(HeightFiltration(direction=np.array([1, 1])), CubicalPersistence(), BettiCurve(n_bins=50)) return p.fit_transform(binned)
def generate_sample_representations(paths_to_patches, labels): sample_rep_dir = DOTENV_KEY2VAL["GEN_FIGURES_DIR"] + "/sample_rep/" try: os.mkdir(sample_rep_dir) except OSError: print("Creation of the directory %s failed" % sample_rep_dir) else: print("Successfully created the directory %s " % sample_rep_dir) for i, path in enumerate(paths_to_patches): patch = np.load(path) cp = CubicalPersistence( homology_dimensions=(0, 1, 2), coeff=2, periodic_dimensions=None, infinity_values=None, reduced_homology=True, n_jobs=N_JOBS, ) diagrams_cubical_persistence = cp.fit_transform( patch.reshape(1, 30, 36, 30) ) for h_dim in HOMOLOGY_DIMENSIONS: cp.plot( diagrams_cubical_persistence, homology_dimensions=[h_dim], ).update_traces( marker=dict(size=10, color=HOMOLOGY_CMAP[h_dim]), ).write_image( sample_rep_dir + f"persistence_diagram_{labels[i]}_H_{h_dim}.png", scale=SCALE, ) representation_names = [ "Persistence landscape", "Betti curve", "Persistence image", "Heat kernel", "Silhouette", ] for j, rep in enumerate(representation_names): # Have not found a better way of doing this yet. if rep == "Persistence landscape": rep = PersistenceLandscape( n_layers=N_LAYERS, n_bins=VEC_SIZE, n_jobs=N_JOBS ) elif rep == "Betti curve": rep = BettiCurve() elif rep == "Persistence image": rep = PersistenceImage( sigma=0.001, n_bins=VEC_SIZE, n_jobs=N_JOBS ) elif rep == "Heat kernel": rep = HeatKernel(sigma=0.001, n_bins=VEC_SIZE, n_jobs=N_JOBS) elif rep == "Silhouette": rep = Silhouette(power=1.0, n_bins=VEC_SIZE, n_jobs=N_JOBS) vectorial_representation = rep.fit_transform( diagrams_cubical_persistence ) if representation_names[j] in ["Persistence image", "Heat kernel"]: for h_dim in range(vectorial_representation.shape[1]): plt.imshow( vectorial_representation[0:, h_dim, :, :].reshape( VEC_SIZE, VEC_SIZE ), cmap=(HOMOLOGY_CMAP[h_dim] + "s").capitalize(), ) # plt.title( # f"{representation_names[j]} representation of a " # f"{labels[i]} patient in h_{image}" # ) plt.savefig( sample_rep_dir + f"{representation_names[j].replace(' ', '_')}" f"_{labels[i]}_h_{h_dim}.png", bbox_inches="tight", ) else: rep.plot(vectorial_representation).update_layout( title=None, margin=dict(l=0, r=0, b=0, t=0, pad=4), ).write_image( sample_rep_dir + f"{representation_names[j].replace(' ', '_')}" f"_{labels[i]}.png", scale=SCALE, ) print(f"Done plotting {labels[i]} sample")
def test_bc_transform_shape(n_bins): bc = BettiCurve(n_bins=n_bins) X_res = bc.fit_transform(X) assert X_res.shape == (1, bc._n_dimensions, n_bins)
def test_fit_transform_plot_many_hom_dims(hom_dims): BettiCurve().fit_transform_plot(X, sample=0, homology_dimensions=hom_dims) PersistenceLandscape().fit_transform_plot(X, sample=0, homology_dimensions=hom_dims) Silhouette().fit_transform_plot(X, sample=0, homology_dimensions=hom_dims)
ComplexPolynomial, BettiCurve, PersistenceLandscape, HeatKernel, \ PersistenceImage, Silhouette pio.renderers.default = 'plotly_mimetype' X = np.array([[[0., 0., 0.], [0., 1., 0.], [2., 3., 0.], [4., 6., 1.], [2., 6., 1.]]]) line_plots_traces_params = {"mode": "lines+markers"} heatmap_trace_params = {"colorscale": "viridis"} layout_params = {"title": "New title"} @pytest.mark.parametrize('transformer', [PersistenceEntropy(), NumberOfPoints(), ComplexPolynomial(), BettiCurve(), PersistenceLandscape(), HeatKernel(), PersistenceImage(), Silhouette()]) def test_not_fitted(transformer): with pytest.raises(NotFittedError): transformer.transform(X) @pytest.mark.parametrize('transformer', [HeatKernel(), PersistenceImage()]) @pytest.mark.parametrize('hom_dim_idx', [0, 1]) def test_fit_transform_plot_one_hom_dim(transformer, hom_dim_idx): plotly_params = \ {"trace": heatmap_trace_params, "layout": layout_params} transformer.fit_transform_plot( X, sample=0, homology_dimension_idx=hom_dim_idx,
pio.renderers.default = 'plotly_mimetype' X = np.array([[[0., 0., 0.], [0., 1., 0.], [2., 3., 0.], [4., 6., 1.], [2., 6., 1.]]]) line_plots_traces_params = {"mode": "lines+markers"} heatmap_trace_params = {"colorscale": "viridis"} layout_params = {"title": "New title"} @pytest.mark.parametrize('transformer', [ PersistenceEntropy(), NumberOfPoints(), ComplexPolynomial(), BettiCurve(), PersistenceLandscape(), HeatKernel(), PersistenceImage(), Silhouette() ]) def test_not_fitted(transformer): with pytest.raises(NotFittedError): transformer.transform(X) @pytest.mark.parametrize('transformer', [HeatKernel(), PersistenceImage()]) @pytest.mark.parametrize('hom_dim_idx', [0, 1]) def test_fit_transform_plot_one_hom_dim(transformer, hom_dim_idx): plotly_params = \ {"trace": heatmap_trace_params, "layout": layout_params}