def test___init__(self): tln = TlnTableSummaryFile(self.dir_tmp, 'tst') self.assertDictEqual(tln.genomes, {}) self.assertEqual( os.path.join(self.dir_tmp, PATH_TLN_TABLE_SUMMARY.format(prefix='tst')), tln.path)
def test_write(self): tln = TlnTableSummaryFile(self.dir_tmp, 'tst') tln.add_genome('a', 4) tln.add_genome('b', 11) tln.write() lines = set() with open(tln.path) as fh: [lines.add(x) for x in fh.readlines()] self.assertSetEqual({'a\t4\n', 'b\t11\n'}, lines)
def _report_identified_marker_genes(self, gene_dict, outdir, prefix): """Report statistics for identified marker genes.""" # Summarise the copy number of each AR122 and BAC120 markers. tln_summary_file = TlnTableSummaryFile(outdir, prefix) ar122_copy_number_file = CopyNumberFileAR122(outdir, prefix) bac120_copy_number_file = CopyNumberFileBAC120(outdir, prefix) # Process each genome. for db_genome_id, info in sorted(gene_dict.items()): cur_marker_dir = os.path.join(outdir, DIR_MARKER_GENE) pfam_tophit_file = TopHitPfamFile(cur_marker_dir, db_genome_id) tigr_tophit_file = TopHitTigrFile(cur_marker_dir, db_genome_id) pfam_tophit_file.read() tigr_tophit_file.read() # Summarise each of the markers for this genome. ar122_copy_number_file.add_genome(db_genome_id, info.get("aa_gene_path"), pfam_tophit_file, tigr_tophit_file) bac120_copy_number_file.add_genome(db_genome_id, info.get("aa_gene_path"), pfam_tophit_file, tigr_tophit_file) # Write the best translation table to disk for this genome. tln_summary_file.add_genome(db_genome_id, info.get("best_translation_table")) # Write each of the summary files to disk. ar122_copy_number_file.write() bac120_copy_number_file.write() tln_summary_file.write() # Create a symlink to store the summary files in the root. symlink_f( PATH_BAC120_MARKER_SUMMARY.format(prefix=prefix), os.path.join( outdir, os.path.basename( PATH_BAC120_MARKER_SUMMARY.format(prefix=prefix)))) symlink_f( PATH_AR122_MARKER_SUMMARY.format(prefix=prefix), os.path.join( outdir, os.path.basename( PATH_AR122_MARKER_SUMMARY.format(prefix=prefix)))) symlink_f( PATH_TLN_TABLE_SUMMARY.format(prefix=prefix), os.path.join( outdir, os.path.basename( PATH_TLN_TABLE_SUMMARY.format(prefix=prefix))))
def _report_identified_marker_genes(self, gene_dict, outdir, prefix, write_single_copy_genes): """Report statistics for identified marker genes.""" # Summarise the copy number of each AR53 and BAC120 markers. tln_summary_file = TlnTableSummaryFile(outdir, prefix) ar53_copy_number_file = CopyNumberFileAR53(outdir, prefix) bac120_copy_number_file = CopyNumberFileBAC120(outdir, prefix) # Process each genome. for db_genome_id, info in tqdm_log(sorted(gene_dict.items()), unit='genome'): cur_marker_dir = os.path.join(outdir, DIR_MARKER_GENE) pfam_tophit_file = TopHitPfamFile(cur_marker_dir, db_genome_id) tigr_tophit_file = TopHitTigrFile(cur_marker_dir, db_genome_id) pfam_tophit_file.read() tigr_tophit_file.read() # Summarise each of the markers for this genome. ar53_copy_number_file.add_genome(db_genome_id, info.get("aa_gene_path"), pfam_tophit_file, tigr_tophit_file) bac120_copy_number_file.add_genome(db_genome_id, info.get("aa_gene_path"), pfam_tophit_file, tigr_tophit_file) # Write the best translation table to disk for this genome. tln_summary_file.add_genome(db_genome_id, info.get("best_translation_table")) # Write each of the summary files to disk. ar53_copy_number_file.write() bac120_copy_number_file.write() tln_summary_file.write() # Create a symlink to store the summary files in the root. # symlink_f(PATH_BAC120_MARKER_SUMMARY.format(prefix=prefix), # os.path.join(outdir, os.path.basename(PATH_BAC120_MARKER_SUMMARY.format(prefix=prefix)))) # symlink_f(PATH_AR53_MARKER_SUMMARY.format(prefix=prefix), # os.path.join(outdir, os.path.basename(PATH_AR53_MARKER_SUMMARY.format(prefix=prefix)))) # symlink_f(PATH_TLN_TABLE_SUMMARY.format(prefix=prefix), # os.path.join(outdir, os.path.basename(PATH_TLN_TABLE_SUMMARY.format(prefix=prefix)))) symlink_f( PATH_FAILS.format(prefix=prefix), os.path.join(outdir, os.path.basename(PATH_FAILS.format(prefix=prefix)))) # Write the single copy AR53/BAC120 FASTA files to disk. if write_single_copy_genes: fasta_dir = os.path.join(outdir, DIR_IDENTIFY_FASTA) self.logger.info( f'Writing unaligned single-copy genes to: {fasta_dir}') # Iterate over each domain. marker_doms = list() marker_doms.append( (Config.AR53_MARKERS['PFAM'] + Config.AR53_MARKERS['TIGRFAM'], ar53_copy_number_file, 'ar53')) marker_doms.append((Config.BAC120_MARKERS['PFAM'] + Config.BAC120_MARKERS['TIGRFAM'], bac120_copy_number_file, 'bac120')) for marker_names, marker_file, marker_d in marker_doms: # Create the domain-specific subdirectory. fasta_d_dir = os.path.join(fasta_dir, marker_d) make_sure_path_exists(fasta_d_dir) # Iterate over each marker. for marker_name in marker_names: marker_name = marker_name.rstrip(r'\.[HMMhmm]') marker_path = os.path.join(fasta_d_dir, f'{marker_name}.fa') to_write = list() for genome_id in sorted(gene_dict): unq_hits = marker_file.get_single_copy_hits(genome_id) if marker_name in unq_hits: to_write.append(f'>{genome_id}') to_write.append(unq_hits[marker_name]['seq']) if len(to_write) > 0: with open(marker_path, 'w') as fh: fh.write('\n'.join(to_write))
def align(self, identify_dir, skip_gtdb_refs, taxa_filter, min_perc_aa, custom_msa_filters, skip_trimming, rnd_seed, cols_per_gene, min_consensus, max_consensus, min_per_taxa, out_dir, prefix, outgroup_taxon, genomes_to_process=None): """Align marker genes in genomes.""" # read genomes that failed identify steps to skip them failed_genomes_file = os.path.join( os.path.join(identify_dir, PATH_FAILS.format(prefix=prefix))) if os.path.isfile(failed_genomes_file): with open(failed_genomes_file) as fgf: failed_genomes = [row.split()[0] for row in fgf] else: failed_genomes = list() # If the user is re-running this step, check if the identify step is consistent. genomic_files = self._path_to_identify_data(identify_dir, identify_dir != out_dir) if genomes_to_process is not None and len(genomic_files) != len( genomes_to_process): if list( set(genomic_files.keys()) - set(genomes_to_process.keys()) ).sort() != failed_genomes.sort(): self.logger.error( '{} are not present in the input list of genome to process.' .format( list( set(genomic_files.keys()) - set(genomes_to_process.keys())))) raise InconsistentGenomeBatch( 'You are attempting to run GTDB-Tk on a non-empty directory that contains extra ' 'genomes not present in your initial identify directory. Remove them, or run ' 'GTDB-Tk on a new directory.') # If this is being run as a part of classify_wf, copy the required files. if identify_dir != out_dir: identify_path = os.path.join(out_dir, DIR_IDENTIFY) make_sure_path_exists(identify_path) copy( CopyNumberFileBAC120(identify_dir, prefix).path, identify_path) copy(CopyNumberFileAR53(identify_dir, prefix).path, identify_path) copy(TlnTableSummaryFile(identify_dir, prefix).path, identify_path) # Create the align intermediate directory. make_sure_path_exists(os.path.join(out_dir, DIR_ALIGN_INTERMEDIATE)) # Write out files with marker information ar53_marker_info_file = MarkerInfoFileAR53(out_dir, prefix) ar53_marker_info_file.write() bac120_marker_info_file = MarkerInfoFileBAC120(out_dir, prefix) bac120_marker_info_file.write() # Determine what domain each genome belongs to. bac_gids, ar_gids, _bac_ar_diff = self.genome_domain( identify_dir, prefix) if len(bac_gids) + len(ar_gids) == 0: raise GTDBTkExit(f'Unable to assign a domain to any genomes, ' f'please check the identify marker summary file, ' f'and verify genome quality.') # # Create a temporary directory that will be used to generate each of the alignments. # with tempfile.TemporaryDirectory(prefix='gtdbtk_tmp_') as dir_tmp_arc, \ # tempfile.TemporaryDirectory(prefix='gtdbtk_tmp_') as dir_tmp_bac: # # cur_gid_dict = {x: genomic_files[x] for x in ar_gids} # self.logger.info(f'Collecting marker sequences from {len(cur_gid_dict):,} ' # f'genomes identified as archaeal.') # align.concat_single_copy_hits(dir_tmp_arc, # cur_gid_dict, # ar53_marker_info_file) # self.logger.info( f'Aligning markers in {len(genomic_files):,} genomes with {self.cpus} CPUs.' ) dom_iter = ((bac_gids, Config.CONCAT_BAC120, Config.MASK_BAC120, "bac120", 'bacterial', CopyNumberFileBAC120), (ar_gids, Config.CONCAT_AR53, Config.MASK_AR53, "ar53", 'archaeal', CopyNumberFileAR53)) gtdb_taxonomy = Taxonomy().read(self.taxonomy_file) for gids, msa_file, mask_file, marker_set_id, domain_str, copy_number_f in dom_iter: # No genomes identified as this domain. if len(gids) == 0: continue self.logger.info( f'Processing {len(gids):,} genomes identified as {domain_str}.' ) if marker_set_id == 'bac120': marker_info_file = bac120_marker_info_file marker_filtered_genomes = os.path.join( out_dir, PATH_BAC120_FILTERED_GENOMES.format(prefix=prefix)) marker_msa_path = os.path.join( out_dir, PATH_BAC120_MSA.format(prefix=prefix)) marker_user_msa_path = os.path.join( out_dir, PATH_BAC120_USER_MSA.format(prefix=prefix)) else: marker_info_file = ar53_marker_info_file marker_filtered_genomes = os.path.join( out_dir, PATH_AR53_FILTERED_GENOMES.format(prefix=prefix)) marker_msa_path = os.path.join( out_dir, PATH_AR53_MSA.format(prefix=prefix)) marker_user_msa_path = os.path.join( out_dir, PATH_AR53_USER_MSA.format(prefix=prefix)) cur_genome_files = { gid: f for gid, f in genomic_files.items() if gid in gids } if skip_gtdb_refs: gtdb_msa = {} else: gtdb_msa = self._msa_filter_by_taxa(msa_file, gtdb_taxonomy, taxa_filter, outgroup_taxon) gtdb_msa_mask = os.path.join(Config.MASK_DIR, mask_file) # Generate the user MSA. user_msa = align.align_marker_set(cur_genome_files, marker_info_file, copy_number_f, self.cpus) if len(user_msa) == 0: self.logger.warning( f'Identified {len(user_msa):,} single copy {domain_str} hits.' ) continue # Write the individual marker alignments to disk if self.debug: self._write_individual_markers(user_msa, marker_set_id, marker_info_file.path, out_dir, prefix) # filter columns without sufficient representation across taxa if skip_trimming: self.logger.info( 'Skipping custom filtering and selection of columns.') pruned_seqs = {} trimmed_seqs = merge_two_dicts(gtdb_msa, user_msa) elif custom_msa_filters: aligned_genomes = merge_two_dicts(gtdb_msa, user_msa) self.logger.info( 'Performing custom filtering and selection of columns.') trim_msa = TrimMSA( cols_per_gene, min_perc_aa / 100.0, min_consensus / 100.0, max_consensus / 100.0, min_per_taxa / 100.0, rnd_seed, os.path.join(out_dir, f'filter_{marker_set_id}')) trimmed_seqs, pruned_seqs = trim_msa.trim( aligned_genomes, marker_info_file.path) if trimmed_seqs: self.logger.info( 'Filtered MSA from {:,} to {:,} AAs.'.format( len(list(aligned_genomes.values())[0]), len(list(trimmed_seqs.values())[0]))) self.logger.info( 'Filtered {:,} genomes with amino acids in <{:.1f}% of columns in filtered MSA.' .format(len(pruned_seqs), min_perc_aa)) filtered_user_genomes = set(pruned_seqs).intersection(user_msa) if len(filtered_user_genomes): self.logger.info( f'Filtered genomes include {len(filtered_user_genomes)} user submitted genomes.' ) else: self.logger.log( Config.LOG_TASK, f'Masking columns of {domain_str} multiple sequence alignment using canonical mask.' ) trimmed_seqs, pruned_seqs = self._apply_mask( gtdb_msa, user_msa, gtdb_msa_mask, min_perc_aa / 100.0) self.logger.info( 'Masked {} alignment from {:,} to {:,} AAs.'.format( domain_str, len(list(user_msa.values())[0]), len(list(trimmed_seqs.values())[0]))) if min_perc_aa > 0: self.logger.info( '{:,} {} user genomes have amino acids in <{:.1f}% of columns in filtered MSA.' .format(len(pruned_seqs), domain_str, min_perc_aa)) # write out filtering information with open(marker_filtered_genomes, 'w') as fout: for pruned_seq_id, pruned_seq in pruned_seqs.items(): if len(pruned_seq) == 0: perc_alignment = 0 else: valid_bases = sum( [1 for c in pruned_seq if c.isalpha()]) perc_alignment = valid_bases * 100.0 / len(pruned_seq) fout.write( f'{pruned_seq_id}\tInsufficient number of amino acids in MSA ({perc_alignment:.1f}%)\n' ) # write out MSAs if not skip_gtdb_refs: self.logger.info( f'Creating concatenated alignment for {len(trimmed_seqs):,} ' f'{domain_str} GTDB and user genomes.') self._write_msa(trimmed_seqs, marker_msa_path, gtdb_taxonomy, zip_output=True) trimmed_user_msa = { k: v for k, v in trimmed_seqs.items() if k in user_msa } if len(trimmed_user_msa) > 0: self.logger.info( f'Creating concatenated alignment for {len(trimmed_user_msa):,} ' f'{domain_str} user genomes.') self._write_msa(trimmed_user_msa, marker_user_msa_path, gtdb_taxonomy, zip_output=True) else: self.logger.info( f'All {domain_str} user genomes have been filtered out.')
def test_add_genome_raises_exception(self): tln = TlnTableSummaryFile(self.dir_tmp, 'tst') tln.add_genome('a', 4) self.assertRaises(GTDBTkExit, tln.add_genome, 'a', 11)
def test_add_genome(self): tln = TlnTableSummaryFile(self.dir_tmp, 'tst') tln.add_genome('a', 4) tln.add_genome('b', 11) self.assertDictEqual({'a': 4, 'b': 11}, tln.genomes)